
Juniper Networks Books are singularly focused on network productivity

and efficiency. Peruse the complete library at www.juniper.net/books.

HARDWARE-DEFINED NETWORKING

MODERN NETWORKING FROM A HARDWARE PERSPECTIVE

Hardware-Defined Networking (HDN) explores the patterns that are common to modern net-
working protocols and provides a framework for understanding the work that networking hard-
ware performs on a packet-by-packet basis billions of times per second.

These patterns are not revealed in the command line interfaces that are the daily tools of IT
professionals. The architects and protocol designers of the Internet and other large-scale net-
works understand these patterns, but they are not expressed in the standards documents that
form the foundations of the networks that we all depend upon.

HDN presents these essential networking patterns and describes their impact on hardware ar-
chitectures, resulting in a framework that software developers, dev ops, automation program-
mers, and all the various networking engineers can understand how modern networks are built.

Most networking books are written from a network administrator’s perspective (how to build
and manage a network), while many new networking books are now written from a software
perspective (how to implement a network’s management plane in software); HDN’s perspective
will benefit both the hardware and the software engineers who need to understand the trade-
offs of design choices.

ISBN 978-1-941441-51-0

9 781941 441510

5 4 0 0 0

“Today, massive compute problems such as machine learning are being tackled by special-

ized chips (GPUs, TPUs). So, how will specialized hardware handle the massive band-

widths from IoT devices to Mega-Scale Data Centers and equally massive bandwidths from

those MSDCs to hand-helds? Here is just the book to find out: every time I open it I learn

something new, something I didn’t know. Brian Petersen has taken a thoroughly modern

snapshot of how it all comes together .”

Dr. Kireeti Kompella, SVP and CTO Engineering, Juniper Networks

“Brian Petersen has accomplished something quite remarkable with this book; he has dis-

tilled complex and seemingly disparate networking protocols and concepts into an emi-

nently understandable framework. This book serves as both an excellent reference and as a

learning tool for individuals from a broad range of networking disciplines.”

Jean-Marc Frailong, Chief Architect, Juniper Networks

This hardware perspective of networking

delivers a common framework for

software developers, dev ops, auto-

mation programmers, and all the various

networking engineers to understand how

modern networks are built.

By Brian Petersen

HARDWARE-DEFINED NETWORKING
MODERN NETWORKING FROM A HARDWARE PERSPECTIVE

Distinguished Engineering Series

Foundation Principles

Tunnels

Network Virtualization

Terminology

Forwarding Protocols

Load Balancing

Overlay Protocols

Virtual Private Networks

Multicast

Connections

Quality of Service

Time Synchronization

OAM

Security

Searching

Firewall Filters

Routing Protocols

Forwarding System Architecture
H

A
R

D
W

A
R

E
-D

E
F

IN
E

D
 N

E
T

W
O

R
K

IN
G

B
ria

n
 P

e
te

rse
n

Ju
n

ip
e

r
N

e
tw

o
rks

B
o

o
ks

http://www.juniper.net/books
http://www.juniper.net

Juniper Networks Books are singularly focused on network productivity

and efficiency. Peruse the complete library at www.juniper.net/books.

HARDWARE-DEFINED NETWORKING

MODERN NETWORKING FROM A HARDWARE PERSPECTIVE

Hardware-Defined Networking (HDN) explores the patterns that are common to modern net-
working protocols and provides a framework for understanding the work that networking hard-
ware performs on a packet-by-packet basis billions of times per second.

These patterns are not revealed in the command line interfaces that are the daily tools of IT
professionals. The architects and protocol designers of the Internet and other large-scale net-
works understand these patterns, but they are not expressed in the standards documents that
form the foundations of the networks that we all depend upon.

HDN presents these essential networking patterns and describes their impact on hardware ar-
chitectures, resulting in a framework that software developers, dev ops, automation program-
mers, and all the various networking engineers can understand how modern networks are built.

Most networking books are written from a network administrator’s perspective (how to build
and manage a network), while many new networking books are now written from a software
perspective (how to implement a network’s management plane in software); HDN’s perspective
will benefit both the hardware and the software engineers who need to understand the trade-
offs of design choices.

ISBN 978-1-941441-51-0

9 781941 441510

5 4 0 0 0

“Today, massive compute problems such as machine learning are being tackled by special-

ized chips (GPUs, TPUs). So, how will specialized hardware handle the massive band-

widths from IoT devices to Mega-Scale Data Centers and equally massive bandwidths from

those MSDCs to hand-helds? Here is just the book to find out: every time I open it I learn

something new, something I didn’t know. Brian Petersen has taken a thoroughly modern

snapshot of how it all comes together .”

Dr. Kireeti Kompella, SVP and CTO Engineering, Juniper Networks

“Brian Petersen has accomplished something quite remarkable with this book; he has dis-

tilled complex and seemingly disparate networking protocols and concepts into an emi-

nently understandable framework. This book serves as both an excellent reference and as a

learning tool for individuals from a broad range of networking disciplines.”

Jean-Marc Frailong, Chief Architect, Juniper Networks

This hardware perspective of networking

delivers a common framework for

software developers, dev ops, auto-

mation programmers, and all the various

networking engineers to understand how

modern networks are built.

By Brian Petersen

HARDWARE-DEFINED NETWORKING
MODERN NETWORKING FROM A HARDWARE PERSPECTIVE

Distinguished Engineering Series

Foundation Principles

Tunnels

Network Virtualization

Terminology

Forwarding Protocols

Load Balancing

Overlay Protocols

Virtual Private Networks

Multicast

Connections

Quality of Service

Time Synchronization

OAM

Security

Searching

Firewall Filters

Routing Protocols

Forwarding System Architecture

H
A

R
D

W
A

R
E

-D
E

F
IN

E
D

 N
E

T
W

O
R

K
IN

G
B

ria
n

 P
e

te
rse

n
Ju

n
ip

e
r

N
e

tw
o

rks
B

o
o

ks

http://www.juniper.net/books
http://www.juniper.net

Hardware-Defined Networking

Modern Networking from a Hardware Perspective

by Brian Petersen

1. Preface . 3

2. Introduction . 5

3. Foundation Principles . 8

4. Tunnels . 14

5. Network Virtualization . 23

6. Terminology . 31

7. Forwarding Protocols .40

8. Load Balancing .115

9. Overlay Protocols. 126

10. Virtual Private Networks . 140

11. Multicast . 154

12. Connections . 167

13. Quality of Service . 185

14. Time Synchronization . 209

15. OAM .239

16. Security . 277

17. Searching .302

18. Firewall Filters . 315

19. Routing Protocols . 321

20. Forwarding System Architecture .335

21. Conclusion .349

 ii Hardware-Defined Networking

© 2017 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo and the Junos logo,
are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their respective
owners. Juniper Networks assumes no responsibility for
any inaccuracies in this document. Juniper Networks
reserves the right to change, modify, transfer, or otherwise
revise this publication without notice.

Published by Juniper Networks Books
Written and Illustrated by: Brian Petersen
Editors: Patrick Ames, Nancy Koerbel

ISBN: 978-1-941441-51-0 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-52-7 (ebook)

Version History: v1, August 2017
 2 3 4 5 6 7 8 9 10

http://www.juniper.net/books

About the Author
Brian Petersen’s engineering career largely mirrors the
growth and progress in networking. After exploring a
variety of disciplines, Brian joined 3Com Corporation back
when Ethernet’s most formidable competitor was
“SneakerNet”— floppy discs. From there, Brian did
pioneering work on high-density 100 Mbps Ethernet
bridges at Grand Junction Networks and, after its
acquisition, at Cisco Systems. The volatile early 2000s led
to a series of startups (notably Greenfield Networks and
TeraBlaze), culminating in several years at Broadcom
Corporation and, since 2010, as a Distinguished Engineer
at Juniper Networks. From building Ethernet MACs using
discrete logic elements to developing packet processing
architectures for multi-terabit packet forwarding engines
intended for chassis-scale systems, Brian has developed a
deep and rich understanding of network architectures and
the packet processing required to support them.

http://www.juniper.net/books

1 Preface

Most books about networking have been written for the designers and operators
of networks themselves. Another sizable fraction focus on the protocols used
by networking equipment to distribute state, routing, and quality of service
information from system to system and network to network. This book is focused
on what’s missing from this body of work: clear and concise descriptions of net-
working theories, operations, protocols, and practices from the perspective of the
hardware that does the work of actually forwarding all of those packets.

The information in this book is gleaned from hundreds of standards specifications
as well as decades of practical experience designing and building networking
silicon and systems. But this book is not just a summary of standards documents.
Standards documents generally suffer from a number of shortcomings. First,
there seems to be two diametrically opposed opinions in the standards-writing
community regarding the tone, context and coverage of the standards documents.
Some standards go so far out of their way to avoid offering anything that seems
like helpful advice or common-sense descriptions—the practical implications of
the algorithms, structures and rules are deeply buried in bureaucratic obfusca-
tion—that one can feel as though they should have an attorney on retainer while
reading those documents. Meanwhile, other standards gloss over their material
in a casual, off-hand way that leaves one wondering if something important was
accidentally omitted or if their authors are relying on several follow-up documents
to fill in the gaps.

Second, the various standards bodies can’t seem to agree on terminology, style
and even something as basic as the numbering of bits in a word. Bytes vs. octets.
Big-endian vs. little-endian. Packets vs. frames vs. datagrams. It’s almost as if the
standards from one organization are not intended to interact in any way from
those of another organization.

Finally, the use of jargon, abbreviations, acronyms and initialisms is so rampant
that, unless you’re the inventor of the jargon or have been living with it for an
extended period of time, actually reading and making sense of a typical standards
document is an extraordinarily labor intensive and frustrating exercise. The
terminology problems are compounded through the inconsistent use of terms

 4 Hardware-Defined Networking

from standard to standard—both between standards bodies and within a single
standards body. In this book I’ve expanded acronyms, reduced jargon and tried to
normalize terms and presentation styles as much as possible without straying so
far from the source material as to make it unrecognizable.

Ultimately, my goal in writing this book is to present commonly-used protocols
in a consistent, readily-understandable manner, with background, history, and
examples, providing a framework that can be used to organize and understand
the arcane details of the protocols covered in this book, and to provide a mental
model for facilitating your understanding of new protocols that are bound to be
invented in the coming years.

Brian Petersen, Distinguished Engineer, Juniper Networks
August 2017

2 Introduction

The life blood of all modern societies and economies is movement. Movement
of people, capital, raw materials and finished goods. Movement of food, energy,
water and other commodities. The movement of all of those items is supported
by the parallel, reciprocal and orthogonal movement of information. Without the
movement of information, all of those other systems of movement would immedi-
ately grind to a halt. Maps, routes, itineraries, permissions, requests, bids, orders,
specifications, invoices, payments and many more forms of information underlie
the movement of all physically tangible items.

Communications—the movement of information from one place to another, from
one brain to another, from one time to another—is fundamental to the human
experience and is, indeed, essential for life itself. Biological systems use DNA to
communicate vast amounts of information from one generation to the next (for-
tunately for us, slightly imperfectly). Human spoken, and later, written languages
permit the transmission of thoughts and ideas across great distances and, with the
development of storage systems—e.g., impressions on clay tablets, ink on (or holes
in) paper, magnetic charges, captured electrons, etc.—across vast stretches of time.

Network latency—i.e., the delay between the original transmission of a message
and its final reception—used to be dependent upon the speed of some animal or
another: human, horse, homing pigeon, etc., or upon the speed of a machine: sail-
ing ship, steam ship, steam train, etc. With the invention of the electric telegraph
early in the 19th century, the speed at which information could travel leapt from
about 80–140 kilometers per hour (50–90 miles per hour) for a homing pigeon, to
0.5-0.9c (~30,000,000–60,000,000 miles per hour) for an electrical signal flowing
down copper wires. For the first time in human history, near real time information
could be simultaneously gathered from numerous points across great distances,
enabling weather mapping, battlefield intelligence, financial market reports and
much more.

Since solving the communications latency problem nearly 200 years ago—jumping
immediately from days, weeks or months to near zero—we’ve made exponential
progress on the bandwidth supported by our networks. A good telegraph operator
could send about 15 bits per second (bps) while today’s optical networks are push-
ing 1 trillion bits per second (Tbps).1

1 In the not too distant future, 1 Tbps will seem quaint.

 6 Hardware-Defined Networking

The topology of our electronic (or optical) communications networks have also
evolved over the years. These networks have gone from the simple point-to-point
of early telegraph and telephone networks, to manually operated central switching
offices, to automatic central switching offices (e.g., rotary dial, then touch-tone
phones), to digital telephony with automatic signaling and call management, to
circuit-switched telephony networks, and, finally, to packet-switched networks,
the ultimate expression of which is the world-wide Internet.

With the rise of the digital computer in the latter half of the 20th century came a
rising awareness of the value of interconnecting computers via networks in order
to share data and software and to use the computers and their networks for a vari-
ety of forms of communication. Much like the Cambrian explosion 542,000,000
years ago in the evolution of life, a lot of experimental work in the 1970s and 80s
led to a vast diversity of packet forwarding methods. Examples of this time include
IPX (Xerox), AppleTalk (Apple), SNA (IBM), XNS (Xerox, again) and DECnet
(DEC). Essentially, every computer manufacturer developed their own networking
protocol in order to connect their own computers with one another.

This diversity of protocols was the main impediment to the development of
hardware-based packet forwarding engines. Indeed, the term “multi-protocol”
was synonymous with being a router. Hence, all routers up until the mid 1990s
were based on general-purpose CPUs. But, with the introduction of the Internet
and web browsers to the masses, it became clear that IPv4 was going to be the
dominant protocol. This sudden narrowing of focus would obviate the need for
general-purpose CPUs and enable purely hardware-based forwarding planes.

With Ethernet dominating media access control and IPv4/TCP dominating inter-
network forwarding, life was good, easy, simple and sensible in the networking
hardware world. That didn’t last long, though. MPLS came along because we
became convinced that IPv4 lookups were too hard. Then we started to run out of
IPv4 addresses, so IPv6 was born. Then we started building private networks on
top of public networks, so a diversity of tunnel encapsulations were born. Now,
these protocols are being used to build globe-spanning networks, massive data
center networks, enterprise networks and highly mobile networks.

While the diversity of protocol and header types is not nearly what it was during
the early days of computer networking, the diversity of ways in which those proto-
cols and header types are being arranged in packets and interpreted by forwarding
systems has never been more complex. Compounding this complexity is the
operating software that runs in and manages each of the forwarding systems used
to build large and complex networks.

In recent years, the concept of software-defined networking has swept through the
networking industry, affecting the planning and thinking of network operators
and networking equipment vendors alike. Software-defined networking—in its
Platonically ideal state—allows centralized controllers to update the operating

 Introduction 7

state of a diversity of hardware platforms through a set of common APIs (ap-
plication programming interfaces). As of this writing, a lot of energy has been
expended toward this goal, and some real progress has been made. Ultimately,
we may see networks built from heterogeneous hardware that is all collectively
managed by sophisticated, automated controllers that neatly abstract away the
nitty-gritty details of the underlying hardware-based networking infrastructure.

However, regardless of how sophisticated and complete this controller software
eventually becomes, networks will still be built using hardware that implements
those details and dutifully examines each and every packet to ensure that the
intent of the controlling software is carried out. Ultimately, it is the capabilities
of the underlying hardware that defines what a software-based controller can
do to manage a network. Want to use a particular forwarding protocol? Want to
terminate a series of tunnels while propagating congestion notifications? Want to
search into a forwarding database using a particular assortment of header fields
and metadata? You’ll need hardware that supports those operations.

There is no getting around the fact that networking hardware is necessarily
complex. Fortunately, underlying this complexity and amid the thousands of nitty-
gritty details, there is a fundamental logic and, dare I say, beauty to it all. A lot of
those nitty-gritty details are, by necessity, presented here in this book, but convey-
ing the logic and structure of networking is this book’s true goal. To that end, the
very next chapters hold off from presenting the details of various protocols and,
instead, bring this logic and structure into focus. As you work your way through
the detail-laden chapters, I encourage you to refer back to the first few introduc-
tory chapters to help you organize those details within your growing understand-
ing of the logic and structure of networking and the hardware that gives it life.

3 Foundation Principles

In this chapter, we’ll build the conceptual foundation upon which all of network-
ing hardware is built.

Bridges and Routers and Switches. Oh, My!

A lot of ink, toner, pixels and hot air has been expended over the years debating
the exact definitions of bridges vs. routers vs. switches. In reality, the differences
are minor and the forced distinctions just add confusion. To be clear, bridges and
routers and switches all receive packets (or frames, if you prefer) via some kind
of interface and then forward them to zero, one or more other interfaces where
they’re then transmitted toward their intended destinations. The exact details of
the forwarding methods and rules vary depending on the types of packets being
forwarded, but the essentials are the same.

Now, that being said, bridges are generally associated with Ethernet packets while
routers are associated with IPv4, IPv6 and MPLS. Even though the forwarding
methods of IP and MPLS are as different from one another as IP is from Ether-
net—and MPLS even has the word “switching” in its name—IP and MPLS are
both forwarded by what we call routers. The only thing that IP and MPLS have in
common is the presence of a timeToLive field in their headers. So, if it’s helpful to
think that router == timeToLive, then that’ll work just fine.

Where it is necessary or convenient to refer to bridge, switch, and router functions
interchangeably, the term “forwarding entity” is used. When a collection of bridg-
es and/or routers are assembled within a hardware system, the term “forwarding
system” is used.

 Foundation Principles 9

Layers Upon Layers

Once upon a time, international standards bodies endeavored to bring order and
structure to the free-for-all world of networking. They did this by publishing the
Open System Interconnection (OSI) network layer model. The layers they came up
with are:

1. Physical

2. Data link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

The central premise of the OSI network layer model is that lower-numbered lay-
ers present parcels of information to their higher-numbered neighbors while the
reciprocal relationship is about layers using the services of their lower-numbered
neighbors, all across well-defined logical interfaces.

Back in the 1970s, this wasn’t such a bad model. But then the world changed and
we’ve been forcing things into these layers with no real benefit and much real
confusion. For example, the data link layer really refers to a single point-to-point
connection across a dedicated or shared physical medium. The canonical Layer 2
network, Ethernet, started life as a shared-medium network: a single coax cable
snaking from node to node. Every Ethernet packet transmitted onto the coax
cable could be received by every node attached to the cable. It was, literally, a
broadcast-only network. To ensure that packets got where they needed to go, a
globally-unique 48-bit media access control (MAC) address is statically assigned
to every node and is carried in a destination address field in every Ethernet packet.
Each Ethernet adapter (a network node’s connection to the Ethernet network)
was trusted to receive and accept only those packets whose destination address
matched the address of the node.

This very simple way of building networks did not scale very well, so the transpar-
ent bridge was invented. This simple forwarding entity was used to split these
shared-media networks into separate segments and to only forward from one
segment to another those packets whose destinations were on the far side of these
two-port systems. All of a sudden, forwarding decisions were being made at Layer
2. This was supposed to be the job of Layer 3. Yikes! Getting confusing already.

Years later, convinced that longest-prefix matches on 32-bit IPv4 addresses were
too difficult to perform at high speeds, label switching was invented. The premise
was that it was far simpler to just use a relatively narrow 20-bit value (i.e., a label)

 10 Hardware-Defined Networking

as an index into a million-entry table (220 = 1M) to determine how to forward a
packet, and multi-protocol label switching (MPLS) was born. Despite the presence
of the word “switching” in its name, we have MPLS routers. Go figure. MPLS
does have a timeToLive field like IP, but I guess that “switching” sounded simpler,
faster and sexier than routing at the time, so here we are. Okay, let’s call it a routed
protocol, just as IP is a routed protocol. Both being routed protocols means that
both want to live at Layer 3. Oops! Two protocols in simultaneous use at Layer 3.
This is why you’ll sometimes see MPLS referred to as a Layer 2.5 protocol since it’s
slotted in between Ethernet (Layer 2) and IP (Layer 3) in common usage.

When you get to Layer 4, we’re no longer dealing with addressing of endpoints,
but the addressing of services at endpoints and the imposition of reliable transport
(think: sequence numbers, acknowledges and retries). This is pretty straightfor-
ward and sensible—you want your email messages to be directed to the email
application and your web pages to show up in your browser.

Layers 5 through 7 are not generally the province of hardware-based forwarding
systems, so they’re not of significant interest within the context of this book. We’ll
mostly ignore them.

Realistically, you’ll probably need to be somewhat conversant in the OSI layer
model. But, practically speaking, you can think of Layer 1 (bits on the wire, fiber
or radio waves) and then everything else. There are much more effective and sim-
pler models for thinking about networking that actually relate to what exists in the
real world and that serve as a useful guide for creating new systems. Let’s get into
that now and discuss the characteristics of an abstract forwarding entity.

Abstract Forwarding Entity Characteristics

Before diving into the details of specific forwarding protocols and methods, it’s
useful to consider an abstract model of a forwarding entity. By examining an
abstract forwarding entity, you’ll build a mental model for forwarding that is
stripped of all of the noisy and messy details that are required of actual forwarding
entities. The characteristics of our hypothetical abstract forwarding entity are eas-
ily mapped to the actual characteristics of real-world forwarding entities such as
Ethernet bridges and IP routers.

To best understand the incredibly simple and straightforward definition of the role
of a forwarding entity, a handful of essential concepts must be introduced. These
will all be explored in much greater detail later.

Packets
A packet is a fundamental unit of network information. In general, its length can
range from some protocol-specific minimum to a protocol- or network-specific

 Foundation Principles 11

maximum. A single message from one network endpoint to another may either fit
into a single packet or may be split across several packets for longer messages.

Packets are forwarded independently of one another (including packets that may
all be conveying parts of the same message). As self-contained units of informa-
tion, they must include the information required to deliver them from their source
to their intended destination. This information is enclosed within one or more
headers.

Headers
All packets forwarded by a forwarding entity must contain at least one outermost
header that is specific to the type of the current forwarding entity. In sequence,
an outer header is one that is located toward the head (or beginning) of a packet.
Inner headers are located in sequence away from the head of a packet. In a Platoni-
cally idealized world, a forwarding entity only examines the outermost header and
that header is of a type that matches the forwarding entity’s type. For example, a
purely IP router does not know what to do with a packet whose outermost header
is Ethernet, it only understands IP headers.

An imaginary outermost header is always prepended to a packet upon receipt by
a forwarding entity. This imaginary header is the receive interface header. Its func-
tion is to identify the interface via which the packet was received. Certain types
of forwarding entities only consider the receive interface header when making a
forwarding decision (specifically: cross-connect). More commonly, however, the
receive interface header provides vital information that is combined with address-
ing information from the outermost header to make forwarding decisions. Since
the receive interface header never appears on a physical network connection, it can
be thought of and handled as packet metadata within a forwarding entity.

Addressing
Forwarding entity-specific headers must contain addressing information that can
be used to make forwarding decisions. Optionally, these headers contain source-
identifying information that makes it simple to send a reply to a received packet or
make other policy-related decisions that are source specific. Address values may
be statically or dynamically assigned to network nodes, and they may be global or
local in scope.

Not all headers contain addressing information. They may, instead, convey for-
warding domain, priority or security information.

Flows
A flow is a connection between any two endpoints on a network (or a one-to-many
connection for multicast and broadcast cases). Endpoints may be computers
(including servers and storage elements) or services running within a physical

 12 Hardware-Defined Networking

endpoint (e.g., web server, etc.). A forwarding entity may also be an endpoint since
the control plane of a forwarding entity is, indeed, addressable. Control planes
and other aspects of hardware architectures are discussed in detail in Chapter 20
on page 335.

Interfaces
Every forwarding entity must have at least two interfaces. There is no upper limit
to the number of interfaces that a forwarding entity may have. Packets are received
and transmitted via these interfaces. For our abstract forwarding entity, we can
assume that the interfaces are infinitely fast.

Physical, Logical and Virtual
Networks are built of physical things: wires, connectors, bridges, routers, etc.
Bridges and routers are also built of physical things: packet buffers, forwarding
databases, etc. However, it is often very valuable and powerful to be able to sub-
divide these physical things into multiple, independent things that have all of the
behavioral characteristics of the whole physical thing. Hence, physical ports may
be divided into several logical ports. A physical network (i.e., the often complex
interconnections between forwarding systems) may be overlayed with any number
of, potentially, simpler virtual networks. Finally, the valuable resources within
a forwarding entity (e.g., the forwarding databases) may be divided into several
virtual tables to support multiple protocols and/or multiple customers without
conflict.

Forwarding Domains
Forwarding domains are used to virtualize networks and, more specifically, the
forwarding hardware that is used to create and operate those networks. There is
a one-to-one correlation between a forwarding domain and an idealized, abstract
forwarding entity. Each forwarding entity represents one and only one forwarding
domain. The movement of packets from one forwarding domain to another and
the restrictions on forwarding imposed by forwarding domains are fundamental
parts of networking and are explored in depth later on.

The Forwarding Entity Axiom
Now that some essential concepts have been introduced, we’re ready to consider
the central axiom of networking that defines the fundamental behavior of each
and every forwarding entity:

A forwarding entity always forwards packets in per-flow order to
zero, one or more of the forwarding entity’s own transmit interfaces
and never forwards a packet to the packet’s own receive interface.

Let’s tease that axiom apart.

 Foundation Principles 13

The “in per-flow order” phrase stipulates that packets belonging to the same flow
must be forwarded in the order in which they were received. In-order forwarding
is mandated by some protocols (e.g., Ethernet) and is optional for others (e.g., IP).
However, in practice, in-order forwarding is expected and required by virtually
all applications and customers. The reason for this is that there is a significant per-
formance penalty at an endpoint when packets arrive out of order. Out-of-order
delivery for those protocols that do not mandate in-order delivery can be tolerated
as very brief transients.

The “to zero, one or more […] interfaces” phrase indicates that a single receive
packet may spawn multiple transmit copies of that packet. This is, of course, the
essence of multicast and broadcast behavior. Each of the copies of the packet
is identical as it arrives at the forwarding entity’s several transmit interfaces.
However, as it is transmitted, the packets may have new encapsulations added
as they emerge from the forwarding entity. The importance of this behavior is
discussed when we delve into multicast operations and tunneling. The reference to
zero transmit interfaces allows a forwarding entity to discard a packet if it cannot
forward the packet towards the packet’s intended destination or drop a packet if
congestion is encountered.

The “forwarding entity’s own transmit interfaces” phrase means that a forward-
ing entity absolutely cannot forward a packet via a transmit interface belonging
to another forwarding entity. Remember that each forwarding entity represents a
single forwarding domain. This forwarding restriction limits the forwarding entity
to simply forwarding within the domain associated with the forwarding entity.
This may seem crazily restrictive; and it is. But, for good reason. Forwarding do-
mains are used to isolate groups of flows so that it is impossible for packets from
one group of flows to accidentally leak over to another; a violation that could
represent a serious security breach. Do not despair, however, there is a way for
packets to move from one forwarding domain to another in a controlled fashion.
The exact method for doing so is covered in depth when we discuss tunnels and
virtualization.

The “never forwards a packet to the packet’s own receive interface” phrase
prevents packets from ending up back at their origin (the original sender of a
packet certainly isn’t expecting to receive a copy of a packet that it just sent) and
to prevent the formation of loops within the network that may spawn copies of
packets ad infinitum.

Keep the central axiom in mind and refer back to it as necessary. It applies to every
networking protocol, architecture and scenario covered by this book.

4 Tunnels

It may seem odd at this juncture to jump right into what most people consider to
be an advanced topic. However, tunneling really is fundamental. Without tunnel-
ing, only the simplest and most primitive connections are possible. Specifically, all
that can be done without tunneling is direct, physical, point-to-point connections
between pairs of endpoints as one might get with an RS-232 serial link (remember
those?). With such a link, addressing isn’t necessary because every byte sent by one
endpoint is intended for the other endpoint and no other destination is possible.
Once we define a packet format that includes a header with a destination address
value, we’ve just turned that physical connection into a tunnel.

Yes, even with the simplest possible Ethernet network, tunnels are in use, with the
physical medium—copper wires, optical fibers, radio waves, etc.—serving as the
outermost tunnel conveying all of the packets.

So, what have we accomplished by conveying, say, Ethernet packets through a
gigabit per second twisted pair tunnel? What we’ve done is abstracted away the
contents of the wire and made it possible to just be concerned about the wire itself
when building the physical network and not be concerned about what’s on the
wire—or, more precisely, what’s being conveyed by the physical layer tunnel. The
contents of the wire are said to be opaque to those components of the wire that
only concern themselves with the physical layer (e.g., cables, connectors, PHYs,
etc.).

Typically, a tunnel can carry many independent flows. Each flow is, in most ways,
a peer of the other flows in the same tunnel. These flows can also be tunnels; each
carrying its own, independent set of flows. Tunnels within tunnels is referred to as
encapsulation. This process of encapsulating tunnels within tunnels can be contin-
ued to arbitrary depths.

In our real, non-digital world, road or rail tunnels through mountains and under
rivers have entrances and exits. A vehicle may take one of several routes to arrive
at a particular tunnel entrance and may subsequently follow one of many routes
upon exiting the tunnel. However, while in the tunnel, the vehicle has little choice
but to go where the tunnel takes it. Tunnel entrances and exits are described as
origination and termination points, respectively. These origination and termina-
tion points have identifier values (i.e., addresses) that make it possible to navigate
to a particular point when several such points are available as options.

 Tunnels 15

In a network, the origination and termination points are identified by address
values, port numbers and labels (all explained further along in protocol-specific
discussions). Typically, these values are carried along with the packets in a series
of tunnel-specifying headers. For one particular tunnel type—the physical layer
tunnel—this addressing is implied by the port numbers of the forwarding entities
that serve as tunnel endpoints.

Figure 1 Tunnels in a Simple Network

Ethernet

IPv4
payload

Ethernet

IPv4
payload

Ethernet
Bridge

IPv4 wire

Ethernet

payload

Ethernet
Bridge &

IPv4
Router

Destination
Endpoint

Origin
Endpoint

IPv4wire wire

Ethernet

In the following discussion, numerous references are made to Ethernet and IPv4.
Do not be concerned if you are unfamiliar with the details of these forwarding
protocols. Those details are not important for grasping the basics of tunneling.

In Figure 1, a pair of endpoints communicate via a modest number of intermedi-
ate points (i.e., forwarding systems). From left to right, a packet encounters an
Ethernet bridge and an Ethernet plus IPv4 forwarding system, respectively. The
dashed arrows indicate to which entities headers within the packet are addressed.
Left-facing arrows represent source addresses while right-facing arrows represent
destination addresses.

All packets are addressed to their intended destination in some manner or another
by their headers. Resolving the meaning of the destination address in any particu-
lar header leads to one of three possible outcomes:

 � The address is unknown.

 � The address matches an entry in a forwarding database of a forwarding entity
(i.e., its forwarding information base, or FIB).

 � The address matches an address that belongs to the forwarding system itself.

 16 Hardware-Defined Networking

If the destination address of a packet’s outermost tunnel encapsulation is unknown
to the forwarding system, then some protocol-specific action is taken. Options in-
clude discarding the packet silently, discarding the packet and informing its source
that it was received in error, or forwarding the packet in some default manner that
helps get the packet closer to its intended destination.

If the destination address of a packet’s outermost tunnel encapsulation is found
in a forwarding database of a forwarding system, then the packet is forwarded
as specified by the contents of this table. This action either delivers the packet to
its destination directly (if the destination is directly attached to the forwarding
system), or it gets the packet to the next node in the network that is closer to the
intended destination.

Finally, if a packet is received by a forwarding system and the destination address
of the packet’s outermost tunnel encapsulation matches one of the addresses
owned by that forwarding system, then that outermost tunnel is terminated,
exposing the tunnel’s payload. If the payload’s protocol type matches a capability
of the forwarding system (i.e., the forwarding system understands how to deal
with such a packet), the forwarding system processes the payload as if it were a
newly-received packet (possibly exposing yet another payload). The process of
decapsulation continues until an encapsulation layer is reached whose destination
address is either unknown to the forwarding system or exists in the forwarding
system’s forwarding database.

Let’s return to our example in Figure 1 on page 15.

The origin endpoint (on the left) encapsulates the information that it is trying
to convey to the destination endpoint (on the right) into an IPv4 packet. This
information is now the payload of the IPv4 packet. The IPv4 packet is, in turn, en-
capsulated in an Ethernet packet. Finally, by transmitting the Ethernet packet onto
the link that spans from the source endpoint to the forwarding entity to which it is
directly attached, the source endpoint has encapsulated the Ethernet packet into a
physical layer tunnel (e.g., 1000Base-T).

The first forwarding system (an Ethernet bridge) only understands how to work
with Ethernet packets. It receives and transmits Ethernet packets and is completely
unconcerned with the payloads of the Ethernet packets (i.e., the IPv4 packet). At
this forwarding system, the physical tunnel is exited (terminated) and the Ethernet
packet is exposed. The forwarding entity examines the Ethernet header (i.e., its
tunnel specification) and determines to which port to forward the packet. It is im-
portant to note that the Ethernet tunnel is not terminated at this point because the
Ethernet packet is not addressed to the current forwarding system; it is addressed
beyond the current forwarding system.

The transmission of the packet by the first forwarding system effectively encapsu-
lates the packet into a new physical-layer tunnel (i.e., the wire) for its short trip to
the second forwarding system.

 Tunnels 17

The second forwarding system understands both Ethernet and IPv4. If an Ethernet
tunnel terminates at this point, the forwarding system can forward the packet
based on the Ethernet packet’s IPv4 payload. Indeed, at this forwarding system,
the physical layer tunnel is terminated just as it was at the first forwarding system.
However, at this stage of forwarding, the Ethernet tunnel is also terminated
because the Ethernet packet’s destination address matches one of this forwarding
system’s own Ethernet addresses. Terminating the Ethernet tunnel (by disposing of
the Ethernet header) exposes the IPv4 packet within, allowing the IPv4 packet to
exit the Ethernet tunnel. The IPv4 packet is then processed by the second forward-
ing system and forwarded toward its destination.

Forwarding the IPv4 packet by the second forwarding system requires that two
tunnels be entered—one right after the other—before the packet can be transmit-
ted. The first tunnel is an Ethernet tunnel that leads to the destination endpoint.
The Ethernet tunnel is entered by encapsulating the IPv4 packet inside a new Eth-
ernet packet (i.e., by prepending a new Ethernet header). The destination address
of this new Ethernet header points to the ultimate destination of the packet while
the Ethernet source address points to the current IPv4 router. The second tunnel
to be entered is a physical-layer tunnel that also leads to the destination endpoint.
(You know you’re getting close to a packet’s ultimate destination when all of its
current tunnels terminate at the same place.) The interface number associated with
the new physical-layer tunnel is used to direct the packet to the correct physical
transmit interface of the second forwarding system.

Upon receipt of the packet by the destination endpoint, the three encapsulating
tunnels (physical, Ethernet and IPv4) are terminated by validating their address-
ing and the associated headers are stripped from the overall packet, exposing the
original message from the source endpoint.

Here are some important things to observe about what happened in this example.

 � When each tunnel was entered, a new, outermost layer was added to the
packet, and that layer was removed (i.e., stripped) from the packet as each
tunnel was exited.

 � Within a particular tunnel, the inner headers that are part of that tunnel’s
payload were ignored (i.e., they were treated as opaque content).

 � At any particular point in the network, forwarding decisions (which are
distinct from tunnel terminations, though both involve the examination of a
header’s destination address information) were made based on a single header.
This single header is known as the forwarding header. Various headers of a
particular packet may be used as forwarding headers at different points as
that packet traverses the network.

All of this popping into and out of tunnels may seem like a lot of pointless extra
work. Why bother? Why not simply address the original packet to its ultimate
destination and be done with it? The short answer is scalability.

 18 Hardware-Defined Networking

Tunnels and Scalability

Large networks such as the Internet are not built from a vast and complex web
of forwarding entities that are all owned and operated by a single organization.
Instead, a hierarchy of networks is built such that a network operator at a lower
level of the hierarchy utilizes the services of an operator whose network is at the
next higher level of the hierarchy.

Figure 2 Network Hierarchy

0

a b

A B

#

C

c d e f g h j

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 User

Acccess

Aggregation

Core

Figure 2 depicts a hypothetical network hierarchy. In practice, the number of lay-
ers and the names of the layers may be different (and it certainly won’t be so neatly
symmetrical), but it serves to illustrate the benefits of tunneling.

Let’s examine a scenario where User 9 wants to send a packet to User 22. User 9
knows User 22’s address, so User 9 encapsulates its packet with a header that is ad-
dressed directly to User 22. User 9 also knows that for its packets to get anywhere
it has to use the services of Access d. Hence, an encapsulation header addressed to
Access d is added to the packet.

The packet that is received by Access d is addressed to it, so it strips off the out-
ermost encapsulating header and examines the contents. Access d doesn’t know
how exactly to get the packet to User 22, but it does know that to get to Users 21
through 23, it has to go through Access h. So, what Access d does is encapsulate
the packet in another new header that is addressed to Access h. To get to Access
h, Access d must use the services of Aggregation B by prepending an appropriate
tunnel encapsulation header (i.e., one that is addressed to Aggregation B). Access d
then sends this packet with its three encapsulating headers to Aggregation B.

By the time we get to Aggregation B, we can start to see the benefits of tunneling.
After terminating the tunnel from Access d to Aggregation B, Aggregation B is

 Tunnels 19

now working on a packet whose outermost header is addressed to Access h. Ag-
gregation B doesn’t need to know anything about all of those User nodes, keeping
its forwarding databases small. Further, its network—offering connections to Ac-
cess d through Access f and to Core #—can operate independently from all of the
other networks, using its own preferred forwarding protocol (e.g., IPv6 or MPLS)
and running its own routing state protocol (e.g., BGP, etc.) without having to react
to state changes within Aggregation A, Aggregation C or any other network. This
reduction in scale and complexity of Aggregation B increases its efficiency, perfor-
mance and reliability.

To continue with the forwarding scenario, Aggregation B adds a further encap-
sulating headers that are addressed to Aggregation C and Core #. The packet is
forwarded to Core # which, in turn, delivers the packet to Aggregation C. Notice
here that Core # has the simplest job of all of the networks because it doesn’t have
to perform multiple encapsulations or decapsulations of the packet. It simply
examines the address in the outermost header (after stripping the header addressed
to itself) and forwards the packet to the appropriate interface, where it then adds a
header addressed to Aggregation C.

At this point, the encapsulating tunnel headers start to come off. With each hop
away from the core and down the levels of hierarchy, a tunnel header is added to
get to the next hop, but that next hop strips that header (because that header is
addressed to itself) and the next header (because the next header is also addressed
to itself). This process is repeated with a smaller and smaller stack of tunnel encap-
sulation headers until the packet finally reaches User 22.

Figure 3 illustrates the encapsulation changes that the packet goes through on each
of the links on the path from User 9 to User 22.

Figure 3 Packet Encapsulation Life Cycle

d 22 packet payloadAccess d

hB 22 packet payloadAggregation B

h 22# C packet payloadCore #

hCC 22 packet payloadAggregation C

hh 22 packet payloadAccess h

22 22 packet payloadUser 22

User 9

Access d

Aggregation B

Core #

Aggregation C

Access h

Here are some interesting things to observe about the encapsulation life cycle
depicted in Figure 3:

 20 Hardware-Defined Networking

 � The outermost (leftmost) header is always addressed to the packet’s immedi-
ate destination (i.e., the next hop).

 � The innermost header is always addressed to the packet’s ultimate destination.

 � As the packet proceeds from the edge to the core, headers are added that are
later interpreted and stripped as the packet proceeds back to the edge.

 � Though it appears that there are redundant headers once the packet is heading
away from the core (e.g., C and C on the Core # to Aggregation C link), those
seemingly-redundant headers are associated with a different level of hierarchy.

Below is a more literal view of the tunnels-within-tunnels aspect of large-scale
networks.

Figure 4 Tunnels Visualized

B

B B

#

#

C

C CC C C

d

d d

h

h h hh h h

9 22

22 2222 2222 22

In Figure 4, it is clear that the Core # forwarding entity has no visibility into the h
tunnel or the 22 tunnel; it simply treats those tunnels (and the 22 tunnel’s payload)
as opaque content of the C tunnel.

Tunnels and Isolation

It is important to recognize that the depiction of a network as a friendly little puffy
cloud is used simply to abstract away a significant and distractingly large amount
of detail. In reality, these little clouds are made up of their own very complex inner
structure.

If we presume that the cloud depicted in Figure 5 represents a hypothetical
Internet provider network, then two fundamental types of forwarding systems
are used to build this network: provider edge systems (depicted as “PE”) and
provider core systems (depicted as “P”). The provider edge systems provide the
outward-facing interfaces to the service provider’s network. To serve this role, the
provider edge systems must be able to support whichever protocols the service
provider’s customers choose use, they must incorporate elements outside of the
service provider’s network into their forwarding information databases, and they
must normalize and de-normalize all of the packets that enter and leave the service
provider’s network.

 Tunnels 21

Figure 5 Inside a Cloud

A-West

B-West

B-East

A-East

PE PE

PE

P

P
P

P

P

PE

PE PE

PE

P

P
P

P

P

The process of normalizing and de-normalizing packets is essentially the tunnel
encapsulations and decapsulations described previously. The tremendous benefit
of this is that the provider core systems need not be at all aware of the world
outside of the service provider’s network.

A typical service provider provides service to a large number of customers, each
of whom wants their data to be isolated from all of the service provider’s other
customers. For example, imagine that A Corp and B Corp each have West Coast
and East Coast offices. It is, of course, very reasonable for both A Corp and B
Corp to want to link their East and West coast offices with high-speed, reliable
and private network connections. If, for this simple example, A Corp contracts
with the service provider to use one of its East Coast provider edge systems and
one of its West Coast provider edge systems, and B Corp does the same with dif-
ferent provider edge systems, the service provider can establish two independent
virtual private networks by configuring two separate tunnels: one for A Corp and
one for B Corp. All of the provider core systems remain blissfully unaware of A
Corp and B Corp and simply forward the opaque tunnel contents from an ingress
provider edge to an egress provider edge. The isolation between the two tunnels
is maintained even if the paths that each of them follow through the service pro-
vider’s network share common provider core systems and share common links
between provider core systems, and even if there are overlaps in the addressing
space used by the two customers.

In a sense, both A Corp and B Corp can view the service provider’s network as a
single giant, continent-spanning wire to which they each have exclusive access.
If a customer has more than two access points to the service provider’s network,
then the service provider’s network appears to that customer as if it were a single,
continent-spanning forwarding system. Indeed, emulating the behavior of a

 22 Hardware-Defined Networking

specific type of forwarding system using a vast network of heterogeneous forward-
ing systems is a very real and very important networking function.

Further levels of privacy can be assured through encryption and authentication.
Security-related topics are covered in Chapter 16 on page 277.

Generally, source and destination address information is used to derive forward-
ing domain and receive interface ID parameters for the payloads of terminated
tunnels. A tunnel header’s destination address identifies a tunnel exit whereas its
source address identifies the tunnel’s entrance. The tunnel exit is analogous to a
forwarding domain while the tunnel’s entrance is analogous to a receive interface
ID. Several tunnel entrances may all lead to the same tunnel exit. That tunnel exit
is associated with a single and particular instance of a forwarding entity within the
forwarding system in which the tunnel is being terminated. The tunnel entrances
represent the receive interface in that there may be several receive interfaces associ-
ated with a single forwarding entity.

5 Network Virtualization

If tunnels permit the assembly of vertical hierarchies of networks, virtualization
permits their horizontal scaling. Before virtualization, all endpoints and forward-
ing entities in a network were visible to one another, and all of the forwarding
database (or, commonly, forwarding information base or FIB) resources of the
forwarding entities were shared as monolithic chunks of memory. This may, at
first consideration, seem like just the right way to build a network—after all, every
endpoint can communicate with every other endpoint in such a network—but it
quickly leads to administrative problems as the networks grow larger and larger.

It turns out that allowing unfettered communication from each endpoint to every
other endpoint is not always the right thing to do. It may be good for everyone
in an engineering department to perform peer-to-peer communication, but you
would probably want to isolate the engineers from the sensitive data on the
machines in the finance department. In situations like this (and many others) it is
best to provide trusted intermediaries to allow just the right kinds of connections
between departments. As another example, a data center that sells storage and
processing services to thousands of customers wants to be able offer those custom-
ers the resources of multiple endpoints (i.e., servers) but also provide privacy and
isolation so that their data—and the network interconnecting the servers that
they’re paying for—is safely isolated from all of the data center’s other customers.

By dividing a network into a number of virtual networks, this kind of isolation be-
comes possible while still allowing communication between the virtual networks
through specialized portals. Now, the answer to this rhetorical question may seem
obvious, but the question must be asked nevertheless: Why not just build separate
physical networks? To answer that, we must consider the benefits of sharing.

The Benefits of Sharing

One could certainly build a large network that is, physically, a network of net-
works where, at the user-access level, each user in a group of peers is attached to
the same physical network, and those networks of peers are then interconnected at
a higher level of hierarchy where controls are in place to allow only certain types
of transactions between the networks to occur (which may be none at all).

 24 Hardware-Defined Networking

There are, of course, problems with this approach. First, physical resources are
expensive. They’re expensive to acquire, expensive to install, expensive to power
and cool, and expensive to reconfigure. This is true regardless of whether these
resources are fiber optic links, front-panel ports, forwarding databases, rack-scale
routers or even massive data centers. If these resources are poorly utilized, then
significant amounts of money are being wasted.

Second, as users or customers of a network come and go and move from place to
place, it is prohibitively expensive to add or remove equipment and rearrange the
interconnections required to integrate that equipment into the overall network.

Finally, the demands of the users or customers of a network are rarely at constant
levels. A network operator is placed in the unenviable position of either allocat-
ing the maximum that a customer may need at some future date (thus wasting
significant resources) or having to scramble when the customer’s demand suddenly
spikes.

Sharing network resources and allocating varying fractions of these resources
as demand ebbs and flows maximizes the utilization of limited commodities.
Virtualization provides the means for multiple independent users, customers or
applications to share a common set of physical resources without conflict and to
have the scale and performance of their private slice of the network instantly react
to changing demand levels.

A secondary, but still important, aspect of virtualization is that it provides a means
for breaking up a large, complex system into several smaller pieces. These smaller
pieces are then interconnected via a hierarchy of specialty forwarding entities as
described in Chapter 4 with the usual benefits: achieving massive scale of scope
and capacity while maintaining ease of administration and overall stability and
responsiveness.

When we break a network up into several independent virtual networks, what’s
really happening is we’re defining forwarding domains. Just as a packet cannot
magically jump from one network to another without some kind of intermedi-
ary that knows how to accomplish that, packets cannot be forwarded from one
forwarding domain to another without a specialized intermediary. To be concise,
when there’s discussion of virtual LANs or virtual private networks (VPNs),
what’s really being discussed is the management and operation of independent
forwarding domains.

 Network Virtualization 25

Virtualization and the Abstract Forwarding Entity

Regardless of whether the term “virtual” or “logical” is applied, the concept
is the same; some physical resource or another is subdivided into a number of
independent instances of the same type. For example, a physical port (e.g., a front-
panel network connection) can be subdivided into a number of logical ports, each
configured with its own per-logical-port attributes. As far as the forwarding entity
that’s behind the subdivided physical port is concerned, each of those logical ports
is an actual, separate port with all of the attributes and characteristics of a physical
port.

Perhaps the most common and most powerful form of virtualization is the
virtualization of forwarding systems themselves. Virtualizing forwarding systems
means that a single physical forwarding system (i.e., a box installed in a rack) may
be host to a large number of virtual forwarding entities, each operating indepen-
dently of the others. Indeed, the virtualization of forwarding systems into a col-
lection of forwarding entities is so powerful and so important that all forwarding
entities can be thought of as virtual things sharing a physical resource. Hence, it is
unnecessary to prefix the term “forwarding entity” with the “virtual” modifier.

The forwarding entities occupying a single forwarding system are not limited to
existing as peers of one another. Complex hierarchies can be constructed so that
the structures and behaviors described in Chapter 4 on tunnels can be realized
entirely within the confines of a single physical forwarding system. To enable
these capabilities, abstract forwarding entities must have the following additional
attributes:

 � A forwarding entity cannot be subdivided by forwarding domains.

 � Forwarding entities within a single forwarding system are connected to one
another in a point-to-point manner via their interfaces. These interfaces are
logical interfaces and are not exposed outside of the forwarding system.

 � Each forwarding entity supports just a single forwarding protocol.

 � For a forwarding entity to forward a packet to a forwarding entity of a
different type, it must either encapsulate or decapsulate the packet such that
the packet’s outermost header is of a type that matches the capability of the
next forwarding entity.

 � When a packet’s encapsulation changes and it moves from one forwarding
entity to another, a new forwarding domain is assigned to the packet that
corresponds to the next forwarding entity.

Let’s work through a concrete example to see how these characteristics of ideal-
ized abstract forwarding entities express themselves. Consider Figure 6.

 26 Hardware-Defined Networking

Figure 6 Bridge/Router Forwarding Entity Scenario

physical ports

logical port breakout

virtual LAN breakout

Ethernet bridge A B

IPv4 router

0

a b c d e f g

1 2 3

Each of the boxes in Figure 6 is a forwarding entity. Each of them is specialized
for a particular type of encapsulation and forwarding. The physical ports always
forward to their opposite interface and provide encapsulation on to and off of the
attached physical medium.

The logical port breakout forwarding entities demultiplex packets heading north
from the physical ports based on their logical port tags (i.e., a small header that
identifies the logical port associated with the packet); and multiplex logical ports
in the opposite direction.

The virtual LAN breakout forwarding entities provide similar demultiplexing and
multiplexing services based here on virtual LAN (i.e., VLAN) tags. Each of the
virtual LAN breakout functions has two interfaces on top; one for each of two
VLANs: A and B.

The Ethernet bridge forwarding entities forward based on the packet’s Ethernet
header. One of each bridge’s possible destinations is the IPv4 router. There are two
bridge instances: one for VLAN A and one for VLAN B.

The IPv4 router forwarding entity, of course, forwards packets based on the IPv4
header.

In the limited example, above, the IPv4 router can only ever forward a packet to
the Ethernet bridge that was not the router’s source of the packet (in a real-world
system, a router forwarding entity may have many thousands of virtual interfaces
to thousands of bridging forwarding entities).

Each type of forwarding entity only understands how to work with packets of
its own specific type. The packet’s type is indicated by its outermost header. So, a
logical port header is interpreted by the logical port breakout forwarding entity, a
VLAN header is interpreted by the virtual LAN breakout forwarding entity, and
so on. In the northbound direction, these headers are stripped from a packet as it
progresses, exposing a new outermost header that is appropriate for the next stage

 Network Virtualization 27

of processing. In the southbound direction, new encapsulating headers are added
to a packet in order for the next forwarding entity to direct the packet to where it
needs to go.

Looking just at the Ethernet bridge and IPv4 router layers, in the northbound
direction and considering an Ethernet packet that is addressed to the IPv4 router,
an Ethernet bridge knows that it is connected to an IPv4 router via a particular
interface, so it strips the packet’s Ethernet header prior to forwarding the packet
to the IPv4 router, ensuring that the IPv4 router receives a packet whose outermost
header is IPv4. In the southbound direction, the IPv4 router must encapsulate
each packet in an Ethernet header whose destination address corresponds to the
packet’s next Ethernet destination and whose source address is set to the router’s
Ethernet address; thus, an Ethernet bridge can forward the packet to the correct
logical port (the VLAN being implied by the bridge’s identity).

In the Bridge/Router scenario, above, there are many valid paths that allow a
packet to be forwarded back to its own physical receive port without violating
the central forwarding entity axiom that specifically prohibits a forwarding entity
from forwarding a packet to that packet’s own receive interface. The important
thing to recognize is that the following scenarios are describing a forwarding
system and not a single forwarding entity.

There are two simple ways for a packet received via physical port 0 to be legally
transmitted by physical port 0. The first way has the packet tagged with a logical
port tag that indicates the packet is in logical port a’s domain. If the packet is
tagged with a VLAN tag for VLAN A, then Ethernet bridge A may forward that
packet via its interface that leads to logical port b. The packet’s logical port tag
is updated to indicate that the packet is now in logical port b’s domain and it is
transmitted by physical port 0 without violating any rules.

In the second example, we push the divergence/convergence point up one layer to
the VLAN breakout functions. Here, a packet is received via physical port 0 with a
logical port a tag and a VLAN tag for VLAN A. Through each stage in the north-
bound direction, headers are stripped from the packet, ultimately arriving at the
IPv4 router as an IPv4 packet. The IPv4 router encapsulates the packet in a new
Ethernet header and forwards it to Ethernet bridge B which, in turn, forwards the
packet to logical port a with a VLAN tag for VLAN B. Thus, with a logical port a
tag added, the packet is transmitted by the physical and logical port via which it
was received. It is spared from violating a forwarding rule by belonging to two
different VLANs for receive and transmit.

Other interesting things to observe about the example are that logical port c only
exists in VLAN A and that physical port 2 is only associated with Ethernet bridge
B (and, hence, VLAN B) and has no logical port value. For these cases, the headers
for these values are optional as they can be deterministically implied by the physi-
cal or logical ports.

 28 Hardware-Defined Networking

The simple example presented here represents just a glimpse into what is possible
with virtualization and tunneling. Systems of fantastic sophistication and com-
plexity can be composed from the fundamental building blocks just described. It’s
simply a matter of adding sufficiently many instances of forwarding entities of the
appropriate type and then configuring and interconnecting them (logically speak-
ing) in order to achieve the required behavior.

Real-World Implications

It is certainly possible to build a forwarding system using physically discrete
forwarding elements of the various types required and then wiring them together
in an appropriate manner. Unfortunately, this would be completely inflexible,
extraordinarily complex and prohibitively expensive.

When complex forwarding systems are built in the real world, multiple instances
of physical implementations of a forwarding entity’s packet processing methods
and algorithms are instantiated as often as needed in order to meet the system’s
performance requirements as measured in packets or bits per second. In other
words, a forwarding system may consist of lots of interconnected packet process-
ing chips of the same or similar type. This method for building a system of the
required scale is unrelated to the virtualization of network forwarding entities. In-
stead, each of the instances of the physical devices that are used to build a forward-
ing system must, themselves, support multiple virtual instances of the abstract
forwarding entities that give the physical devices their networking behaviors.
When considering the architecture and capabilities of a forwarding system, it is
important to distinguish between a forwarding system’s physical implementation
and its logical or virtual configuration.

To properly support virtualization, every forwarding entity must be able to iden-
tify the interface via which a packet is received. This is necessary in order to apply
interface-specific attributes to the packet and to ensure that the packet’s receive
interface is explicitly excluded from the transmit interface solution set. Physical
receive ports have hardwired or configurable identifier values. Logical ports are
identified either implicitly by a packet’s physical receive port ID or explicitly by
a logical port header in the packet. In either case, the packet’s receive interface is
encoded in the packet’s metadata when the packet arrives at a forwarding entity.

A packet’s forwarding domain is also encoded either implicitly or explicitly in the
packet. An example of an explicit forwarding domain encoding is a VLAN header
(see "Virtual Local Area Networks (VLANs)" on page 58). The VLAN header
provides a conceptually simple means for directly specifying the forwarding do-
main of a packet. However, for a large number of cases, the forwarding domains
are implied and are never directly encoded into a packet.

 Network Virtualization 29

Figure 7 Multiple Bridges, Multiple Routers

Bridge
11

Bridge
12

Bridge
13

Bridge
14

Bridge
15

Router
21

Router
22

Router
23

Router
24

Bridge
16

VLAN
Breakout

Consider, for example, a forwarding system that is made up of several virtual Eth-
ernet bridges and several virtual IPv4 routers. Each bridge may connect to several
routers and each router is certainly connected to several bridges. When a packet
is being processed by a particular virtual bridge (i.e., an Ethernet forwarding
entity), that packet resides in the bridge’s forwarding domain. To route a packet
using IPv4, the current bridge—which, of course, cannot process IPv4 itself—must
deliver the packet to one of several routers via point-to-point logical connections.
When an Ethernet bridge forwarding entity chooses a router instance to route a
packet, it is also implicitly assigning a new forwarding domain to the packet that
corresponds to the forwarding domain associated with the virtual router instance.
Similarly, when a virtual router forwards a packet to a virtual bridge instance,
the packet adopts the forwarding domain of that bridge. Thus, at each stage of
processing, a packet has both an interface identifier and a forwarding domain
identifier that is specific to the forwarding entity at that stage.

In Figure 7—where the numbers in the boxes are forwarding domain identifiers—
a packet received by Bridge 12 from one of its four exposed interfaces belongs to
forwarding domain 12. The packet’s Ethernet destination address is associated in
Bridge 12’s forwarding database with Router 22. When Bridge 12 forwards the
packet to Router 22, it not only strips the packet’s Ethernet header, it also updates
the packet’s forwarding domain2 from 12 (the input bridge’s forwarding domain)
to 22 (the Router’s forwarding domain). Router 22 looks up the packet’s IPv4
destination address and determines that the packet’s next hop on its path to its
destination is reachable via Bridge 13. Thus, Router 22 prepends a new Ethernet
header to the packet that is addressed to the packet’s next hop and updates its
forwarding domain from 22 (the router’s forwarding domain) to 13 (the output
bridge’s forwarding domain).

2 The forwarding domain designator for a packet is metadata maintained by the forwarding
system and is not actually a part of the packet itself.

 30 Hardware-Defined Networking

To virtualize the forwarding entities in a real system, what’s needed is to virtualize
the resources of these functions: to allow the configuration registers and tables,
and the forwarding databases of the several virtual instances of the required for-
warding entities to share physical resources without any instance interfering with
any other. In practice, this is quite easily accomplished. Interface identifiers and
forwarding domain identifiers can be used as indexes into tables to fetch attributes
that affect the processing of the packet. When concatenated with addressing
values from packet headers (and other relevant extracted or computed values) the
forwarding domain identifier value is used to virtualize the forwarding database of
the physical manifestation of a forwarding entity. By extending the keys in the for-
warding database with the forwarding domain values, it is assured that database
keys belonging to one forwarding entity instance can never be confused with the
keys from another.

The internal hardware architecture of real-world physical systems almost
universally does not resemble the idealized models presented here. Though the
specific details of the various forwarding protocols differ, a lot of the underlying
mechanisms are very similar and significant implementation efficiencies can be
realized by sharing mechanisms such as lookup algorithms and resources such
as forwarding databases across these forwarding protocols. It is also reason-
able—and common practice—to treat tunnel terminations as being distinct from
forwarding operations, even though the packet formats and underlying algorithms
are identical for, say, Ethernet, regardless of whether an Ethernet tunnel is being
terminated or an Ethernet packet is being forwarded. The great benefit of treating
tunnel terminations as being distinct from forwarding is that there are typically
several orders of magnitude difference between the number of tunnels that
terminate at a physical system and the number of destinations to which that same
system may need to forward packets. Hence, a tunnel termination function can be
implemented very compactly—and operate very quickly—relative to forwarding,
making it practical to perform those operations serially without encountering
undue hardware size or complexity.

6 Terminology

Before proceeding into the details of particular protocols, let’s get acquainted with
networking’s terminology.

Any engineering discipline demands its own vocabulary. To be fluent in that disci-
pline means to be fluent in its terminology. Networking, of course, is no different.
There are many terms of art that are common to neighboring disciplines, but far
more that are unique to the field of networking. There are likely hundreds of terms
that you’ve encountered for which you’ve not found an adequate or consistent
definition. You may be using many of these terms on a daily basis without total
confidence of their correctness. Collecting, vetting, and learning the definitions
of these terms is a huge undertaking, made more difficult by its dynamic nature.
New terms are invented almost daily and most are immediately reduced to short,
overloaded acronyms while the original definitions are lost to the sands of time.

This chapter presents cogent definitions for the terms used in this book. Where
multiple definitions exist that do not entirely agree with one another, the most
modern and widely-used definition is presented.

The vocabulary of networking consists not just of a list of words and their defini-
tions. It is also a visual vocabulary. As the old saying goes, “a picture is worth
a thousand words.” While that may not be literally true, there are many cases
when a drawing, chart or diagram can add immeasurable clarity to an explana-
tion. Many—if not all—of the reference and standards documents upon which
the entirety of networking is founded include graphics of some form or another.
Unfortunately, the various bodies that publish these documents (e.g., IEEE, IETF,
ITU, etc.) can’t seem to agree on the basic elements of these figures, using confus-
ingly similar but inconsistent means for describing conceptually identical things.

To address these inconsistencies, this chapter also presents a visual elements refer-
ence that—while differing in its format and style in both subtle and significant
ways from the referenced standards—allows for a consistency within this book
that must, by necessity, span these several standards bodies while presenting infor-
mation in a clear manner.

 32 Hardware-Defined Networking

Terms

address A value that uniquely identifies an endpoint on a network or a path through a
network.

append To concatenate to the end of, typically, a packet.

associated data Data that is associated with a key in a lookup table. A search operation matches a
key value in a table’s entry and that entry’s associated data is returned as the
search result.

bps Bits per second.

big-endian In a big-endian system, bits and bytes are numbered from zero starting with the
most significant bit or byte. The big-endian numbering system is consistent with
network byte order. Big-endian numbering is used throughout this book.

bit The term “bit” is a portmanteau of “binary digit.” It represents an indivisible unit
of information that is fundamental to computing, communications and all aspects
of information theory. A single bit can represent just two states: 1/0, true/false,
on/off, etc. Ordered strings of bits are used to represent wider ranges of values. By
convention, the most significant bit of a multi-bit string of bits is depicted as the
leftmost bit.

body See “payload.”

bridge A forwarding entity that is characterized by the automatic learning of source
addresses to populate its forwarding database, no time-to-live value in the
forwarding header and flooding packets with unknown destinations to all
available output interfaces.

broadcast To forward copies of a packet to all destinations on the network.

BUM Broadcast, Unknown-unicast, Multicast. This is a handy shorthand for described
a class of Ethernet packets that all share the same default behavior in an Ethernet
bridge (i.e., flood within their VLAN).

byte A byte is a string of bits of sufficient width to encode a single alphabetic character.
Historically, the width of a byte varied according to individual computer
architectures. For several decades now, however, popular computer architectures
have settled on an 8-bit byte. Indeed, the width of a byte has been codified by an
international standard (IEC 80000-13). As a consequence, use of the term “octet”
has fallen from favor.

checksum A simple means for checking the integrity of, typically, a header. A checksum is
easily computed and easily updated incrementally when, say, just one field in a
header is updated. Some checksums are applied to the payload of a packet as well
as a header. Checksums are weak at protecting against certain multi-bit errors or
the transposition of data.

CRC See “cyclic redundancy check.”

cyclic redundancy check A fairly robust means for verifying the correctness (but not authenticity) of a
packet. A cyclic redundancy check (CRC)—also known as a frame check
sequence (FCS)—is, essentially, the remainder of a division operation performed
across the entirety of a packet. It is effective at catching multi-bit and
transposition errors. Its effectiveness does diminish with very long packets.

 Terminology 33

datagram The IETF’s word for a packet’s payload. A datagram can be a packet in its own
right. The distinction between the terms “frame,” “packet,” and “datagram” is
trivial and not worthy of concern.

decapsulate To remove (or “strip”) a header from the head of a packet, effectively exposing a
packet that was encapsulated within another packet. This is typically associated
with exiting a tunnel.

destination The termination point for a packet or a tunnel.

discard To dispose of a packet due to some kind of exception condition or simply because
the packet has no valid destinations according to the forwarding entity servicing
the packet. See also, “drop.”

drop To dispose of a packet due to a lack of buffering, queuing or bandwidth resources.
See also, “discard.”

encapsulate To add a tunnel-related header to the head of a packet, effectively encapsulating a
packet within another packet. This is typically associated with entering a tunnel.

endpoint The ultimate origin or destination of a packet.

FCS Frame Check Sequence. See “cyclic redundancy check.”

FIB Forwarding Information Base. A database that is used to associate packet
addressing information with a packet’s destination. In this book, the term
“forwarding database” is used.

FIFO First In, First Out. Describes the behavior of a queue.

forwarding database A collection of keys and associated data. The keys are typically based on
addressing field types from forwarding headers while the associated data is
typically a set of instructions that specify how to forward a matching packet.
Commonly referred to as a forwarding information base (or FIB) in standards
documents.

forwarding entity A fundamental, abstract building block of a forwarding system. A forwarding
entity is associated with just one forwarding domain and can only forward
packets based on its own native header type.

forwarding system A collection of forwarding entities.

fragmentation The process of breaking an IP packet into two or more shorter IP packets.

frame check sequence See cyclic redundancy check.

frame The IEEE’s word for packets.

G Giga. This magnitude suffix either means 109 (for bit rates) or 230 (for capacities).

header A collection of fields at the beginning of a packet that provides addressing,
interface, priority, security or other metadata related to the packet of which it is a
part.

IEEE Institute of Electrical and Electronics Engineers. This standards organization is
widely known for their 802 series of standards (802.1 bridging, 802.3 Ethernet,
802.11 Wi-Fi, etc.).

IETF Internet Engineering Task Force. This standards organization focuses primarily
on Internet-related standards. See also, “RFC.”

 34 Hardware-Defined Networking

ISO International Organization for Standardization.

ITU International Telecommunication Union. A standards organization that is part of
the United Nations (UN).

K Kilo. This magnitude suffix either means 103 (for bit rates) or 210 (for capacities).

key An entry in a lookup table (e.g., a forwarding database) which is matched against
search arguments.

LAN See “local area network.”

least significant bit The rightmost bit of a multi-bit word. In a little-endian system, the least
significant bit is bit 0. In a big-endian system, the least significant bit is bit
<word width> - 1.

little-endian In a little-endian system, bits and bytes are numbered from zero starting with the
least significant bit or byte. This is the opposite of network byte order.

local area network Historically associated with bridged Ethernet networks of limited diameter. The
term no longer has much meaning outside of standards meetings.

logical An abstract reference (in contrast to a physical reference). When a physical
resource (e.g., a network port) is subdivided or aggregated, the result is a logical
resource. See also “virtual.”

loopback To re-direct a transmit packet at or near the packet’s intended transmit interface
so that it becomes a receive packet. This is useful for diagnostics and certain
complex forwarding scenarios where a packet may require additional processing
prior to transmission.

M Mega. This magnitude suffix either means 106 (for bit rates) or 220 (for capacities).

MAC Media access controller. A MAC arbitrates for access to a physical network,
manages the order in which bits are transmitted (and their rate), and reassembles
packets from bits received from a network. In this book, MAC is synonymous
with Ethernet.

metadata Information that describes other information. Typically, metadata are computed
values that are carried with a packet within a forwarding system for the benefit of
the various functional parts of that forwarding system.

metropolitan area network A more recent term that reflects the promoters of Ethernet’s desire to break out of
the historically limiting LAN category. By taking on certain “carrier grade”
features such as time sync and OAM, Ethernet has been steadily supplanting
traditional wide-area media access technologies.

most significant bit The leftmost bit of a multi-bit word. In a big-endian system, the most significant
bit is bit 0. In a little-endian system, the most significant bit is bit <word width> -
1.

MTU Maximum Transmission Unit. The maximum packet length allowed by a
network.

multicast To forward copies of a packet to multiple destinations, but not necessarily to all
destinations.

network byte order Bytes of multi-byte values are transmitted in big-endian order (i.e., most
significant byte first). Ethernet—the most ubiquitous Layer 1 and 2 standard—
transmits the least significant bit of each byte first.

 Terminology 35

nibble This is an example of engineers trying to be cute. Predictably, the outcome is
cringe-worthy. According to most English dictionaries, a nibble is a small bite. In
computing, a nibble (sometimes “nybble”) is half of a byte; or, more simply, a
four-bit word. This term is not commonly used.

octet An archaic term for an eight-bit word. The use of this term is akin to old-timey
pilots with goggles and silk scarves referring to an airport as an “aerodrome.”
Standards bodies persist in the use of octet, but the rest of the world has moved
on. See also, “byte.”

opaque Information that is invisible to or otherwise unavailable or uninteresting to a
forwarding entity or forwarding system. If, for example, a header parsing
function cannot determine what the type of the next header is, that next header
and all subsequent headers are opaque. Packet contents may be parsable but still
be treated as opaque if the forwarding entity simply chooses to ignore those
contents. See also, “transparent.”

originate To mark the entry point of a tunnel. The prepending of a corresponding header is
typical at tunnel origination. A tunnel may originate between a packet’s original
source and its ultimate destination or at the original source itself.

OUI Organizationally Unique Identifier. Equipment manufacturers are assigned OUI
values for use in creating globally-unique MAC addresses. The OUI occupies the
most-significant (i.e., leftmost) 24 bits of an Ethernet MAC address.

packet A unit of self-contained network information. To be “self-contained” means that
a packet contains all of the information necessary to forward itself to its final
destination.

payload The contents of a packet as described by its headers. A packet’s payload may
contain further headers (describing encapsulated packets) that may be opaque to
the current forwarding entity.

prepend To concatenate to the beginning of, typically, a packet.

priority To assign a level of importance to packets belonging to a particular flow that
differs from those belonging to other flows.

queue An ordered collection of pending items.

RFC Request For Comments. Many RFCs (technical memoranda) are adopted by the
IETF to become Internet standards.

router A forwarding entity that is characterized by the use of routing protocols to
populate its forwarding database, and a time-to-live value in the forwarding
header. Packets with unknown destinations may be forwarded to a default output
interface or generate a message to the packet’s originating endpoint.

search argument A value that is submitted to a search algorithm in order to find matching key(s) in
a lookup table (e.g., a forwarding database).

segment 1. A single TCP data packet.

2. The result of a segmentation process (please don’t call it “cellification”) where
a packet is broken up into smaller pieces for, typically, conveyance within a
forwarding system. Not to be confused with fragmentation.

3. A portion of an Ethernet network where endpoints are, effectively (though
rarely actually) connected to the same physical medium.

 36 Hardware-Defined Networking

source The originating endpoint of a packet or a tunnel.

switch Flip a coin and see either bridge or router.

T Tera. This magnitude suffix either means 1012 (for bit rates) or 240 (for capacities).

tag A non-forwarding Layer 2 header. For example, a VLAN tag.

terminate To mark the exit point of a tunnel. The stripping of the corresponding header is
typical. A tunnel may terminate midway between a packet’s original source and
its ultimate destination or at the ultimate destination itself.

TLV Type, Length, Value. A TLV is a means for creating self-describing data structures.
The “type” element defines the type and purpose of the data structure, giving the
interpreting system the means for determining the types and locations of various
fields in the structure. The “length” element is used by those systems that are not
designed to be able to process a structure of a particular type, allowing such a
TLV to be skipped over and for processing to continue with the next TLVs (if
any). The “value” element is simply a collection of fields that make up the overall
TLV structure.

trailer A data structure that appears at the end of a packet.

transparent Available to a forwarding entity for processing. This term is also applied to
Ethernet bridging or other networking behaviors that operate independently of
other forwarding systems and whose behavior does not affect the behavior of
other systems. See also, “opaque.”

truncate To shorten a packet by, typically, deleting bytes from the end of the packet.

TTL Time-to-Live. TTL values are used in the headers of certain forwarding protocols
to limit the lifetimes of packets, thus preventing them from circulating around a
network forever.

tunnel The practice of encapsulating a packet within another packet.

virtual The logical division of a physical resource. See also, “logical.”

WAN See “wide area network.”

wide area network Historically associated with routed IPv4, IPv6 and MPLS networks of significant
diameter. The term no longer has much meaning outside of standards meetings.

word A string of bits that is of any length other than one or eight. A 1-bit word is a bit.
An 8-bit word is a byte. There is no agreed-upon width of a word. So, using terms
like “word” or “double-word” are not meaningful or helpful. Always prefix the
term “word” with a length modifier: e.g., 24-bit word, 64-bit word, etc.

 Terminology 37

Graphics

A couple of graphical depiction types are widely used when describing networking
systems, protocols, and behaviors. These are depictions of packet structures (i.e.,
the order in which headers appear in a packet) and the details of the headers them-
selves. The conventions used in this book are defined below.

Packet Depictions
When depicting packets as a whole, what’s generally of interest is the order in
which headers are arranged within a packet. Depending on the specific use case of
the figure, either horizontal or vertical versions are used. Just as in most written
languages, the headers proceed from top to bottom or from left to right.

Figure 8 Packet Depiction Examples

Outermost Header

start of packet end of packet

Middle Header

Innermost Header
payload

Outermost Header Middle Header Innermost Header payload

Header and Data Structure Depictions

Though 64-bit CPUs are commonplace at the time of the writing of this book, I
have chosen to stick with 32-bit widths for the words used to contain the fields of
packet headers and general data structures. This choice is mostly based on what
fits neatly on a page.

Figure 9 depicts a hypothetical header structure diagram that shows the conven-
tions adopted by this book.

 38 Hardware-Defined Networking

Figure 9 Hypothetical Structure Format Diagram

0

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8

version

...

forwardingDomain

reserved field

byte offsets

bit offsetsa field whose name is too long to fit in the available space is left blank

fields split across rows include bit ranges in square brackets

nextHopAddress[0:15]

nextHopAddress[16:38] sequenceNumber[0:8]

fields split across rows whose name is too long to fit in the available space are replaced with an ellipsis

Every header or data structure diagram is accompanied by a table that defines the
fields of the header or data structure and provides the names of the fields that don’t
fit in the diagram. The field definitions for Figure 9 are listed in Table 1.

Table 1 Hypothetical Structure Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(version)

3 bits 0.0 Protocol version.

The current version of this protocol is 4.

reportExceptions
(R)

1 bit 0.4 Enables exception reporting.

Exceptions are always reported when this bit set to 1.

nextHopAddress
(nh_addr)

39 bits 0.16 Address of the next-hop.

Next-hop is simply the next router to which the packet must
be forwarded in order for it to progress towards its final
destination.

sequenceNumber
(seq_num)

12 bits 4.23 Sequencing for packet loss detection.

This value is incremented monotonically with each packet in
a flow. If a gap in the sequence is detected by the receiving
endpoint, then packet loss may be presumed and exception
is reported if reportExceptions is set to 1.

When diagramming headers that conform to a published standard, the internal
names of fields used within the context of the architecture and design of a forward-
ing system always take precedence and are generally used throughout a system’s
specification. However, it is important that the standards-based name also be
presented for reliable cross-checking.

The width of every field is explicitly listed in the field definition table.

 Terminology 39

The location of each field within a structure is specified by indicating its offset
from the first bit of the first word of the structure (always counting from zero in
a big-endian fashion). This offset is expressed in bytes and bits where the number
of bytes is a multiple of 4 and the byte offset is separated from the bit offset by a
period.

The definition of each field must be precise and as extensive as necessary for the
reader to understand its use, limitations and interactions with other fields. The first
sentence of a field’s definition is always a sentence fragment instead of a complete
sentence.

Style

This section describes the style and naming conventions used in this book. These
conventions are meant to encourage meaningful names for things and to be in
keeping with modern trends in software engineering.

Abbreviations and Acronyms
As a general rule, abbreviations and acronyms are not used. This rule neatly
avoids the problem of abbreviating the same word several ways within the same
document. The only acronyms that are generally allowed are those whose Google
search results are near the top. So, acronyms such as CPU, RAM and LAN are al-
lowed. However, the capitalization rules for words are applied to acronyms when
those acronyms are used in an object’s name. For example, a field may be named
requestToCpu.

Naming Guidelines
All objects are given descriptive names. Names aren’t any longer than necessary to
convey their intent and to disambiguate them from other, similar names. However,
little concern is given to names getting too long. Camel-case (i.e., embedded capi-
tals and no underscores) are used for all name types. Fields, variables, enumera-
tions and the like start with a lower-case letter. Headers, structures, types and the
like start with a capital letter.

To help set off named objects and certain numeric values from other paragraph
text, these names and values appear in a monospace typeface.

7 Forwarding Protocols

Though there are dozens of header formats in common use, only a handful are
routinely used for the actual forwarding of packets. These are:

 � Ethernet

 � IPv4

 � IPv6

 � MPLS

 � cross-connect

In the several sections of this chapter, the header formats, field definitions and,
most importantly, the operational details of these forwarding protocols are
presented.

Ethernet

Ethernet is specified by the IEEE 802.3 standard. The Ethernet packet format is
shown in Figure 10.

Figure 10 Ethernet Packet Format

PayloadHeaderPreamble CRCInter-Packet Gap

12 bytes 8 bytes 14 bytes 46–1500 bytes*

* original standard

4
bytes

Compared to other forwarding protocols, Ethernet’s packet format has a few
interesting characteristics. First, because it is a media-access protocol that is in-
tended to operate at Layer 1 and Layer 2, it has a cyclic redundancy check (CRC)
field as a 4-byte packet trailer that protects both the header and payload sections
of each packet. It also has two parts that convey absolutely no useful information:
the inter-packet gap and the preamble. These exist only in support of Ethernet’s
legacy media access control (MAC) protocol.

 Forwarding Protocols 41

The payload length of an Ethernet packet can range from 46 to 1,500 bytes, at
least according to the original standard. Subsequent revisions to the standard have
both decreased the minimum payload length and increased the maximum due
to expanded headers and a desire to transport more data bytes per packet (less
processing overhead per data byte). The overall minimum length (excluding the
inter-packet gap and preamble) has remained fixed at 64 bytes while the maximum
overall length is the non-standard (and problematic) jumbo packet at 9K bytes.
If an Ethernet packet’s payload is too short to yield an overall packet length of at
least 64 bytes, pad bytes are added between the end of the Ethernet packet’s actual
payload and the CRC field. It is incumbent upon the Ethernet packet’s payload to
indicate its own length since the Ethernet packet’s length is not a reliable indicator
of the payload’s length (i.e., the Ethernet packet does not indicate how many pad
bytes are present).

The actual Ethernet header occupies 14 bytes and consists of three fields.

Figure 11 Ethernet Header Format Diagram

0

4

8

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
destinationAddress[0:31]

destinationAddress[32:47] sourceAddress[0:15]

sourceAddress[16:47]

length or ethertype

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 2 Ethernet Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

destinationAddress
(Destination Address, DA, etc.)

48 bits 0.0 The MAC address of the packet’s destination endpoint.

Typically an endpoint is issued, a globally-unique,
statically-assigned value. An Ethernet header’s
destinationAddress value may be a unicast,
multicast, or broadcast value. MAC addresses are
depicted in text as six pairs of hexadecimal digits
separated by hyphens (e.g., 4c-03-00-12-4e-9a).

sourceAddress
(Source Address, SA, etc.)

48 bits 6.0 The MAC address of the packet’s source endpoint.

A source address must always be a unicast address.

length or ethertype
(Length/Type, EtherType)

16 bits 12.0 The packet’s overall length.

An Ethernet packet’s length is measured from the first
byte of the destinationAddress field to the last byte
of the CRC trailer at the end of the packet. If this field’s
value is 1,500 or less, then it is interpreted as a length
value. If this field’s value is 1,536 (0x0600) or greater,
then it is interpreted as a ethertype value.

 42 Hardware-Defined Networking

Ethernet’s Humble Origins

The official designation for Ethernet is: CSMA/CD. That stands for Carrier Sense,
Multiple Access with Collision Detection. That ungainly mouthful of terms de-
scribes the nature of Ethernet’s media access control protocol.

The original Ethernet was a purely shared-medium network in that every packet
transmitted at 3 Mbps (later, 10 Mbps) onto a coaxial cable was visible to all of
the endpoints attached to the same cable. The destinationAddress field in the
Ethernet header ensures that an endpoint can identify itself as a packet’s intended
receiver and accept a just-received packet. The sourceAddress field provides a
means for identifying which endpoint sent the packet, enabling two-way commu-
nications between the endpoints.

But, if you have a shared medium network with multiple endpoints, how does
each endpoint know when to transmit without conflicting with other endpoints on
the same cable? CSMA/CD actually works very much like human conversation.
Consider a room full of people that have something they want to say. Everyone in
the group listens to make sure that no one is talking before they attempt to speak
(carrier sense). If silence is detected, one or more people may start speaking with-
out raising their hand or otherwise arbitrating for permission to speak (multiple
access). If a speaker hears someone else’s voice while they’re speaking, they stop
speaking (collision detect) and a wait time is chosen. As more and more collisions
are detected without successfully getting a sentence out, the bounds on the random
wait time increase exponentially. If a maximum number of collisions occur, the at-
tempt to speak fails and the speaker drops that particular sentence. Thus, a bunch
of nodes that can listen while they talk are able to share a medium with reasonably
fair access.

The requirement to detect a quiet medium is the reason that the inter-packet gap
exists. After transmitting a packet or while waiting for another’s transmission to
end, every node must wait at least 96 bit-times (12 bytes) before starting a trans-
mission. Ethernet packets must be at least 64 bytes in order to allow a transmitting
endpoint to detect that its packet has experienced a collision. This requires the
packet to propagate the entire length of the Ethernet segment and for the collision
indication to propagate all of the way back; all while the source endpoint is still
transmitting.

The 64-bit preamble is used to give a phase-lock loop (PLL) function a chance
to quickly lock on to the clock encoded in the transmitted data. The 64-bit value
transmitted as an Ethernet preamble is: 0x5555_5555_5555_55d5. The final byte
(0xd5) is know as the “start of packet delimiter.” The start of packet delimiter
is required because the number of preamble bits consumed during the PLL lock
process can vary quite widely. Hence, counting bits and bytes in the preamble is
not possible. The Ethernet preamble appears in serial form as alternating ones and

 Forwarding Protocols 43

zeros; terminated by a pair of consecutive ones (bear in mind that Ethernet speci-
fies that each byte is transmitted from least significant bit to most significant bit).
Hence, the first bit of the preamble is a one and the last two bits are also ones.

At the physical layer, a carrier signal (i.e., a clock) must be integrated with the data
in order to facilitate the recovery of packet data even if that data is a long series of
ones or a long series of zeros. The original Ethernet standard specified the use of
Manchester encoding. This particular encoding scheme—besides being extremely
simple—has a very nice property that allows for quick PLL lock-on.

Figure 12 Manchester Encoding and the Ethernet Preamble

clock
data

clock

data

encoded data

start of packet delimiter

encoded data

To encode a serial bit stream using the Manchester encoding technique, it is
simply a matter of using an exclusive OR gate on the data and the data’s clock.
The alternating one-and-zero pattern of the Ethernet preamble yields a steady 5
MHz square wave (for 10 Mbps Ethernet) with a positive-going or negative-going
transition in the middle of every bit period. Rising edges of the encoded data
represent ones while falling edges represent zeros. As can be seen in Figure 12, the
two consecutive ones at the end of the preamble yield two consecutive rising edges.
The first bit that follows those two ones is the first bit of destinationAddress. Loss
of carrier (i.e., the inter-packet gap) is used to terminate each packet.

Modern Ethernet connections no longer depend on CSMA/CD to control media
access. Ethernet has long supported dedicated links (i.e., just two link partners on
each physical Ethernet connection) and full-duplex operation (i.e., simultaneous
transmission and reception). Hence, the only carrier-sense-related behavior that
remains in use today is the imposition of a gap between the end of one packet
and the start of the next by a single Ethernet endpoint. The preamble is superflu-
ous in an age of continuous carriers. And, there are no collisions on full-duplex
networks. However, since there’s no compelling reason to change these character-
istics, they remain with us today.

Ethernet’s relatively low cost, efficient performance and conceptual simplicity
led to its eventual widespread adoption. However, the original standard was far

 44 Hardware-Defined Networking

from perfect. The coax cable shared medium was awkward to install and prone
to failure if the cable was accidentally severed by undoing coupling connectors or
rendered inoperative by the removal of the 50-Ohm terminating resistors at either
end of the cable. Because of the speed of propagation of the signal down the coax
and the attenuation of the signal with distance, the physical extent of an Ethernet
network was rather limited. The number of nodes allowed on a segment is limited
by the collision backoff algorithm; specifically, a randomly-generated 10-bit
number is used to select the backoff period, meaning that, if more than 1,024
endpoints were trying to transmit packets, endless collisions would likely result.

To address the distance limit and the maximum number of nodes allowed on a
single Ethernet coax segment, the transparent bridge was invented (discussed in
exhaustive detail further below). To address the weaknesses of the shared coax
cable, twisted-pair transceivers were developed that could send Ethernet signals
down category 3 unshielded twisted pair cables (i.e., office telephone cable) that
radiated out from a hub installed in a wiring closet. The simple repeating hub was
soon replaced by a multi-port bridge function. The move to twisted pair cabling
meant that the transmit and receive signals were now on separate pairs of wire,
enabling full-duplex communication. Eventually faster data rates (100 Mbps, 1
Gbps, etc.) followed. Ultimately, the evolution of Ethernet rendered all of the let-
ters in CSMA/CD meaningless.

Ethernet was developed independently of IPv4 and all of the other higher-level
protocols that it would one day be called upon to convey packets from endpoint
to endpoint. Its initial mission was quite simple: move a string of bytes from one
endpoint attached to a coax cable to one or more other endpoints on the same
cable. There was, understandably, a bit of shortsightedness in the early Ethernet
standard.

Instead of some kind of next-header field, the Ethernet header has a length field
that indicates the length of the Ethernet packet’s payload. Encoding the payload’s
length into the header is not particularly useful because the MAC (media access
control) hardware always indicates the measured total length of each received Eth-
ernet packet. So, at best, the length field provides a crude form of error checking
or a means of determining a packet’s length at the start of packet reception. The
lack of a specific next-header field meant that conflicts and confusion were ram-
pant as various applications created ambiguities in their attempts to self-identify
their headers by various, incompatible methods.

Eventually, two different means for encoding a next-header value into an Ethernet
header were developed. The first was the logical link control and subnetwork ac-
cess protocol (LLC/SNAP) headers from the IEEE. The LLC header is either 3 or 4
bytes long, immediately follows the Ethernet header’s length field and is intended
to encode the source and destination network access points (i.e., protocols) carried
in the Ethernet packet’s payload. Unfortunately, only a single byte was set aside

 Forwarding Protocols 45

to encode these protocol-identifying values. So, before they completely ran out of
available codes, the values 0xaa and 0xab were reserved to indicate that an addi-
tional protocol-identifying header (the 5-byte SNAP) header immediately followed
the LLC header. The SNAP header has a 16-bit field—the so-called ethertype
field—for identifying an Ethernet packet payload’s protocol type.

Figure 13 LLC/SNAP Header Format Diagram

0

4

0 1 2 3 4
destinationServiceAccessPoint sourceServiceAccessPoint control

LLC

SNAP

oui[0:7]

oui[8:23] ethertype

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 3 LLC/SNAP Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

destinationServiceAccessPoint
(DSAP)

8 bits 0.0 Destination protocol identifier.

For the purposes of an LLC/SNAP header, the
value 0xaa is the only one of any real interest.

sourceServiceAccessPoint
(SSAP)

8 bits 0.8 Source protocol identifier.

For the purposes of an LLC/SNAP header, the
value 0xaa is the only one of any real interest.

control
(Control Byte)

8 bits 0.16 A demultiplexing value.

For the purposes of an LLC/SNAP header, the
value 0x03 is the only one of any real interest

oui
(Organization Code)

24 bits 0.24 The owner of the ethertype value.

If the reserved value 0x00_0000 is used, then
the ethertype value is one of the globally-
defined, standard ethertype values. Otherwise,
it is a private value.

ethertype
(EtherType)

16 bits 4.16 Identifies the subsequent header or payload.

Typically, destinationServiceAccessPoint is set to 0xaa, sourceServiceAc-
cessPoint is set to 0xaa and control is set to 0x03. If oui (OUI stands for orga-
nizationally unique identifier and is the most significant 24 bits of an Ethernet
MAC address) is set to 0x00_0000, then the next 16-bit word is a globally-defined
ethertype value. Otherwise, if oui is non-zero, then Snap.ethertype is a private

 46 Hardware-Defined Networking

ethertype belonging to the organization identified by the OUI. In summary, if the
48-bit value 0xaaaa03000000 is detected in the six bytes that follow Mac.length,
then the 16 bits that follow that six-byte value represent an ethertype value that
identifies the protocol associated with the Ethernet packet’s payload.

Phew! What a bother.

Fortunately, there’s Ethernet II. The DIX consortium (DEC, Intel, Xerox) recog-
nized two important things. First, the length field is not terribly useful since the
Ethernet MAC hardware can report the Ethernet packet length upon the comple-
tion of the reception of a packet, and that the LLC/SNAP header is a waste of eight
bytes. So, what they came up with is elegantly simple and effective: If the length
value is less than or equal to 1,500 (the maximum Ethernet payload length) then
it is interpreted as a length field. Otherwise, if length is greater than or equal to
1,536 (0x0600) it is interpreted as ethertype. In 1997, the IEEE approved Ethernet
II as part of the IEEE 802.3 standard. LLC/SNAP headers are not in widespread
use, but they’re still out there.

Ethernet Addressing
Ethernet MAC addresses actually have some structure, a single defined bit and a
globally reserved value.

The structure of a MAC address is very simple. The most significant 24 bits of the
48-bit address value are known as the Organizationally Unique Identifier (OUI).
An organization can purchase an OUI number from the IEEE. The least significant
24 bits of a MAC address are assigned by the owner of the OUI value. Thus, for a
single OUI value, up to 16,777,216 Ethernet endpoints may be assigned globally-
unique MAC addresses. Organizations can, of course, purchase as many OUI
values as they need.

Mac.destinationAddress[7] (the least significant bit of the first byte) is the multi-
cast indicator bit. If this bit is set to 1, then the packet’s destination address must
be interpreted as a multicast address. Otherwise, it’s a unicast address. This bit is
in the OUI portion of the MAC address and, because sourceAddress values are not
allowed to be multicast addresses, all OUIs are defined with the multicast indica-
tor bit set to 0, but this bit is set to 1 to indicate that a destinationAddress value
is a multicast address. Ethernet Multicast behavior is described in the following
Ethernet Bridging section, and there is an entire chapter on multicast starting on
page 154.

If a packet’s destinationAddress value is set to 0xffff_ffff_ffff then it is
interpreted as a broadcast address. Note that destinationAddress[7] is set to 1
for a broadcast address, making broadcast a special case of multicast. Broadcast
behavior is described in the Ethernet Bridging section, below.

Ethernet MAC addresses are, typically, statically and permanently assigned to

 Forwarding Protocols 47

each Ethernet media access controller or endpoint at the time of a device’s manu-
facture. This address assignment scheme has the benefits of being extremely simple
and robust in that no complex protocols are required for endpoints to either re-
quest a dynamic address or self-assign an address that does not conflict with other
addresses. The disadvantage of this addressing method is that no inferences can be
made about the physical location of an endpoint from its MAC address, nor can
it be assumed that nodes within the general vicinity of one another have addresses
that fall within some range of values. Thus, when searching for a matching MAC
address in a forwarding database, full-width exact matches are generally called for
as opposed to range or prefix matches.

Ethernet Bridging
Ethernet bridging has evolved significantly over the years. It was initially de-
veloped to solve a couple of simple but significant limitations of early Ethernet
networks (i.e., number of endpoints per segment and segment length). As Ethernet
has moved from small, local area networks to globally-scoped wide area networks,
Ethernet bridging has evolved as needed to accommodate these new applications.

Fundamentals of Transparent Bridging

Ethernet bridging (also known as transparent bridging) was invented to over-
come two of Ethernet’s limitations when operating on the shared coaxial cable
medium: the small number of nodes supported and the limited physical extent of
the network. The number of nodes allowed on a shared coax cable is limited for
two reasons. First, the collision back-off algorithm specifies a limited range from
which random back-off times can be chosen. If the number of active nodes on the
network exceeds the upper limit of this range, then it becomes likely that at least
two nodes will always choose the same back-off time and collisions will occur ad
infinitum. The second reason is simply that each node’s throughput decreases as
the number of nodes increases. If, for example, you have 100 active nodes on a
10 Mbps shared-medium network, then each of those users will only have access
to about 100 Kbps of throughput, even if they’re not all trying to send packets to
the same destination. The network’s physical extent is limited in a coax network
by the limits of the collision detection method which is affected by both timing
(there’s a brief window at the start of packet transmission during which collisions
are allowed) and signal attenuation (the amplitude of the signal is a factor in colli-
sion detection).

The basic idea behind bridging is to split a single segment that’s too long or has
too many nodes into a network of two or more smaller segments with bridges con-
nected to each of the segments.

A bridge is, essentially, two or more Ethernet MACs joined together by some spe-
cialized logic. A bridge extends the reach of an Ethernet network while isolating its

 48 Hardware-Defined Networking

carrier and collision domains to individual segments.

Figure 14 Coax Network With Bridges

Endpoint

11 12

11: L
12: L

21 22 23 31 32

21: R
22: R
23: R
31: R

11: L
12: L
21: L
22: L
23: L
31: R
32: R

Endpoint Endpoint EndpointEndpoint Endpoint EndpointBridge 1 Bridge 2

The specialized bridging logic primarily consists of a forwarding database of
MAC addresses associated with interface IDs. The contents of this forwarding
database are created automatically and without any special behavior by endpoints
or bridges other than the bridge that owns the forwarding database. A bridge
accomplishes this neat trick by simply observing the sourceAddress values of
every packet received by each of its interfaces. When a new sourceAddress value
is detected, it and the receive interface associated with the packet, form a new
forwarding database entry. Finally, a timestamp is associated with each database
entry that is updated to the current time value each time a sourceAddress value is
observed in support of address aging (discussed further below).

Let’s work through some forwarding examples.

If Endpoint 11 in Figure 14 sends a packet to Endpoint 12, Bridge 1 receives that
packet in the same manner that Endpoint 12 receives it. Upon receipt of the pack-
et, Bridge 1 searches its forwarding database for the packet’s destinationAddress
value. Because that destination address value was previously observed by Bridge 1
as a sourceAddress on the left network segment, Bridge 1 knows that the packet’s
destination is on the left segment and there’s no need to forward the packet to
the center segment. Therefore, Bridge 1 simply discards the packet. On the other
hand, if that packet had been addressed to Endpoint 22, then Bridge 1 would have
forwarded the packet to the center segment via its right interface.

Another interesting case is when a packet’s destinationAddress value doesn’t
match any of the entries in a bridge’s forwarding database. A transparent bridge’s
policy is quite simple for this case: forward the packet to all network segments
except for the one from which the packet was received, ensuring that the packet
will eventually reach its intended destination.

Finally, let’s consider a case where Endpoint 32 only ever sends packets addressed
to Endpoint 31, its immediate neighbor in the same segment. If Bridge 2 had

 Forwarding Protocols 49

previously learned Endpoint 31’s MAC address, then it would never forward
Endpoint 32’s packets onto the center segment because it knows that Endpoint
31 is on the rightmost segment. That’s why Endpoint 32’s address is missing from
Bridge 1’s forwarding database; it’s never observed a packet from Endpoint 32. If
Endpoint 23 transmits packets addressed to Endpoint 32, Bridge 1 will forward
those packets onto the left segment because Bridge 1 has not had a chance to learn
Endpoint 32’s MAC address. However, once Endpoint 32 replies to Endpoint 23,
Bridge 1 will observe Endpoint 32’s MAC address as that packet’s sourceAddress
value and add that address/interface association to its forwarding database.

The simple forwarding policy of a transparent bridge works because a packet is
forwarded by a bridge if there is a possibility that the packet’s intended destination
is on the opposite network segment, and only not forward it if the bridge is certain
that the source and destination nodes of the packet are on the same segment.
Bridges rightly err on the side of forwarding packets to too many places instead of
too few.

Learning

Ethernet bridges are expected to learn MAC source address values, but they are
not required to do so. There is no standard that specifies the rate at which source
addresses must be learned or any ratio of observed to learned source addresses.
This is so because, fundamentally, flooding packets—the consequence of not
learning source addresses—is not an error or failure. Unnecessary flooding simply
consumes excess network bandwidth. That’s all.

In addition to the learning of new MAC source addresses, a bridge’s learning
mechanism is also used to detect and account for MAC moves. A MAC move oc-
curs when an Ethernet endpoint is physically moved from one Ethernet segment to
another. Until this moved endpoint transmits a packet, any bridge to which it was/
is attached will be unaware of this movement and will continue to forward packets
to the Ethernet segment where it used to reside. Once this moved endpoint does
transmit a packet, however, the bridge to which it is attached will look up its MAC
source address in the normal manner. If the moved endpoint was moved from
one segment to another segment that is attached to the same bridge, the source
address lookup will be successful since that address value had been previously
learned on the endpoint’s former segment. However, the interface ID associated
with that MAC source address will not match the interface ID associated with the
just-received packet. All that the bridge has to do to bring its forwarding database
up to date is to update the interface ID associated with the MAC source address to
that of the interface via which the packet was received.

Very complex policies may be applied to the address learning process. For
example, certain receive interfaces may be limited to learning just a fixed number
of MAC addresses, or a MAC address may have to exist on some kind of a list of

 50 Hardware-Defined Networking

registered MAC addresses in order to be learned. The possibilities are endless and
are generally outside of Ethernet-related standards. For this reason, software is
generally involved in the address learning process for any reasonably sophisticated
Ethernet bridging system.

Aging

Nodes may be added to and removed from a network over time, and the storage
capacity of a bridge’s forwarding database is finite. Hence, a means is required to
purge the forwarding database of obsolete entries. This process is known as “ag-
ing.” A MAC address ages out of a bridge’s forwarding database if that address
value hasn’t been seen as a sourceAddress value in any packets for some substantial
period of time. Nominally, the aging period is set to five minutes. A timestamp
value stored along with each forwarding database entry is compared to the current
time to determine the age of each entry. Entries that have expired are removed from
the forwarding database.

Multicast and Broadcast

As described previously in the section on Ethernet Addressing, there exists a special
case of the destinationAddress value: the multicast MAC address. And there’s a
special case of multicast: the broadcast MAC address.

Multicast addresses are used when it is desired for a single transmitted packet to be
received by a group of endpoints. This is beneficial in two fundamental ways. First,
it saves time and resources for the originating endpoint to not have to transmit in-
dividually addressed copies of the same packet payload to each of the intended re-
cipients. It’s better to let the network do that work instead (this becomes even more
powerful of an advantage when we discuss the implications of multi-port bridges,
below). Second, the originator of a multicast packet need not know which specific
endpoints are supposed to receive the packet. For example, by using a multicast
destination address that has a particular meaning (e.g., is associated with a specific
protocol or message type), an originating endpoint can simply use that multicast
destination address and be assured that all of the endpoints that care about such a
message will receive it (barring packet loss, which is always possible).

Multicast addresses cannot be used as MAC source addresses. This is quite reason-
able since a multicast source address doesn’t make a lot of sense (how can a packet
be from multiple sources?). This, of course, means that there’s no way for a bridge
to add a multicast address to its forwarding database by learning observed address-
es. In the normal case, all multicast addresses are treated as “unknown” addresses.
And, as you know, packets with unknown destination addresses (i.e., not found in
the forwarding database) must be forwarded to all of the interfaces that are not the
source of the packet, which is also the desired behavior for multicast packets.

There are a variety of network control protocols that allow endpoints to

 Forwarding Protocols 51

“subscribe” to a multicast flow of packets. By subscribing, all of the bridges be-
tween the source and the destination are configured to add a multicast address to
the forwarding database. The addresses that are added by some kind of protocol
action or administrative action are generally considered static—i.e., they are not
subject to aging. Adding multicast addresses to the forwarding database has the
effect of pruning Ethernet segments from a multicast address’s distribution on
which there are no endpoints that are interested in receiving such packets.

The Ethernet broadcast destination address is not just a special case of multicast.
It’s a degenerate case. The broadcast address doesn’t serve any useful purpose that
can’t be better served by the use of a multicast address. The nature of a broadcast
packet is that every endpoint on a bridged network is going to get a copy of that
packet even if the majority of the endpoints have no use for the contents of the
packet. There’s no point in adding a broadcast address to a forwarding database to
limit its distribution since, by definition, broadcast packets must go everywhere.

BUM

BUM is an acronym that stands for “broadcast, unknown-unicast, multicast.”
This term is a useful shorthand because all of these packet types have the same
default forwarding behavior: flood.

Flooding and the Forwarding Entity Axiom

As a final word on flooding of BUM packets, it is important to point out how this
conforms to the Forwarding Entity Axiom.

The rule for flooding is to forward a copy of the flooded packet to all available
interfaces. It is important to understand what is meant by “available.” A packet’s
own receive interface is not available. An interface that is blocked or disabled
is not available. Finally, an interface that is statically associated with a known
forwarding entity is also not available.

Let’s take a look at that last point.

Figure 15 Bridge + Router Hierarchy

Ethernet Bridge

IP Router

0 1 2 3 4

a b

5 6 7

Ethernet Bridge

Figure 15 represents a single forwarding system that consists of three forwarding
entities. The connections between the Ethernet Bridge forwarding entities and
the IP Router forwarding entity are strictly virtual and do not represent physical

 52 Hardware-Defined Networking

interfaces or pathways. When a BUM packet is received by, say, interface 1 of the
leftmost Ethernet Bridge forwarding entity, it must flood the packet to all of the
available interfaces. The available interfaces are 0, 2 and 3. Interface 1 is not avail-
able because that is the interface via which the packet was received. Interface a is
also not available because it is associated with an IP Router whose MAC address
does not match the destinationAddress value of the packet. (The address cannot
match because the IP Router forwarding entity’s MAC address must be a known
unicast address or a specific type of multicast address.) Only packets whose des-
tinationAddress value matches that of the IP Router forwarding entity may be
forwarded to the IP Router forwarding entity.3

This policy has the beneficial side effect of limiting an Ethernet network’s broad-
cast domain (as it is called) to just those Ethernet segments that are associated
with a single Ethernet Bridge forwarding entity (i.e., a single Layer 2 forwarding
domain).

Loops and the Rapid Spanning Tree Protocol

Multicast packets and, especially, broadcast packets lead to an interesting problem
for bridged networks: what happens if a loop is accidentally configured in the
network?

Figure 16 A Bridged Loop

Endpoint

11 12 21 22 23 31 32

Endpoint Endpoint EndpointEndpoint Endpoint EndpointBridge 1 Bridge 2

Bridge 3

Figure 16 shows a loop in a bridged network. A loop exists whenever there is more
than one path to get from any point on the network to any other point. When End-
point 32 transmits a packet to Endpoint 22, it can go two ways to get there: via
Bridge 2, or via Bridges 3 and 1. If the packet sent by Endpoint 32 is a broadcast
packet, the packet is going to take both paths. However, when these two packets
arrive at Endpoint 22, they also arrive at Bridges 1 and 2 via the center network
segment. They, of course, forward the broadcast packet up to Bridge 3 and the
process repeats itself forever. The network is now fully consumed forwarding cop-
ies of the broadcast packet.

Unicast packets also misbehave badly when a loop is present. If both Bridge 2 and
Bridge 3 have learned that Endpoint 22 is accessible via their left-facing interfaces,

3 The behavior of Ethernet and IP multicast forwarding is discussed in detail in Chapter 11:
Multicast.

 Forwarding Protocols 53

then when Endpoint 31 transmits a unicast packet addressed to Endpoint 22, both
Bridge 2 and Bridge 3 are going to forward the packet. Thus, Endpoint 22 ends up
receiving two copies of the packet.

The solution to this problem is to have the bridges power-up with all of their ports
disabled and for them to cooperatively negotiate a logical tree structure overlayed
on top of an arbitrarily complex physical network by only allowing interfaces that
are a part of that tree structure to actually forward packets. The original algorithm
that performs this work is known as the Spanning Tree Protocol (STP) and was
later superseded by the much improved Rapid Spanning Tree Protocol (RSTP).

The steps below are followed by bridges implementing the Rapid Spanning Tree
Protocol:

1. Select a root bridge.

Every bridge as a unique 64-bit ID value that is made up of two parts: a 16-bit
priority value concatenated with the bridge’s globally unique 48-bit MAC
address. The priority value is configurable whereas the MAC address, as per
usual, is permanently assigned to each bridge. The priority value occupies the
most significant 16 bits of the 64-bit ID value. Therefore, if multiple bridges
are assigned the same priority value, their unique MAC addresses are used to
break those ties. The default priority value is 0x8000 and must always be a
multiple of 0x1000. The bridge with the numerically lowest ID value serves as
the root of the spanning tree. In Figure 16, above, Bridge 1 has the lowest ID
number and is, therefore, the root bridge.

2. Determine the least cost paths to the root bridge.

Every link in a network is assigned a cost value. The cost can be determined by
a link’s bandwidth, its reliability or its actual dollar cost per bit transmitted.
For our simple example network, we’ll assume that all of the links are of equal
cost. Since Bridge 1 is the root, there’s no need to calculate the root path costs
for its interfaces. For Bridge 2, its left-facing interface has a cost of 1 since
there’s just one link between it and the root. Its right-facing interface has a cost
of 2 since it must go through Bridge 3 to get to Bridge 1. For Bridge 3, its
left-facing interface has a root path cost of 1 while its right-facing interface
has a cost of 2.

3. Identify root and alternate interfaces.

Once the root path costs have been determined, each bridge designates the
interface with the lowest cost as its root port. A bridge can only have one root
port. An alternate port is simply a root-facing port that’s not quite as good as
the root port or is just as good but lost a tie-breaker.

4. Identify designated and backup interfaces.

 54 Hardware-Defined Networking

Similarly, each segment (i.e., network link) determines through which of its
bridges lies the lowest cost to the root bridge. Network links do not, of course,
have any intelligence with which to make such a determination. Instead, the
bridges attached to the segment negotiate on the segment’s behalf and deter-
mine which bridge interface for each segment is going to be the designated
interface to carry the segment’s traffic toward the root. These bridge interfaces
become the designated interfaces. In our example network, the segment that
connects Bridge 2 and Bridge 3 has equal costs (i.e., two hops) to get to the
root. To break the tie, Bridge 2’s lower ID number prevails. This makes
Bridge 2’s right-facing interface a designated port. Backup ports are ports
connected to a bridge that’s already connected to the root bridge.

5. Block all other interfaces that lead to the root.

Finally, every bridge keeps all of the non-root and non-designated ports that
lead to the root in the blocked state. All other ports are moved to the forward-
ing state. Bridge interfaces that cannot possibly face the root (i.e., leaf-facing
interfaces in a well-organized tree) are unaffected by the Spanning Tree
Protocol.

At the end of the spanning tree network configuration process, every Ethernet
segment has exactly one designated interface and every bridge (except the root
bridge) has exactly one root interface.

The messages that 802.1D bridges use to pass information to one another are
known as Bridge Protocol Data Units (BPDUs). All BPDUs are addressed to the
reserved multicast MAC address 01-80-c2-00-00-00. The MAC address of the
bridge’s transmitting interfaces is used as a BPDU’s sourceAddress value. A BPDU
is identified as an Ethernet packet’s payload with the ethertype value 0x0000.
Figure 17 shows the format of a BPDU message.

Figure 17 Bridge Protocol Data Unit (BPDU) Format Diagram

0

4

8

12

16

20

24

28

32

version type rootId[0:7]

bridgeId[0:7]

portId[0:7]

portId[8:15] messageAge maximumAge[0:7]

maximumAge[8:15] helloTime forwardDelay[0:7]

forwardDelay[8:15] length[0:7]

rootId[8:39]

rootId[40:63]

bridgeId[8:39]

bridgeId[40:63]

rootPathCost[0:7]

rootPathCost[8:31]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

length[8:15]

 Forwarding Protocols 55

Table 4 Bridge Protocol Data Unit (BPDU) Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Protocol Version Identifier)

8 bits 0.0 The BPDU protocol version.

type
(BPDU Type)

8 bits 0.8 The BPDU message type.

topologyChange
(Topology Change)

1 bit 0.16 Indicates that a topology change has occurred.

proposal
(Proposal)

1 bit 0.17 Indicates that the message is a proposal.

Proposals must be agreed upon before being acted
upon.

portRole
(Port Role)

2 bits 0.18 Identifies the port role:

alternate/backup: 1
root: 2
designated: 3

learning
(Learning)

1 bit 0.20 Indicates that a port is in the learning mode.

forwarding
(Forwarding)

1 bit 0.21 Indicates that a port is in the forwarding mode.

agreement
(Agreement)

1 bit 0.22 Indicates that a proposal has been agreed to.

topologyChangeAck
(Topology Change
Acknowledgment)

1 bit 0.23 Acknowledges a change in topology.

rootId
(Root ID)

64 bits 0.24 The ID of the root bridge.

rootPathCost
(Root Path Cost)

32 bits 8.24 The cost to the root bridge.

bridgeId
(Bridge ID)

64 bits 12.24 The ID of the bridge sending this message.

portId
(Port ID)

16 bits 20.24 The ID of the port sending this message.

messageAge
(Message Age)

16 bits 24.8 The age of the message.

maximumAge
(Maximum Age)

16 bits 24.24 The maximum-allowed age of the message (helps
prevent old information from circulating around the
network forever.

helloTime
(Hello Time)

16 bits 28.8 The interval between periodic BPDU transmissions.

 56 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

forwardDelay
(Forward Delay)

16 bits 28.24 The delay used by STP bridges to transition ports to the
Forwarding state.

length (version 1)
(Length)

8 bits 32.8 Message length. A length of 0 indicates that there is no
version 1 protocol information present.

length (versions 3 & 4)
(Length)

16 bits 32.8 Message length.

IEEE 802.1D specifies four states that a bridge interface may be in. These are:

 � blocking—Only BPDUs are received and processed.

 � listening—Receives and processes BPDUs and other information that might
affect topology decisions.

 � learning—Receives but does not forward ordinary Ethernet packets in order
to populate the bridge’s forwarding database.

 � forwarding—Normal bridge operation.

All bridge interfaces come up in the blocking state. By exchanging BPDUs with
other bridges and following the rules specified in the RSTP state diagrams,
interfaces are allowed to transition to the forwarding state. Since no packets are
forwarded in the blocking state, the network is assured of never having any loops
since the topology of the network is determined before any normal traffic is al-
lowed to flow through the bridges.

BPDUs themselves are immune from loops in the network since they are never
forwarded by a bridge. The BPDUs are actually addressed to the bridge and must
be terminated by each bridge that receives them. The IEEE has, if fact, defined a
number of reserved multicast destinationAddress values that are supposed to
work this way. These 16 addresses are:

01-8c-c2-00-00-0x

Bridges are not supposed to forward packets that have destinationAddress values
that match this range of reserved addresses.

Unfortunately, for a particular class of bridging products, this causes a problem.
The IEEE assumes that all bridges are 802.1D compliant, that they support one of
the spanning tree protocols and know how to process BPDU packets. However,
most of the little 5- and 8-port bridges that are intended for the home or small
office do not support spanning tree, but they do obey the IEEE’s edict to not for-
ward BPDU packets. This causes a problem because the BPDUs are not processed
by these little bridges, but they are also not forwarded. This makes it impossible
for an 802.1D-compliant bridge to detect a loop in the network that passes
through the little bridge (it’s the BPDUs that detect the loops and they must be
forwarded by non-spanning tree entities for them to do their job).

 Forwarding Protocols 57

The reason that I bring up this little anecdote about these partly-compliant bridges
is the importance of not just complying with the letter of a standard, but under-
standing its context and intent when choosing to implement a subset of a standard.
By complying with one part of the 802.1D standard (not forwarding BPDUs, which
is simple) and not the whole thing (spanning tree, which is harder), these little
bridges create a problem that could have been easily avoided by simply forwarding
the BPDU packets in violation of the standard.

Multi-Interface Bridges

All of the bridges that have been described so far have been very simple two-
interface systems. To expand to multi-interface forwarding systems is quite simple.
Clearly, the forwarding database must indicate the interface with which each MAC
address is associated. That’s simple enough. Things get a little more complicated
when broadcast/unknown-destination/multicast (i.e., BUM) traffic is considered.

Multicast addresses cannot, by definition, be automatically learned by a bridge.
They can, however, be statically added to a forwarding database by a number of
multicast-oriented protocols. These multicast entries in a forwarding database
return a list of intended transmit interfaces. A bridge then simply forwards a copy
of the packet to each of the interfaces in the returned list, except for those interfaces
that are knocked out for being a source interface or due to their spanning tree state.

Source Interface and Spanning Tree Protocol State Knockout

In keeping with the Forwarding Entity Axiom, a packet’s receive interface may
never also be its transmit interface. For packets with unicast destinationAddress
values, it may seem that it takes care of itself because the forwarding database is
configured to forward packets toward their destination and a packet’s receive inter-
face never gets a packet closer to its destination. However, the forwarding database
can be out of date. If an endpoint is moved from one part of a bridged network to
another, it is possible for a bridge on that network to receive a packet addressed to
another endpoint that is reachable by the same interface on that bridge. The right
thing for the bridge to do is to discard the received packet since the packet was
already on a network segment via which the destination is reachable. However,
if that bridge’s forwarding database hasn’t re-learned the sourceAddress value of
the endpoint that’s just moved, it’ll blithely forward the packet onto its receive
interface as directed by the forwarding database. Hence, the importance of source
interface knockout. Simply stated, the packet’s receive interface on the current
bridge instance is removed from a packet’s list of transmit interfaces. This is also
applied in exactly the same manner to broadcast, unknown-destination and multi-
cast packets.

To comply with whichever variant of the Spanning Tree Protocol that is in use, the
spanning tree state of the interfaces must be considered. Packets received by an in-
terface that are not in the Forwarding state must not be forwarded. It is permissible

 58 Hardware-Defined Networking

for a bridge to receive and process such packets (if they’re addressed to the bridge
itself), but they must not be forwarded. Furthermore, all transmit interfaces that
are not in the Forwarding state must be removed from every packet’s list of trans-
mit interfaces.

Virtual Local Area Networks (VLANs)

When the spanning tree protocol reduces a rat’s nest of network segments into a
nice, neat tree structure, potential bandwidth goes to waste as redundant paths
(which create loops) are disabled as illustrated in Figure 18.

Figure 18 Physical LAN Overlayed With Virtual LANs

(a) (b)

(c) (d)

(e)

Root

Root

Root

Root

Root

Root

 Forwarding Protocols 59

Network (a), in Figure 18, shows a complex network of bridges interconnected via
Ethernet segments with plenty of redundant paths. There are a lot of ways to get
from any point in the network to any other point in the network. In network (b),
a spanning tree root has been chosen in the upper right corner and all of the re-
dundant paths have been blocked; the remaining paths being highlighted in green.
Networks (c) and (d) show alternate networks based on different root choices.
What’s common among (b), (c) and (d) is that all of those un-highlighted paths
represent wasted potential bandwidth capacity.

One solution to this problem is to divide the network into three separate virtual
networks and allow them to operate simultaneously. In (e), above, this is what’s
done. The green, blue and red networks operate simultaneously, each with its own
spanning tree root. There are no loops in any of the virtual networks and there are
very few unused paths. Hence, the physical infrastructure is highly utilized. You
will note, however, that all three of the virtual networks pass through each of the
bridges and several of the links are shared by multiple virtual networks. How is the
isolation between these virtual networks established? In short: the VLAN tag.

The VLAN Tag

To enable the isolation of bridged traffic, the VLAN tag was invented and stan-
dardized by the IEEE as 802.1Q. A VLAN tag is a very simple thing. It consists
primarily of some priority information and a VLAN ID value. And, conceptually,
a VLAN is very simple as well: The VLAN ID associated with a packet is used
to identify the virtual forwarding entity (i.e., Ethernet bridge) instance within a
forwarding system that is supposed to forward the packet. Since each forwarding
entity instance has its own private forwarding database and operates completely
independently of all of the other forwarding entity instances within the same for-
warding system, packets associated with one bridging entity instance can never be
forwarded onto a virtual network associated with another bridging entity instance
without the intervention of an appropriate intermediary using tunneling behavior.

All very simple, right? Not exactly...

VLANs were invented long after the invention of Ethernet itself and the inventors
of Ethernet did not anticipate something like VLANs. In a perfect world, a VLAN
ID would be part of a header that precedes the Ethernet MAC header since the
VLAN ID modifies how the Ethernet MAC header is interpreted. Alas, Ethernet
mandates that the first bytes of an Ethernet packet are always the 14-byte Ethernet
header and, for backwards-compatibility reasons, this is unlikely to ever be
changed. So, VLAN tags follow instead of precede the Ethernet MAC header.

Ever wonder why VLAN tags are called “tags” instead of “headers”? These so-
called tags do, indeed, have all of the characteristics of a header—they convey use-
ful information and they indicate the type of header or information that follows.
To help sell the concept of VLANs as an incremental update to Ethernet, a choice
was made to depict the VLAN information as something that is inserted into an
Ethernet header instead of something that is appended to an Ethernet header.

 60 Hardware-Defined Networking

Figure 19 Typical VLAN Tag Depiction

destinationAddress sourceAddress ethertype

ethertype

TPID TCI

priority vlanId

This depiction gives us the somewhat awkward placement of the Vlan.ethertype
field at the beginning of the tag and, more significantly, it changes the paradigm of
the next-header identifying value; rather than identifying what comes next, Vlan.
ethertype identifies the VLAN tag itself.

This book’s preferred depiction is to treat VLAN tags as headers in their own
right, appended to an Ethernet header instead of shoved into the middle of one.

Figure 20 Preferred VLAN Header Depiction

destinationAddress

Ethernet header VLAN header

sourceAddress ethertype ethertypepriority vlanId

TPID TCI

You’ll notice that the order of the information in the two depictions (Figures 19
and 20) is exactly the same: a pair of MAC addresses followed by an ethertype
that identifies a VLAN tag (the tag protocol ID, or TPID), then priority and VLAN
ID values (the tag control info, or TCI) followed by an ethertype value that identi-
fies what follows the VLAN tag. This preferred depiction is merely a cleaner and
simpler way of visualizing VLAN headers (or tags, if you prefer). So, after all of
that, the details of a VLAN header are shown in Figure 21. VLAN headers are
identified, by default, by the preceding header using the ethertype value 0x8100.

Figure 21 VLAN Header Format Diagram

0
0 1

priority vlanId ethertype
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Adding a 4-byte VLAN tag to a packet does not increase the minimum Ethernet
packet length of 64 bytes, but it does increase the maximum from 1,518 bytes to
1,522 bytes. Several other enhancements to Ethernet have pushed the standard
maximum length to 2K bytes and non-standard, so-called jumbo packets, are up
to 9K bytes long. VLAN header field definitions can be found in Table 5.

 Forwarding Protocols 61

Table 5 VLAN Header Field Definitions

Field Name Width Offset (B.b) Definition

priority
(PCP)

3 bits 0.0 The priority code point for the packet.

Priority code definitions are network-specific. In other
words, a low numerical value does not necessarily
imply a low priority.

It is permissible (and increasingly common) to
combine the priority and
dropEligibilityIndicator fields into a single,
4-bit priority code point field.

dropEligibilityIndicator
(CFI, later DEI)

1 bit 0.3 Indicates that the packet is eligible to be dropped
during periods of congestion.

vlanId
(VID)

12 bits 0.4 The packet’s VLAN ID value.

ethertype
(TPID (in previous header))

16 bits 0.16 Identifies the type of header or payload that
immediately follows the VLAN header.

VLAN IDs

Aside from the priority value in the VLAN header, the only really interesting
information is the vlanId value. The 12-bit vlanId value allows for a maximum
of 4,094 valid VLAN IDs. It’s not 4,096 (i.e., 212) because two of the values are
reserved: a vlanId value of 0x000 means that the packet does not have an assigned
VLAN ID value while a vlanId value of 0xfff is aways interpreted as an invalid
VLAN ID. For the vlanId == 0x000 case, the priority and dropEligibilityIndi-
cator values are still valid and meaningful. This priority-only behavior was origi-
nally defined in IEEE 802.1p and, consequently, a VLAN header whose vlanId
value is set to 0x000 is known as a “dot one P” header or tag.

VLAN Translation

Figure 22 VLAN Translation

VLAN Breakout VLAN BreakoutBridge

VLAN ID: 0x231 VLAN ID: 0x8e5

forwarding domain: 0x4_3278forwarding system

Bridge

Bridge

 62 Hardware-Defined Networking

VLAN ID values as they appear in VLAN headers are merely spatially-relevant
tokens that identify a packet’s VLAN association on a particular network seg-
ment. What this means is that a packet that has a vlanId value of, for example,
0x231 when it is received by an Ethernet bridging system may map that VLAN ID
to an internal representation (i.e., a forwarding domain) of, say, 0x4_3278. This
new value is used to direct the packet to the appropriate virtual bridge instance
(i.e., Ethernet forwarding entity). Notice that the internal representation of the
forwarding domain may be much wider than the 12-bit VLAN ID. Just because a
single network segment may be restricted to just 4,094 VLANs, this doesn’t mean
that the total number of virtual bridges that may be active within a large bridging
system at any one moment cannot vastly exceed 4,094. Prior to transmission of
the packet by the bridge (onto the same VLAN, of course, since we’re presuming
that the Ethernet tunnel is not terminated at the current bridge), the internal rep-
resentation of 0x4_3278 is mapped to, say, 0x8e5 for use on the outgoing network
segment. Despite the use of three different values used in three different spatial
contexts, they all refer to the same VLAN.

Default VLAN

There is also the concept of a default VLAN that must be considered. Each physi-
cal or logical interface may be configured with a default VLAN ID. The idea is
that, if a packet is received without a VLAN ID (it may still have an 802.1p pri-
ority-only header), it is assigned the receive interface’s default VLAN. The receive
interface may also be configured to discard those packets whose VLAN header’s
vlanId value matches the default VLAN ID of the interface; enforcing an optional
restriction that those packets must be received without a VLAN header. Similarly,
if a packet’s internal VLAN representation maps to the default VLAN ID of the
packet’s transmit interface, the interface may be configured to strip that VLAN
header from the packet, sending the resulting packet as an untagged packet.

Yet another way of dealing with untagged packets is for a receive interface to infer
a particular VLAN association for a packet based on that packet’s final ethertype;
meaning that each protocol conveyed by the Ethernet packets may be mapped
to its own VLAN. Ultimately, any aspect of a packet that can be used to identify
the flow that a packet belongs to may be used to infer a VLAN association in
lieu of using a VLAN header, including, but not limited to, the Ethernet header’s
sourceAddress value.

Private VLANs

Private VLANs were invented to enable isolation between interfaces within a
single VLAN, reducing the consumption of scarce VLAN IDs. In a private VLAN,
there are three interface types: promiscuous (P), isolated (I) and community (C).
As shown in (b), in Figure 23, the promiscuous interface can exchange packets
freely with any of the interfaces in a private VLAN (including other promiscuous
interfaces). Two communities of three interfaces each are show in Figure 23. In
(c), it is shown that interfaces within a community can exchange packets with one

 Forwarding Protocols 63

another. However, as shown in (d), packets may not be exchanged between inter-
faces of different communities or between a community interface and an isolated
interface. And, as the name implies, an isolated interface cannot exchange packets
with any interface other than a promiscuous interface.

Figure 23 Private VLANs

III

P

C C C C C C

(a)

III

P

C C C C C C

(b)

III

P

C C C C C C

(c)

III

P

C C C C C C

(d)

VLANs and the Spanning Tree Protocol

A single Ethernet network can have just one instance of the Spanning Tree Protocol
in operation. Such a network can be safely subdivided into multiple VLANs, ef-
fectively allowing that single instance of the Spanning Tree Protocol to span (so to
speak) several VLANs. It is easy to visualize how this can be done safely. Once the
Spanning Tree Protocol has pruned a network to a strict tree structure, it is impos-
sible to introduce a loop into that network by subdividing it into VLANs.

For all intents and purposes, a virtual Ethernet network is indistinguishable from
a physical Ethernet network. The same operating rules apply in both cases. This
means that a single virtual Ethernet network (i.e., a VLAN) can have exactly one
instance of the Spanning Tree Protocol in operation. However, because a single
physical Ethernet network can support multiple VLANs, it is possible to have
multiple instances of the Spanning Tree Protocol operating on a physical network
as long as each one is operating in a separate VLAN or is associated with a set of
VLANs that are not associated with any other Spanning Tree Protocol instance.

Running multiple instances of spanning tree across several VLANs is known as
Multiple Spanning Tree Protocol (MSTP) and is standardized by IEEE 802.1s. Es-
sentially, Multiple Spanning Tree Protocol allows several VLANs to be associated
with an instance of the Rapid Spanning Tree Protocol and for multiple instances of
the Rapid Spanning Tree Protocol to operate on a single physical Ethernet network.

 64 Hardware-Defined Networking

Ethernet Tunnels

Provider Bridged Network (aka Q-in-Q)

With just 12 bits of VLAN ID space, there are a number of applications where
4,094 VLAN IDs on a single network segment is a serious limitation. Consider
a scenario where a service provider wants to be able to provide private Layer 2
services to a number of customers. Let’s presume that each customer maintains a
number of VLANs on their networks and they want those VLANs to span from
site to site across the service provider’s network. As long as the total number of
VLANs across all of the service provider’s customers’ networks does not exceed
4,094, the service provider can map the customer VLAN IDs to VLAN IDs that
are only used within the service provider’s network without any loss of informa-
tion and without conflict, mapping them back at the far side of the service pro-
vider’s network to the customer’s VLAN ID numbering space. This does, however,
impose severe scaling limitations.

The solution, as originally standardized in IEEE 802.1ad, is to use two VLAN
headers. The outer header is known as the service provider tag (or S-tag) and the
inner VLAN header is known as the customer tag (or C-tag). The ethertype for the
S-tag is, by default, 0x88a8 while the C-tag retains the single VLAN tag’s ethertype
value of 0x8100. The S-tag is owned by the service provider and is used to identify
a particular customer, confining each customer to its own VLAN within the service
provider’s network. The C-tag is owned and controlled by the customer and may
be used however the customer sees fit.

Figure 24 Q-in-Q Network Example

Customer
Network

Customer
Network

PE P PE

Ethernet

C-Tag
payload

Ethernet

C-Tag
payload

Ethernet

C-Tag

S-Tag S-Tag

payload

Ethernet

C-Tag
payload

In a practical network, bridges at the edge of the provider’s network (PE, for Pro-
vider Edge) receive packets that have just one VLAN header. The receive interface
(which is dedicated to a single customer) adds an S-tag to the packets that identi-
fies the customer associated with that receive interface. This is akin to entering a
VLAN tunnel as described in the Tunnels chapter on page 14, but using inter-
face ID information instead of addressing information to perform the mapping.

 Forwarding Protocols 65

The bridges in the core of the service provider’s network (P) must consider both
VLAN tags when identifying which instance of an Ethernet bridge forwarding entity
within a P bridging system must forward the packet. This is so because, despite
Ethernet MAC addresses supposedly being globally unique, there is no guarantee
that a customer doesn’t have duplicate addresses in operation across its VLANs. So,
just considering the S-tag may expose forwarding ambiguities that wouldn’t occur if
the customer’s VLAN ID values are also considered.

At the far edge of the service provider’s network, the S-tag is stripped from the
packet as the packet is transmitted onto a customer-facing interface that is dedicated
to that customer. Again, very much like classical tunnel exit behavior.

As a variant on the S-tag/C-tag paradigm, it is also possible to treat the two VLAN
tags as concatenated tags, with the S-tag (outer tag) providing the most significant
12 bits and the C-tag (inner tag) providing the least significant 12 bits of a resulting
24-bit VLAN ID. This is useful in those applications where what’s really needed is a
single, very large VLAN ID space instead of a hierarchy of VLANs.

Q-in-Q solves one aspect of the VLAN scaling limitation of the 12-bit VLAN ID
value, but it is not a complete solution. First and foremost, there is still a scaling
problem. This time it’s not due to the narrow width of the vlanId field. Instead, it is
due to the fact that every P bridge in the service provider’s network must now learn
all of the MAC addresses of all of the endpoints of all of the customers’ networks.
This becomes clear when you consider that the only addressing information con-
tained in the Ethernet header and VLAN tags is the destinationAddress field from
the customer. Hence, the service provider is compelled to have all of its bridges for-
ward based on customer-provided MAC address values and to scale its forwarding
databases to accommodate the union of all of its customers’ forwarding databases.

Separately, though a new ethertype value was allocated for the S-tag, the original
VLAN ethertype value (0x8100) was preserved for the C-tag. This means that a
forwarding system cannot simply examine the C-tag in isolation and unambigu-
ously determine that the VLAN tag is a C-tag versus a standalone VLAN header.
This problem is compounded by the fact that, in some networks, the pre-standard
ethertype value 0x9100 and sometimes 0x9200 is used to denote an S-tag instead
of the standard 0x88a8 value. The ethertypes that identify VLAN headers must be
examined in context in order to be interpreted correctly. A VLAN header’s ethertype
context is defined by the packet’s receive interface and by a VLAN header’s preced-
ing VLAN header. For example, simply detecting an ethertype value of 0x8100 is not
sufficient to determine that the current VLAN header is the C-tag part of an S-tag/C-
tag pair. It is only part of an S-tag/C-tag pair if the preceding VLAN header was an
S-tag (according to its associated ethertype value) and the packet’s receive interface
is configured to interpret these ethertype values appropriately (different receive
interfaces may be associated with networks that are independently configured and
managed, leading to varying and whimsical uses of ethertype values from interface
to interface).

 66 Hardware-Defined Networking

Provider Backbone Bridged Network (aka MAC-in-MAC)

To address the scaling and isolation issues of Q-in-Q, the IEEE standardized the
MAC-in-MAC protocol as IEEE 802.1ah. As its colloquial name implies, this
standard calls for encapsulating an Ethernet packet inside of an Ethernet packet.
The outer Ethernet header is used by a service provider while the inner Ethernet
header belongs to the service provider’s customers. The significant benefit of
MAC-in-MAC over Q-in-Q is that the customer’s addressing and VLAN spaces
are completely opaque to the core of the service provider’s network. This means
that the bridges in the core of a service provider’s network only need to learn the
MAC addresses associated with the service provider’s edge bridges, and not the
service provider’s customers’ entire set of network endpoints.

MAC-in-MAC doesn’t just jam two Ethernet headers together and call it a day. A
service encapsulation header is inserted in between two Ethernet headers in order
to provide additional information about the service being provided. This stack of
headers is depicted in Figure 25.

Figure 25 MAC-in-MAC Header Stack

Service Provider
Ethernet Header

S-Tag

C-Tag

Service
Encapsulation

Customer
Ethernet Header

Payload

The service provider’s Ethernet header is a standard 14-byte Ethernet header
whose ethertype is set to 0x88a8 to indicate that an S-tag is present (yes, the same
S-tag used in Q-in-Q). The S-tag is used as the VLAN identifier for the service
provider’s Ethernet network. The ethertype in the S-tag is set to 0x88e7 in order to
identify the following service encapsulation header.

The service encapsulation header is unique to MAC-in-MAC (i.e., it’s not just
another VLAN tag). It provides some priority information, some option-settings
flags and a 24-bit service identifier value. The format of the MAC-in-MAC service
encapsulation header is shown in the Figure 26.

 Forwarding Protocols 67

Figure 26 MAC-in-MAC Service Encapsulation Header

0
0 1

priority serviceId
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Format Diagram

Table 6 MAC-in-MAC Service Encapsulation Header Field Definitions

Field Name Width Offset (B.b) Definition

priority
(I-PCP)

3 bits 0.0 The priority code point for the packet.

Priority code definitions are network-specific. In
other words, a low value does not necessarily imply a
low priority.

It is permissible (and very common) to combine the
priority and dropEligibilityIndicator fields
into a single, 4-bit priority code point field.

dropEligibilityIndicator
(I-DEI)

1 bit 0.3 Indicates that the packet is eligible to be dropped
during periods of congestion.

useCustomerAddresses
(UCA)

1 bit 0.4 Indicates that customer MAC address value should be
used when multiplexing and demultiplexing service
access points (OAM-related).

serviceId
(I-SID)

24 bits 0.8 The packet’s Service ID value.

This value can be thought of as a customer ID.

One thing you’ll notice right away about the MAC-in-MAC service encapsulation
header is that it does not have an ethertype field or any other field that identifies
the next header type. This means that the only header type that can ever follow a
MAC-in-MAC service encapsulation header is a customer Ethernet header.

The customer Ethernet header is your standard 802.3 Ethernet II header. This
header’s ethertype value may either indicate that a VLAN tag immediately follows
(0x8100) or that the Ethernet packet’s payload immediately follows. To the service
provider, this is completely unimportant since everything beyond the service en-
capsulation header is opaque to the service provider in the core of its network.

The operation of a MAC-in-MAC provider backbone Ethernet network is as one
would expect. The usual tunneling behaviors are present. At the edge of the pro-
vider’s network, customer packets are received via interfaces that are dedicated to
individual customers. The identity of the receive interface is mapped to the servi-
ceId value used in the service encapsulation header (I-tag). The customer’s desti-
nationAddress and optional C-tag vlanId value are used to perform a lookup into
the service provider’s edge (PE) bridge forwarding database. A match in the data-
base returns not only the identifier of the interface to use to transmit the packet to
the service provider core (P) bridge, but the destinationAddress and vlanId values
to be used in the outer Ethernet and VLAN headers. The sourceAddress value of

 68 Hardware-Defined Networking

the outer Ethernet header is set to the ingress PE bridge’s own MAC address. Once
properly encapsulated, the packet is transmitted via the identified interface toward
the first provider core bridge.

Figure 27 MAC-in-MAC Network Example

Customer
Network

Customer
Network

PE P PE

Ethernet

C-Tag
payload

C-Tag
payload

C-Tag

I-Tag

Ethernet

Ethernet

S-Tag

I-Tag

Ethernet

Ethernet

S-Tag

payload

Ethernet

C-Tag
payload

In the core of the service provider’s network, the packet is forwarded normally
using just the outer Ethernet and S-tag VLAN headers.

Upon arrival at the egress service provider edge bridge (PE) identified by the
packet’s outer Ethernet and VLAN headers, the outer Ethernet, outer VLAN
and service encapsulation headers are stripped from the packet. Meanwhile, the
serviceId value from the service encapsulation header (I-tag) and the customer’s
Ethernet header and VLAN header (C-tag) are used to direct the customer’s packet
to the correct transmit interface of the egress provider edge bridge (PE).

There is a variety of alternative deployments of provider backbone bridging. For
example, since the encapsulated Ethernet packet is a normal Ethernet packet, it is
not limited to having just a C-tag. It could, indeed, be double-tagged in the Q-in-Q
fashion with both an S-tag and a C-tag. In this case the S-tag’s vlanId value can be
used (along with, or in lieu of, the receive interface ID) to map to the serviceId
value at the ingress PE bridge (leftmost in Figure 27).

A customer’s view of a service provider’s MAC-in-MAC network is that of a gi-
normous, continent-spanning Ethernet bridge, including all of the usual learning,
flooding and spanning tree behaviors. To wit, when an ingress PE bridge receives a
packet with an unknown customer destinationAddress value, the provider’s net-
work floods the packet to all of the PE bridges associated with the S-tag’s VLAN.
The customer’s sourceAddress value in that packet is learned by the ingress PE
bridge and all of the egress PE bridges, associating the customer’s sourceAddress
value with sourceAddress value of the ingress PE bridge. Hence, when a reply is
sent in the opposite direction, the ingress PE bridge can unicast the packet to the

 Forwarding Protocols 69

specific egress PE bridge that is attached to the portion of the customer’s network
where the destination of the customer’s Ethernet packet resides. All of the as-
sociations between PE bridge interfaces, I-tags and provider S-tags are established
administratively.

IPv4

Internet Protocol, version 4 (IPv4) is the protocol that built the Internet. The
Internet is a global network and its packets are intended to be forwarded across
all kinds of media. IPv4 is not a media access protocol. It does not provide any
means for packet encapsulation that is friendly to the physical layer (start of
packet delimiters, packet-protecting CRC values, etc.). What makes IPv4 apropos
for the Internet is that it includes a number of innovations that lend themselves to
operating at a vast scale at low cost, media-type independence and tolerance of
unpredictable changes in network topology including temporary loops.

IPv4 packets are typically the payload of an encapsulating Ethernet packet. When
this is the case, an ethertype value of 0x0800 is used in the preceding Ethernet or
VLAN header. Of course, IPv4 packets may be the payload of a variety of other
encapsulating headers, including MPLS, IPv6, IPv4 itself and others.

Figure 28 shows the life cycle of an IPv4 packet as the payload of an Ethernet
packet across a simple, but typical network made up of an Ethernet bridge and a
couple of IPv4 routers.

Figure 28 Bridged and Routed Packet Life Cycle

IP

Ethernet

payload

Ethernet
Bridge

IP

Ethernet

payload

IP
Router

IP

Ethernet

payload

IP
Router

IP

Ethernet

payload

Destination
Endpoint

Origin
Endpoint

Across the top of Figure 28 are the components of our example network: an origin
endpoint, a bridge, two routers and a destination endpoint. Across the bottom are
simplified packet diagrams. The dashed arrows emanating from the packet dia-
grams show to which point in the network each header is addressed; right-facing
arrows represent destination address values while left-facing arrows represent

 70 Hardware-Defined Networking

source address values. At every stage, the IP header (IPv4 in this case, but the same
applies to IPv6) is addressed to the two endpoints, the address values remaining
constant all along the path. The Ethernet header’s addressing, on the other hand,
always points back to the prior IP stage (origin or router) and forward to the next.
Thus, the Ethernet header is replaced by each IP router in the path from the origin
endpoint to the destination endpoint. This behavior is, essentially, basic tunneling
as described in Chapter 4 on page 14. The IP tunnel originates at the origin end-
point and terminates at the destination endpoint. A series of Ethernet tunnels are
originated and/or terminated at every hop except for the Ethernet bridge, where
the packet is forwarded based on the Ethernet header instead of the IPv4 header.

IPv4 Header Structure and Field Definitions
As shown in the Figure 29, an IPv4 header is considerably more complex than an
Ethernet header. This is reasonable since IPv4 is expected to do much more than
Ethernet.

Figure 29 IPv4 Header Structure Diagram

0

4

8

12

16

0 1 2
version headerLength trafficClass ecn totalLength

fragmentOffsetid

ttl nextHeader headerChecksum

sourceAddress

destinationAddress

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 7 IPv4 Header Field Definitions

Field Name (std. name) Width Offset
(B.b)

Definition

version
(Version)

4 bits 0.0 The protocol version.

This value must be set to 4 for IPv4.

headerLength
(IHL)

4 bits 0.4 The length of the IPv4 header.

This value indicates the length of the IPv4 header as
measured in 32-bit words. The minimum value for this field
is 5 (i.e., 20 bytes). The maximum value is 15 (60 bytes).

trafficClass
(Type of Service, upper 6 bits)

6 bits 0.8 The traffic class value.

Essentially, this is a priority-like value that is used to indicate
how the packet must be handled in the face of congestion.
See RFC 2474 for details.

 Forwarding Protocols 71

Field Name (std. name) Width Offset
(B.b)

Definition

ecn
(Type of Service, lower 2 bits)

2 bits 0.14 Explicit congestion notification (ECN).

This field is used to convey congestion information to the
sources of packet traffic. This value is enumerated as follows:

0 = notEcnCapableTransport
1 = ecnCapableTransport0
2 = ecnCapableTransport1
3 = congestionExperienced
See RFC 3168 for details.

totalLength
(Total Length)

16 bits 0.16 The length of the IPv4 packet in bytes.

The length of an IPv4 packet is measured from the first byte
of the IPv4 header to the last byte of the IPv4 packet’s
payload (note that, if, say, an IPv4 packet is being conveyed
by an Ethernet packet, totalLength does not include the
Ethernet header(s), padding or CRC).

The minimum allowed totalLength value is 20 (IPv4
header without options and 0 payload bytes). The maximum
allowed is 65,535 (216 - 1). All IPv4-compliant endpoints
must support IPv4 packets of least 576 bytes in length.

id
(Identification)

16 bits 4.0 Packet identifier.

Identifies a group of IPv4 fragments belonging to the same,
original, unfragmented IPv4 packet.

doNotFragment
(DF)

1 bit 4.17 Prohibits fragmentation.

If this bit is set, then the packet may not be fragmented even
if a network segment cannot accommodate the packet’s
length.

moreFragments
(MF)

1 bit 4.18 More fragments follow.

This field indicates that the current IPv4 packet is not the last
fragment of an original IPv4 packet. This bit is always set to
0 for an unfragmented IPv4 packet and for the last fragment
of a fragmented IPv4 packet.

fragmentOffset
(Fragment Offset)

13 bits 4.19 The current fragment’s offset.

This field indicates the offset of the current IPv4 fragment as
measured in 64-bit words relative to the start of the original
IPv4 payload. This value is used to place a received IPv4
fragment’s payload into the correct position relative to other
fragments when reassembling the original IPv4 payload. An
unfragmented IPv4 packet and the first fragment of a
fragmented IPv4 packet have a fragmentOffset value
of 0.

 72 Hardware-Defined Networking

Field Name (std. name) Width Offset
(B.b)

Definition

ttl
(Time to Live)

8 bits 8.0 The packet’s time to live.

This value is decremented by at least one every time its
packet is forwarded by an IPv4 forwarding entity (i.e.,
router). If ttl is decremented to 0, the packet is discarded. If
a packet is received with a ttl value of 0, it is discarded.

nextHeader
(Protocol)

8 bits 8.8 The next header’s type.

If the type of the next header is known to the current
forwarding entity, then that header may be processed.
Otherwise, it is likely just treated as opaque payload
contents.

This field is referred to as a “next header” field instead of
“protocol” to better reflect its purpose and to agree with the
same field in IPv6.

headerChecksum
(Header Checksum)

16 bits 8.16 The header’s checksum value.

This checksum is the 16-bit ones-complement of a ones-
complement sum of the 16-bit values that make up the IPv4
header, excluding the headerChecksum value itself.

sourceAddress
(Source Address, SIP, etc.)

32 bits 12.0 The IPv4 address of the packet’s origin.

destinationAddress
(Destination Address, DIP,
etc.)

32 bits 16.0 The IPv4 address of the packet’s destination.

Addressing
IPv4 addresses are typically depicted in the dotted-decimal style which is four
decimal numbers ranging from 0 through 255, separated by periods. For example:
207.43.0.10. Setting that rather archaic style aside, an IPv4 address is essentially
just a 32-bit number. What really makes IPv4 addressing interesting is the means
by which these address values are assigned to network endpoints. Unlike Ethernet
MAC addresses which are permanently and statically assigned to endpoints at
their time of manufacture (like a person’s taxpayer ID), an IPv4 address is gener-
ally assigned dynamically in a geographic manner (like a person’s postal code).
A person’s taxpayer ID generally doesn’t change over time and remains the same
regardless of where they might live within their country. People are, however, free
to move about and change their home address, getting a new postal code each time
they do so.

 Forwarding Protocols 73

So, like postal codes, IPv4 addresses are ephemeral and, also like postal codes,
they are hierarchical. If you live on the east coast of the United States, your 5-digit
postal code (specifically, a ZIP code in the U.S.) starts with 0, 1, 2 or 3. As you
move west, those leading digits get larger and larger. By the time you’re in one of
the western-most states (California, Oregon, Washington, Alaska, or Hawaii), all
of the postal codes start with a 9. Examining subsequent digits of the postal code
continues to narrow down the physical location of the associated postal address.
The more digits you consider, the smaller the geographic region being represented.

Figure 30 Map of First Digit of United States Postal Codes (ZIP Codes)

0

1

2

3

4

5

6

7

8

9

Sacramento

San Francisco

Chicago

Okay, so what’s the benefit of hierarchical postal codes? Well, if you’re sorting
mail in, say, Chicago you can place all of the mail whose postal codes start with
1 onto an eastbound airplane and all of the mail whose postal codes start with 9
onto a westbound airplane. Hence, the sorting station doesn’t have to maintain
a complete list of all possible postal codes just to make a simple east versus west
decision. Similarly, IPv4 benefits from hierarchical addressing. By examining just
a few of the leading bits of an Ipv4.destinationAddress value, an IPv4 router can
determine the appropriate interface via which to forward the packet. The router
in question may not know exactly where the packet’s destination is in the larger
network, but that’s okay; it doesn’t need to know. It just needs to know how to get
the packet one step closer to its destination.

 74 Hardware-Defined Networking

The tremendous benefit of geographically-aware, hierarchical addressing is that the
IPv4 routers that make up the global Internet—which interconnects billions of end-
points—can fully operate with a forwarding database on each router that is on the
order of a million entries. IPv4 routers do this by maintaining forwarding databases
of IPv4 prefixes of varying widths instead of full-width host addresses. An IPv4
endpoint is called a “host” and a prefix refers to a “route” in Internet parlance.

An IPv4 forwarding database (aka forwarding information base, or FIB), is a list
of address prefixes. Prefix keys have two components: the underlying IPv4 address
value and a prefix length value. The prefix length value indicates how many bits
(starting with the most significant bit and extending to the right) are valid. This is
depicted thusly: 24.201.0.0/16. The “/16” indicates that only the leftmost 16 bits
of the 32-bit IPv4 address may be considered when comparing the address value in
the forwarding database with the destinationAddress value from the packet being
forwarded.

A forwarding database does not, of course, consist of prefixes of uniform length.
There may be some /4 entries as well as a bunch of /24 entries and every other
possible prefix length. Endpoint addresses (i.e., /32) may also be in the forwarding
database. Given that some number of bits in an IPv4 address are ignored during
a particular lookup, it is possible for a packet’s destinationAddress to match
multiple entries in the forwarding database. All that’s necessary for this to happen
is for several prefix entries of different widths to share common values in their most
significant bits. Let’s return to our postal example to illuminate this.

We know that our Chicago mail sorting facility must send all mail whose postal
code starts with 9 on a westbound airplane. The westbound plane lands in Sacra-
mento, in central California, where further digits of the postal code are examined
in order to load the mail onto the appropriate trucks. However, let’s presume that
the postal service sends a lot of urgent mail to San Francisco, so the Chicago office
knows to load mail whose postal code start with 941 onto its San Francisco-bound
airplane, saving significant time in the delivery of that mail. If a letter is posted in
Chicago whose postal code is 94109, it’ll match two entries: 9 (go west) and 941
(go to San Francisco). Which entry is the correct one to choose? The 941 entry
matches a longer prefix of the 94109 postal code, so it is a more accurate answer
than simply matching the first digit. The longest prefix is the best answer. This is
known as a longest-prefix match and it is fundamental to IPv4 routing.

When an IPv4 router receives an IPv4 packet, it submits destinationAddress to a
longest-prefix match lookup within its forwarding database. The longest matching
prefix in the forwarding database represents the finest-grained and best option
for forwarding the packet. In addition to a longest-prefix match lookup, the IPv4
header is checked and updated (see Time-to-Live, page 81, and Header Check-
sum, page 82) and, in the case of IPv4 tunneled within Ethernet, the encapsulat-
ing Ethernet header must be stripped off and replaced with a new Ethernet header
as required by the rules of tunneling.

 Forwarding Protocols 75

Addressing Evolution

Originally, IPv4 had a fixed, 8-bit width for the route portion of an address value,
the remaining 24 bits specifying the host (i.e., endpoint). This was quickly shown
to not scale very well, so a series of address classes known as Class A through
Class E were defined. The prefix length associated with each class was encoded in
the first few bits of destinationAddress as defined in Table 8.

Table 8 Classical IPv4 Addressing

Class Leading Bits Prefix Length Comments

A 0xxx 8 bits General-purpose unicast.

B 10xx 16 bits General-purpose unicast.

C 110x 24 bits General-purpose unicast.

D 1110 28 bits Multicast

E 1111 - Reserved for experimental use.

Unfortunately, the Internet started to grow very rapidly with the rise of HTTP
and HTML (i.e., web hyperlinks and browsers) in the 1990s. The coarse-grained
allocation of IP address blocks to organizations meant that hundreds of millions of
IP addresses were not in use by their owners and were not available to others.

Enter classless inter-domain routing (CIDR). With this addressing architecture,
prefix lengths were free to span from /0 through /32; enabling fine-grained alloca-
tions and freeing up IP addresses that would otherwise be trapped (i.e., allocated
but not used). However, there was no longer any reliable correlation between up-
per address bits and route number width. This meant that we’d have to get much
more clever when performing our longest-prefix match lookups. We’ll explore
lookups (i.e., searching) in Chapter 17 on page 302.

Default Route

In Ethernet bridging, the 802.1D and 802.1Q standards are very clear about what
to do if a Mac.destinationAddress value is not found in a bridge’s forwarding
database (specifically, flood the packet to all available interfaces). IPv4 routers, on
the other hand, don’t experience “entry not found” exceptions when performing
destination address lookups. This is because IPv4 forwarding databases must in-
clude a single /0 default route entry. This is a prefix of zero length. It matches every
possible Ipv4.destinationAddress value. It is also the shortest possible prefix
length, so it is only used if every other prefix fails to match the submitted search
argument.

The default route specifies the forwarding behavior for all packets that fail
to match actual non-zero-length prefixes in the forwarding database. It es-
sentially means, “If you can’t figure out what to do with a packet, follow these

 76 Hardware-Defined Networking

instructions.” Those instructions may specify that the packet be discarded or
forwarded to a particular router. This is significantly different from Ethernet’s
flooding behavior.

Special-Purpose Addresses

IETF RFC 6890 defines a number of IPv4 addresses that serve special purposes.
Some of the more interesting special-purpose addresses are listed in Table 9.

Table 9 Special-Purpose IPv4 Addresses

Address Meaning RFC

0.0.0.0/8 This host on this network. RFC 1122

10.0.0.0/8 Private use. RFC 1918

127.0.0.0/8 Loopback. RFC 1122

169.254.0.0/16 Link local. RFC 3927

Options
Ethernet has its tags. IPv4 has its options. They’re both a pain in the ass.

IPv4 options are used to convey special information along with the IPv4 header.
The presence of an IPv4 option is determined by examining the headerLength field.
The length of an IPv4 header without options is 20 bytes. headerLength is encoded
in units of 32-bit words, so 20 bytes is encoded as 5. Any headerLength value
greater than 5 indicates that at least one IPv4 option is present.

Figure 31 IPv4 Option Format Diagram

0

4

0 1 2 3 4 5
number length

<option data>

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Forwarding Protocols 77

Table 10 IPv4 Option Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

copyOnFragmentation
(copy)

1 bit 0.0 Copy option if packet is fragmented. If this bit is
asserted and the packet associated with this option is
fragmented, a copy of this option must be a part of all
of the fragments’ IPv4 headers.

class
(option class)

2 bits 0.1 Option class. Two option classes are defined:

0 = Control
2 = DebuggingAndMeasurement

number
(Number)

5 bits 0.3 Identifies the option type.

length
(Length)

8 bits 0.8 The length of the option in bytes (optional). Not all
options require an length value because their length
may be inferred from class and number.

option data
(Data)

variable 0.16 Option data (optional). Any data associated with an
option is conveyed in this field. Not all options require
data.

IPv4’s 1980s heritage is clear when one looks at the options mechanism. In those
byte-stingy times, providing a one-byte option was heroic work.

Sharp-eyed readers will notice that it’s possible to have options whose total length
is an odd number of bytes, but headerLength is expressed in units of 32-bit words.
What this means is that up to three pad bytes may follow the last IPv4 option in
order to fill out the IPv4 header’s length to be a multiple of four bytes.

Making the length field optional is, in practice, horrible. It means that any hard-
ware that must support one or more IPv4 options must be able to recognize all of
the possible number values in order to determine whether or not each option has a
length field and, if not, what the length of the current option is. This awareness of
all of the option types is necessary in order to be able to traverse an IPv4 header’s
list of options to find the one or more that are of interest. Fortunately, if an IPv4
router is designed or configured to ignore all IPv4 options, then the headerLength
field may be used to skip over all of the options and go straight to the payload of
the IPv4 packet.

The IPv4 options that are available cover functions such as security (obsolete),
stream identifier (obsolete), source route (bad idea), record route, and timestamp
(not terribly useful). Of these options, the record route option is the only one
that may be at all useful. However, it is not at all unreasonable for a modern IPv4
router to not support any IPv4 option functions. This leaves it as a policy decision
to determine whether to ignore IPv4 options (i.e., allow them to pass as opaque
data) or discard packets whose IPv4 headers have options.

 78 Hardware-Defined Networking

Fragmentation
IPv4 is intended to operate over a variety of link layer (i.e., Layer 2) protocols and
technologies and for the link layer type to change from hop to hop as each IPv4
packet makes its way to its destination. Each link layer protocol may impose a
different maximum packet length (aka maximum transmission unit, or MTU). To
allow its packets to be successfully forwarded through such a hostile environment,
IPv4 supports fragmentation—the dividing up of packets into smaller packets that
are then reassembled either at their final destination (the usual approach) or after
getting past the MTU bottleneck.

Just three fields in the IPv4 header are used to control and manage fragmentation.
They are:

 � doNotFragment

 � moreFragments

 � fragmentOffset

If doNotFragment is set to 1, then an IPv4 router is not allowed to fragment that
packet. If that packet’s length exceeds the MTU of the packet’s transmit interface
on the router, then the router must discard the packet. However, the packet is not
discarded silently. Instead, a message is sent back to the source of the packet in-
forming the source that the packet was too long and could not be fragmented. The
Internet Control Message Protocol (ICMP) is the means by which this feedback
is delivered to the origin of discarded packets. ICMP is discussed in more detail
further along in this section.

The moreFragments bit is set to 1 to indicate that the current IPv4 packet is a
fragment of a larger original packet, but it is not the last fragment. The 13-bit
fragmentOffset field is used to indicate the offset of the first byte of the current
IPv4 packet’s payload relative to the first byte of the first fragment’s IPv4 payload.
Only the first fragment has an fragmentOffset value of 0. Table 11 summarizes the
behavior of moreFragments and fragmentOffset.

Table 11 IPv4 Fragmentation Control Fields

moreFragments fragmentOffset Meaning

0 0 The packet is not fragmented.

0 > 0 The packet is the last fragment.

1 0 The packet is the first fragment.

1 > 0 The packet is a middle fragment.

 Forwarding Protocols 79

The mechanics of IPv4 fragmentation are fairly simple. When a router detects that
a packet’s length (total length including any necessary encapsulation) exceeds the
MTU of the network attached to the packet’s intended transmit interface and the
packet’s doNotFragment bit is set to 0, then the router must fragment the packet.
Several strategies may be employed by the IPv4 router in its choice of fragment
sizes. It may maximize the size of all of the fragments except for the last one. It
may attempt to create equally-sized fragments except, again, the last fragment. It
may also create a lot of small fragments in order to avoid further fragmentation
by subsequent IPv4 routers. Ideally, however, an IPv4 router generates as few frag-
ments as possible.

Let’s consider an example where an IPv4 packet’s totalLength (IPv4 header bytes
plus IPv4 payload) is 4,000 bytes and the network that leads to the packet’s next
hop has an MTU of 1,500 bytes (i.e., standard Ethernet). The router creates three
fragments with the following characteristics.

Figure 32 IPv4 Fragmentation Example

Ethernet IPv4 CRCpayload

4,000 bytes

4,018 bytes

moreFragments == 0
fragmentOffset == 0
totalLength == 4000

moreFragments == 1
fragmentOffset == 0
totalLength == 1500

Ethernet IPv4 CRCpayload

1,500 bytes

1,518 bytes

moreFragments == 1
fragmentOffset == 185
totalLength == 1500

Ethernet IPv4 CRCpayload

1,500 bytes

1,518 bytes

moreFragments == 0
fragmentOffset == 370
totalLength == 1040

Ethernet IPv4 CRCpayload

1,040 bytes

1,058 bytes

 80 Hardware-Defined Networking

In our example, the first two fragments are of the same length; the length of the
transmit network’s MTU. The first fragment’s fragmentOffset value is 0 whereas
the second fragment’s offset is 185. Bear in mind that the offset is in units of 8
bytes and only measures the offset of the pre-fragmentation IPv4 payload. Hence,
a fragmentOffset value of 185 means that the second fragment is offset from the
first by 1,480 bytes, which is 1,500 minus the IPv4 header length of 20 bytes (re-
member, totalLength includes the IPv4 header itself). After two fragments, we’ve
moved 2,960 bytes of the original IPv4 packet’s 3,980-byte payload. Hence, the
third and final fragment’s total length is 1,040, which is 3,980 - 2,960 + 20, and
it has a fragmentOffset value of 370, which places the third fragment’s payload
2,960 bytes after the start of the first fragment’s payload.

The use of a fragment offset value instead of a fragment index value, where frag-
ments are simply given a monotonically increasing value, for example, 0, 1, 2... ,
means that it is possible for a fragment to be fragmented itself. Indeed, since each
fragment is a complete and self-contained IPv4 packet, the process of fragmenting
fragment packets may be repeated as often as necessary; it’s simply a matter of
computing the correct offset to value to make sure that the fragments are reas-
sembled in the right order. If index values were used instead of offset values, frag-
menting a fragment would have required fractional index values, a very ungainly
and unlikely scenario.

When a packet actually fragments, a single IPv4 packet is used to spawn multiple
IPv4 packets. Each fragment has its own link layer encapsulation (e.g., Ethernet)
and IPv4 header. The link layer headers of all of the fragments of a packet are
typically identical. Each fragment’s IPv4 header must, of course, be different. They
all have the same addressing and id information since they’re all going to the same
place, but the fragmentOffset, headerLength4, totalLength and headerChecksum
fields must all be updated accordingly.

Unfortunately, fragmentation breaks some things and, operationally, isn’t at all
necessary; it’s a remnant from the early days of the Internet that we’re pretty much
stuck with.

Fragmentation breaks things because, when a packet is fragmented, only the link
layer (i.e., Ethernet) and IPv4 headers are reproduced with each fragment. This
means that any inner headers that may have followed the IPv4 header now exist
only in the very first fragment. Any kind of load balancing or security policy that
depended upon access to those headers is now severely compromised. It doesn’t
work to presume that all of the fragments of a packet will arrive in sequence
and with no interstitial packets belonging to other flows. Even the router that
performed the fragmentation is not compelled to transmit the fragments as a
contiguous sequence of packets. Intermediate routers may, of course, introduce all

4 The headerLength value is subject to change when an IPv4 packet is fragmented because not
all of a packet’s IPv4 options are necessarily copied to the fragments, changing the length of the
IPv4 header from the first fragment relative to all of the rest.

 Forwarding Protocols 81

kinds of unrelated packets into a string of packet fragments.

And what about tunneling? Let’s presume that a router is transporting IPv4
packets that are, themselves, transporting encapsulated packets of some kind.
And let’s presume that this mid-tunnel IPv4 router has the temerity to fragment a
packet with which it has been charged the responsibility of forwarding. When the
packet fragments reach the tunnel termination point, the first fragment will be just
fine since the headers from the encapsulated packet are all present. The subsequent
packets, on the other hand, are simply conveying the encapsulated packet’s pay-
load bytes. There aren’t any meaningful headers to be found among the detritus
of payload bytes. The tunnel-terminating router’s only choice is to reassemble the
packet fragments back into the original packet before forwarding. This is a wildly
complex and expensive undertaking for a router in the middle of a large network
because the millions of packet flows running through such a router mean that the
amount of state and packet data that must be maintained in order to perform reas-
sembly is staggering. Reassembly by an endpoint is trivial by comparison.

To prevent all of this confusion and breakdown, IPv4 routers that serve as IPv4
tunnel entrance points must mark the encapsulating IPv4 headers as “do not frag-
ment” by setting doNotFragment to 1.

The very unfortunate part of all this is that fragmentation is completely unneces-
sary. The IPv4 control protocol, ICMP, has messaging mechanisms built into it
that make it possible for an IPv4 router to report not only that fragmentation was
necessary, but also the MTU size that made a fragmentation attempt necessary.
Hence, a source endpoint can determine what the smallest MTU is along the
intended forwarding path and never send a packet requiring fragmentation ever
again. All the source endpoint has to do is set doNotFragment to 1 for every packet.

Time-to-Live (TTL)
To guard against temporary loops or misbehaving routers, IPv4 packets include
a time-to-live value. The original intent of this value was to limit the lifetime of
a packet on the Internet, in recognition of the idea that packets not only lose
relevance beyond a certain age threshold, but can actually cause problems when
a higher-layer protocol responds to an apparent loss of a packet by generating
a replacement packet which is eventually met by a much-delayed original. This
would be like you going back in time and meeting your past self. As any aficionado
of time-travel movies will tell you, this never goes well. A source of an IPv4 packet
declares the number of seconds the packet is allowed to live. Each router in the
path from the packet’s origin to its destination decrements the time-to-live value
by the amount of time required to forward the packet, but never by less than one
second. In practice, however, IPv4 routers always decrement ttl by one, and ttl
serves as a hop limit counter instead of a time limit.

The policies associated with ttl are fairly simple. All IPv4 packets are generated

 82 Hardware-Defined Networking

with a non-zero ttl value. Every IPv4 router that forwards the packet decrements
ttl by one. If ttl is decremented to zero, the packet is discarded. An IPv4 router
or source endpoint must never transmit an IPv4 packet with ttl set to zero. If an
IPv4 packet is received with its ttl value set to zero and that packet is addressed to
the router or destination endpoint, that packet must not be discarded; it must be
received and processed.

Next Header
IPv4 packets can convey a wide variety of payload types. A couple of common
examples include TCP and UDP. In keeping with the general practice of a preced-
ing header identifying the type of the subsequent header, IPv4 includes nextHeader
as one of its header fields. The definition of this 8-bit field is maintained by the
Internet Assigned Numbers Authority (IANA).

Header Checksum
In a belt-and-suspenders move, IPv4 includes a 16-bit header checksum that pro-
tects the header despite Ethernet having a 32-bit CRC value that provides better
protection for the entire Ethernet packet, including its IPv4 packet payload.

headerChecksum is the ones-complement (simple bitwise inversion) of the ones-
complement sum (end-around carry) of all of the 16-bit words of the IPv4 header.
For the purposes of computing the checksum, headerChecksum is either skipped
or set to zero during the computation of the ones-complement sum. When check-
ing the checksum upon reception of an IPv4 packet, the headerChecksum value
is included in the computation of the checksum. An IPv4 header with a correct
headerChecksum value yields a checksum value of 0x0000.

Ones-Complement Sums

The headerChecksum value depends upon computing a 16-bit ones-complement
sum. A ones-complement sum is a sum where the carry bits are added into the
sum. For a simple example, consider the ones-complement sum of two 4-bit
values: 0xc + 0x9. A simple twos-complement sum yields a value of 0x15. The
leftmost digit of this sum is the carry value (i.e., 0x1). Adding 0x1 to 0x5 yields 0x6.
This is the ones-complement sum of 0xc and 0x9. If adding the carry bits to the
sum produces a carry of its own, then that carry is added to the sum as well.

When an IPv4 header is updated, as often happens when, for example, ttl is
decremented or fields are updated when fragmenting a packet, headerChecksum
must be updated as well. This can be done either by computing an entirely new
headerChecksum value, or it can be done incrementally as follows:

HC' = HC + ~m - m'
where
HC = old header checksum
HC' = new header checksum

 Forwarding Protocols 83

m = old value of a 16-bit field
m' = new value of a 16-bit field

See IETF RFC 1624 for more details.

Internet Control Message Protocol
The Internet Control Message Protocol (ICMP, IETF RFC 792) is used to send
messages for diagnostic or control purposes or to report errors from the point
where the error occurred to the source of the packet experiencing the error. A
couple of examples of error messages are “time-to-live expired” and “fragmenta-
tion required with doNotFragment set to 1.”

ICMP messages are encapsulated in IPv4 packets and use the Ipv4.nextHeader
field value 0x01. Figure 33 depicts the format of an ICMP message header.

Figure 33 ICMP Message Header Format Diagram

0

4

0 1 2 3
messageType code messageChecksum

<rest of message>

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 12 ICMP Message Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

messageType
(Type)

8 bits 0.0 The message’s type. The messageType and code values
are combined to determine the specific type of the
message.

code
(Code)

8 bits 0.8 The code for a particular message type. This value
demultiplexes the messageType value to arrive at a
specific message type.

messageChecksum
(Checksum)

16 bits 0.16 A checksum computed over the entire message. This
checksum is the same type of ones-complement
checksum as headerChecksum. For
messageChecksum, however, it is computed over all of
the fields described in this table as well as all of the
16-bit words that make up the data portion of the
ICMP message that follows the ICMP message header.

<reset of message> 32 bits 4.0 An optional 32-bit value that is message-type specific.

There is a data section that follows every ICMP message header. The data section
is the IPv4 header from the packet that spawned the ICMP message followed by
the first eight bytes of that IPv4 packet’s payload.

 84 Hardware-Defined Networking

Network Address Translation (NAT)
Network address translation was developed with the best of intentions and it does
have some practical benefits. Unfortunately, it breaks a lot of things and it has
been used for years as a security crutch that has delayed the proper hardening of
networking protocols and operating systems.

As the name implies, network address translation is used to translate network
addresses: specifically, IPv4 addresses. Why would one want to do this? There
are actually a number of cases where there are practical benefits to doing so. For
example, when connecting two networks that use private IPv4 addresses (i.e.,
not routable on the public Internet) and have overlapping address assignments
(i.e., not every endpoint has a unique address in the newly combined network),
network address translation can be used to map the private addresses in one part
of the network to non-conflicting addresses for use in the other network.

For example, a destinationAddress value of 10.0.0.110 in a packet that origi-
nates in network A may be translated to 10.0.0.10 as it transitions from network
A to network B. The source endpoint’s sourceAddress must be similarly translated
from 10.0.0.2 to 10.0.0.102 in order to avoid address space conflicts.

The packet’s destination endpoint replies to this packet using 10.0.0.102 as its
packet’s destinationAddress value. The network address translation function that
acts as an intermediary between network A and network B performs a reciprocal
address translation of destinationAddress from 10.0.0.102 to 10.0.0.2, ensuring
that the packet reaches its destination in network A.

Figure 34 Network Address Translation (NAT) Example

Network A Network B

Router
with
NAT

Ethernet

IPv4
S:10.0.0.2

D:10.0.0.110

A -> B
Source

10.0.0.2 -> 10.0.0.102
...

Destination
10.0.0.110 -> 10.0.0.10

...

payload

Ethernet

IPv4
S:10.0.0.102
D:10.0.0.10

payload

Translation Table
B -> A
Source

10.0.0.10 -> 10.0.0.110
...

Destination
10.0.0.102 -> 10.0.0.2

...

Translation Table

 Forwarding Protocols 85

One of the most widespread uses of network address translation is actually
network address and port translation (NAPT, sometimes known as NATP). This
variant of NAT is used in most residential Internet routers. It enables multiple
IPv4 endpoints in a private network to access the global Internet while consuming
just a single public IPv4 address. In other words, as far as all of the endpoints on
the Internet are concerned, the router that connects the private network to the
public Internet presents just a single IPv4 address. It is fairly simple to see how,
for example, the private sourceAddress values 10.0.0.1, 10.0.0.2 and 10.0.0.3
could all be translated to, say, 145.34.200.153 when forwarding packets from the
private network to the public Internet. But, when a response from an endpoint on
the public Internet comes back that’s addressed to 145.34.200.153, how does the
NAPT function in the router determine to which endpoint on the private network
to forward the packet? That’s where the P in NAPT comes in.

Figure 35 Network Address and Port Translation (NAPT) Example

Private
Network

Public
Internet

Router
with

NAPT
(145.34.200.153)

Private -> Public
Source (IP, TCP -> TCP)

10.0.0.1, 200-> 2001
10.0.0.2, 200-> 2002

Ethernet

IPv4
S:145.34.200.153
D:17.178.96.59

TCP
S:2002
D:80

payload

Ethernet

IPv4
S:10.0.0.2

D:17.178.96.59

TCP
S:200
D:80

payload

Ethernet

IPv4
S:145.34.200.153
D:17.178.96.59

TCP
S:2001
D:80

payload

Ethernet

IPv4
S:10.0.0.1

D:17.178.96.59

TCP
S:200
D:80

payload

Translation Table

Endpoint 1:

Endpoint 2:

Public -> Private
Destination (TCP -> IP, TCP)

2001 -> 10.0.0.1, 200
2002 -> 10.0.0.2, 200

Translation Table

 86 Hardware-Defined Networking

Packets sent from the private network to the public Internet are pretty much
universally TCP or UDP packets. Meaning, the payload of the IPv4 packets have
16-bit port numbers that are used to address specific functions or applications
within an endpoint (e.g., to distinguish between a web server or email server that
may be running on the same endpoint and, consequently, sharing an IPv4 ad-
dress). When an endpoint on the private network originates such a packet, it also
populates the Tcp.sourcePort (or Udp.sourcePort) field, typically with the same
value that it placed in the Tcp.destinationPort (or Udp.destinationPort) field,
though such symmetry is not required. The NAPT function in the router that maps
a private endpoint’s sourceAddress from 10.0.0.1 to 145.34.200.153, also maps
sourcePort from 200 to, say, 2001. Meanwhile the same kind of packet coming
from a different endpoint in the private network has its Ipv4.sourceAddress trans-
lated from 10.0.0.2 to 145.34.200.153 (the same as the other endpoint) but has
its sourcePort translated from 80 to 2002, for example. When the IPv4 endpoint
on the public Internet replies to these packets, it uses the received sourcePort
values as destinationPort values. This provides a means for the NAPT function
in the private network’s Internet-facing router to unambiguously map the shared
145.34.200.153 destinationAddress value to either 10.0.0.1 (based on a desti-
nationPort value of 2001) or 10.0.0.2 (based on a destinationPort value of 2002)
and to map the destinationPort numbers to their original sourcePort values
(200 and 80). Sharing IPv4 addresses in this manner has contributed significantly
toward delaying the utter exhaustion of IPv4 addresses.

One particular characteristic of NAPT has made it a rather popular but poor se-
curity tool: an endpoint on the public Internet cannot initiate a conversation with
an endpoint on a private network that’s behind a router using NAPT. An external
endpoint has no idea what combination of IP destination address and TCP or UDP
destination port is going to match a mapping maintained by the NAPT router.
These external endpoints must wait for the endpoints on the private network to
contact them. When this happens, the external endpoint knows the right values to
use when formulating a reply and the NAPT router has also had a chance to estab-
lish an appropriate mapping table entry. By hiding an endpoint’s IP address behind
NAPT, these private networks could operate with a presumption of relative safety
since the private network was essentially unreachable from the outside world.
Predictably, this crude form of security-by-obscurity was easily overcome.

There are, unfortunately, a number of protocols that are broken by network
address translation. For example, it is oftentimes desirable for an endpoint to be
able to react to a conversation that is initiated by an endpoint somewhere on the
public Internet—an incoming voice over IP call, for example. The use of NAT
generally means that some kind of agreed-upon intermediary system is required
to put such a conversation together. Also, it turns out that a number of protocols
put the IP address of the initiating endpoint in the message body with the intent
that a response to the message be addressed to the IP address contained in the
message body. A NAT or NAPT function must interpret such a message and
perform the translation within the message body as well. The file transfer protocol

 Forwarding Protocols 87

(FTP) represents a particularly tricky case. It encodes the IP address and TCP port
number in ASCII in the message body. Not only do bytes in the message body have
to be updated by NAT, the message length may also have to change since the ASCII
representation of an IPv4 address (i.e., dotted-decimal) uses one byte to encode the
value of, say, 5 and three bytes to encode the value of, say, 210. These are solvable
problems—and RFCs exist that propose solutions—but they’re complex and a bit
fragile.

The Nuts and Bolts of Network Address Translation

Network Address Translation requires that a router (an IPv4 router, specifically)
maintain a mapping table that is used to map IPv4 addresses (or IPv4 address and
TCP/UDP port numbers) from one numbering space to another. Most often, one-to-
one mapping is called for. However, many-to-one mapping is also sometimes used.

For one-to-one NAT, a destinationAddress value is used as a search argument into
the mapping table and a destinationAddress is returned as the lookup result; the
returned value is then substituted into the IPv4 header. The same is repeated for
sourceAddress.

For one-to-one NAPT, an Ipv4.sourceAddress/Tcp.sourcePort pair is used as a
search argument and a Tcp.sourcePort number value is returned as the lookup
result, the returned Tcp.sourcePort number is substituted into the packet and an
Ipv4.sourceAddress that belongs to the NAPT router is substituted into the packet’s
sourceAddress field. In the reverse direction, the packet’s destinationPort number
is used as a search argument and an Ipv4.destinationAddress/Tcp.destination-
Port pair is returned for substitution into the packet.

Of course, any changes to fields in the IPv4 header require an update to its header-
Checksum field.

There is a lot more to network address translation than can be captured in just a few
paragraphs. Network address translation was initially described in IETF RFC 1631
(obsoleted by RFC 3022) and is further described by RFCs 2662 and 4787.

Virtual Router Redundancy Protocol (VRRP)
A lot has been written in the preceding pages about how to get a packet to its next
hop, and the algorithms for identifying the best next hop are explored in Chapter
19 on page 321. But, what about getting a packet to its first hop? Endpoints such
as notebook computers are excluded from the routing protocols that map out a
network and identify the most efficient paths through that network. Endpoints rely,
instead, on being assigned the IP address of a so-called default router. This router
then becomes the first hop for all packets transmitted by the endpoint.

This, of course, introduces a rather obvious single point of failure; if that router
fails, then that endpoint is cut off from the network even if other routers are reach-
able on the same Ethernet network (i.e., accessible through Ethernet bridging). The

 88 Hardware-Defined Networking

Virtual Router Redundancy Protocol (version 3 is described by IETF RFC 5798) is
intended to solve exactly this problem.

Conceptually, it’s quite simple. Two or more routers cooperate by exchanging
information such as which one is the master, the addresses of the routers, and their
health. Endpoints that need access to the Internet are configured to use reserved
Ethernet MAC addresses to reach their first-hop router (i.e., their default router).
Any particular physical router instance may be configured to respond to a number
of addresses within this range. If a physical router should fail, this event is detected
by the other routers in the group and the surviving routers are immediately
configured to respond to the Ethernet MAC addresses previously associated with
the just-failed router. Thus, the hapless endpoint continues to use the same MAC
address and is none the wiser that its first-hop routing is being performed by a
different physical router.

The reserved MAC address range is 00-00-5e-00-01-xx (for IPv4) and 00-00-5e-
00-02-xx (for IPv6). The xx portion of the reserved MAC address indicates that up
to 255 virtual router may be configured on the same Ethernet network (only the
values 1–255 are permitted to substitute for xx).

VRRP applies to both IPv4 and IPv6. It is described in the IPv4 section simply as a
matter of convenience.

IPv6

When it became clear that IPv4’s 32-bit address fields were insufficient to handle
the long-term growth of the Internet, the IETF set about designing its replacement.
In addition to widening the address fields, the IETF also took the opportunity
to clean up and simplify the IP header. The result of this effort is IPv6. Its header
structure is shown in Figure 36.

Figure 36 IPv6 Header Structure Diagram

0

4

8

12

16

20

24

28

32

36

0 1 2
version trafficClass ecn flowLabel

ttlnextHeaderpayloadLength

sourceAddress[0:31]

sourceAddress[32:63]

sourceAddress[64:95]

sourceAddress[96:127]

destinationAddress[0:31]

destinationAddress[32:63]

destinationAddress[64:95]

destinationAddress[96:127]

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Forwarding Protocols 89

Table 13 IPv6 Header Field Definitions

Field Name (std.
name)

Width Offset
(B.b)

Definition

version
(Version)

4 bits 0.0 The protocol’s version.

This field must be set to 6 for IPv6.

trafficClass
(Traffic Class, upper 6
bits)

6 bits 0.4 The packet’s traffic class value.

Essentially, this is a priority-like value that is used to indicate how
the packet must be handled in the face of congestion. See RFC
2474 for details.

ecn
(Traffic Class, lower 2
bits)

2 bits 0.10 Explicit congestion notification.

This field is used to convey congestion information to the sources
of packet traffic. This value is enumerated as follows:

0 = notEcnCapableTransport
1 = ecnCapableTransport0
2 = ecnCapableTransport1
3 = congestionExperienced
See IETF RFC 3168 for details.

flowLabel
(Flow Label)

20 bits 0.12 A flow-identifying value.

A non-zero value in this field indicates that the packet has been
marked with a flow ID value. It is expected that all packets
belonging to the same flow—as identified by the 3-tuple:
sourceAddress, destinationAddress, flowLabel—all
receive the same treatment.

payloadLength
(Payload Length)

16 bits 4.0 The number of bytes in the payload.

This value indicates the length of the IPv6 packet’s payload, which
is exclusive of the 40 bytes that make up the IPv6 header. Any IPv6
extension headers that may exist between the IPv6 header and its
payload are included.

nextHeader
(Next Header)

8 bits 4.16 The type of the next header or payload.

This protocol-identifying field does not necessarily identify the
type of a transport-layer protocol such as TCP or UDP. It could
just as well identify that the next header is an IPv6 extension
header.

ttl
(Hop Limit, TTL, etc.)

8 bits 4.24 The number of hops that the packet is allowed to make.

Referred to in the standard (IETF RFC 2460) as a hop limit value,
it serves exactly the same purpose and has the same semantics as
Ipv4.ttl.

sourceAddress
(Source Address, SIP,
etc.)

128 bits 8.0 The address of the originator of the packet.

destinationAddress
(Destination Address,
DIP, etc.)

128 bits 24.0 The address of the packet’s destination.

 90 Hardware-Defined Networking

When comparing the structure of the IPv6 header relative to the IPv4 header, it is
abundantly clear that, though larger, the IPv6 header has considerably fewer fields
(14 for IPv4 vs. 9 for IPv6). One of the IPv4 fields that’s missing from IPv6 is a field
that indicates the length of the IPv6 header. This is because the IPv6 header is fixed
in length at 40 bytes. Where IPv4 has options that are added to and become part
of the IPv4 header, IPv6 has extension headers that are concatenated to the IPv6
header as standalone headers in their own right. You’ll also notice that all of the
fragmentation-related fields from IPv4 are gone. Indeed, IPv6 routers don’t per-
form fragmentation. IPv6 endpoints (originators and destinations of IPv6 packets)
are entirely responsible for fragmenting packets prior to their initial transmission
and for the reassembly of the fragments after their final reception. Fragmentation
information in IPv6 is conveyed by an extension header.

Ethernet Encapsulation
IPv6 packets are commonly the payload of Ethernet packets. When this is done,
the final ethertype of the Ethernet packet is set to 0x86dd to indicate that the next
header is IPv6. Two separate ethertype values are used for IPv4 and IPv6 even
though they have different version values. This is so because a lot of early IPv4
routers failed to check Ipv4.version to ensure that it was set to 4. Please, every-
one, fasten your seatbelts and check your version numbers.

Addressing
Wanting to never run out of IP addresses again, the IETF gave IPv6 128-bit ad-
dresses. That’s not only large enough to give every person on the planet hundreds
of IP addresses, it’s enough to give every atom of every person its own IP address. I
think we’ll be fine for a while.

Address Depiction

IPv6 addresses are typically depicted as a series of eight 16-bit hexadecimal num-
bers separated by colons. Leading zeros may be omitted from each number. Since
it is common for IPv6 addresses to have long strings of zeros, it is also permitted
to represent an arbitrary number of all-zero, 16-bit words by simply representing
them as two consecutive colons. The number of zeros represented by the two con-
secutive colons is simply the number of zeros required to form a 128-bit address
value. Two consecutive colons may only appear once in an IPv6 address value.
Here are some examples of IPv6 addresses:

fedc:ba98:7654:3210:1111:2222:3333:4444
4002:0:0:0:8:80:33de:7ef2
200d::238a
::1
::

 Forwarding Protocols 91

Address Prefixes

Like IPv4, IPv6 relies upon prefixes and longest-prefix matching lookups for
packet forwarding. Prefixes are depicted by appending /n to the end of an IPv6
address value where n represents the size of the prefix in bits:

7002:ef84::/32

Address Types

There are a few IPv6 address types that are of note. An address’s type is indicated
by its most significant bits.

Table 14 IPv6 Address Types (Partial)

Prefix Bits Meaning

001 Aggregatable global unicast

1111_1110_10 Link-local unicast

1111_1110_11 Site-local unicast

1111_1111 Multicast

As shown in Table 14, the term “aggregatable” means that a multitude of different
routes may be represented by a prefix value that is common among those routes
that share a common next hop destination. In other words, if the first, say, 20 bits
of route-identifying bits for several forwarding database entries are the same, and
those entries indicate that matching packets must be forwarded in the same man-
ner to the same transmit interface, then those forwarding database entries may be
collapsed to a single entry with a mask width of /20, even though bits beyond the
20th bit of those forwarding database entries differ from one another. This is, of
course, normal IP longest-prefix matching behavior.

Subnets vs. Interface IDs

The IPv6 addressing architecture standard stipulates that unicast addresses must
have a 64-bit interface identifier. The interface identifier occupies the least sig-
nificant 64 bits of the 128-bit IPv6 address value. The remaining bits of a unicast
IPv6 address—i.e., the most significant 64 bits—serve as a subnet prefix. It is the
subnet prefix that an IPv6 router is supposed to use to actually forward an IPv6
packet onto the appropriate network segment. The subnet prefix value is subject
to longest-prefix match lookups and forwarding. All of this means that an IPv6
router only needs to perform a longest-prefix match on the most significant 64 bits
of destinationAddress and may safely ignore the least significant 64 bits.

Unfortunately, in practice, longest-prefix matches on the full 128 bits of an
IPv6 destination address are often required. It is required for practical purposes
because there may be IPv6 endpoints directly attached to their own dedicated
interfaces of an IPv6 router. The configuration protocols may not assign each

 92 Hardware-Defined Networking

of these directly-attached endpoints their own subnets, meaning that the most
significant 64 bits of the IPv6 addresses of more than one of these directly-attached
endpoints may hold the same value, making it impossible for the router to forward
the packets to the correct interface without considering the entire 128 bits of the
packets’ destinationAddress value. This could, of course be accomplished by a
128-bit exact-match lookup, which is typically far less expensive to perform than
a longest-prefix match lookup. Of course, if the 128-bit exact-match lookup failed
to find a match, a longest-prefix match lookup is required to resolve the packet’s
destination, and the time and resources required to perform both lookups must be
budgeted into the hardware design. Further complicating what should be a nice
clean picture is that some influential operators of networks (and, hence, purchas-
ers of equipment) insist on moving that dividing line between subnet address and
interface ID to the right, increasing the required width of the longest-prefix match
lookups. It is often best to just support full-width, 128-bit longest-prefix match
lookups despite their higher cost.

Special-Purpose Addresses

IETF RFC 6890 defines a number of IPv6 addresses that serve special purposes.
Some of the more interesting special-purpose addresses are described in Table 15.

Table 15 Special-Purpose IPv6 Addresses

Value Description Reference

::1/128 Loopback RFC 4291

::/128 Unspecified address RFC 4291

64:ff9b::/96 IPv4-IPv6 Translation RFC 6052

::ffff:0:0/96 IPv4-mapped address RFC 4291

Extensions
IPv6 extension headers are used to handle a variety of exceptional cases in IP rout-
ing. These include fragmentation, hop-by-hop options, authentication, mobility
and more. Virtually all of the extension headers follow a common format so that,
even if a particular extension header type is not supported by an IPv6 router, that
router can parse past that unknown extension header and continue working on
the packet. Figure 37 shows the shared format of IPv6 extensions.

Figure 37 IPv6 Extension Header Structure Diagram

0

4

8

...

0 1 2 3
nextHeader length

<extension-specific data>

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Forwarding Protocols 93

Table 16 IPv6 Extension Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

nextHeader
(Option Type)

8 bits 0.0 The protocol (or “type”) of the next header.

The next header may either be another IPv6 extension
header or it may be an upper-layer header such as TCP.

length
(Opt Data Len)

8 bits 0.8 The length of the current extension header.

The length is expressed in units of 64-bit (8-byte) words,
not counting the first 64-bit word. This means that an
8-byte extension header has a length value of 0 while a
24-byte extension header has a length value of 2.

<extension-specific data>
(Option Data)

multiple
of 64
bits
minus
16 bits

0.16 Extension-specific data.

There is an exception to the common extension header structure described above:
the fragment header. The fragment header predates IETF RFC 6564 where the
common format was codified.

Figure 38 IPv6 Fragment Extension Header Structure Diagram

0

4

0 1 2 3
nextHeader

id

fragmentOffset
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 17 IPv6 Fragment Extension Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

nextHeader 8 bits 0.0 The protocol (or “type”) of the next header.

The next header may either be another IPv6 extension
header or it may be an upper-layer header such as TCP.

fragmentOffset 13 bits 0.16 Fragment offset value in 8-byte units.

This field is analogous to IPv4’s fragmentOffset.

moreFragments 1 bit 0.31 Indicates that the current packet is not the last fragment.

This field is analogous to IPv4’s moreFragments.

id 32 bits 4.0 The fragmented packet’s ID. All fragments of an original,
unfragmented packet must have the same id value. Though
wider, this field is analogous to Ipv4.id.

 94 Hardware-Defined Networking

The only IPv6 extension header that an IPv6 router is expected to deal with is the
Hop-by-Hop extension header, but support for the Hop-by-Hop extension header
is optional and is not supported by most high-performance routers. This means
that an IPv6 router must only walk the string of nextHeader and length fields until
it reaches a non-IPv6 header such as TCP.

Time-to-Live
In IPv6, the time-to-live value is called a hop-limit value. This name is certainly
much closer to the actual implementations in modern routers than IPv4’s time-
based value. Note also that it is a hop limit and not a hop count value, reinforcing
the notion that the value starts out at some non-zero positive integer and is
decremented by each forwarding hop until reaching zero. In this book, IPv6’s
hop-limit field is referred to as ttl simply for consistency and familiarity with the
long-standing use in IPv4 and MPLS.

Next Header
IPv6’s next-header value is analogous to IPv4’s nextHeader value. Its purpose is to
identify the type of the header that immediately follows the 40-byte IPv6 header.

Internet Control Message Protocol v6
The Internet Control Message Protocol version 6 (ICMPv6, IETF RFC 4443) is
used to send information messages or to report errors from the point where the
error occurred back to the source of the packet triggering the error. Informational
messages include multicast listener queries and echo requests and replies. Ex-
amples of ICMPv6 error messages include time-to-live expired and packet too big.

ICMPv6 messages are encapsulated in IPv6 packets and use the nextHeader field
value 0x3a. Figure 39 depicts the structure of an ICMPv6 message header.

Figure 39 ICMPv6 Message Header Structure Diagram

0

4

0 1 2 3
messageType code messageChecksum

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Forwarding Protocols 95

Table 18 ICMPv6 Message Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

messageType
(Type)

8 bits 0.0 The message’s type.

The messageType and code values are combined to
determine the specific type of the message. messageType
values 0-127 are error messages while values 128-255 are
informational messages.

code
(Code)

8 bits 0.8 The code for a particular message type.

This value demultiplexes the messageType value to arrive
at a specific message type.

messageChecksum
(Checksum)

16 bits 0.16 A checksum computed over the entire message.

This checksum is the same type of ones-complement
checksum as headerChecksum. For messageChecksum,
however, it is computed over all of the fields described in this
table as well as certain fields from the encapsulating IPv6
header (known as a pseudo-header) and all of the 16-bit
words that make up the data portion of the ICMP message
that follows the ICMP message header.

reserved 32 bits 4.0 Unused.

These bits must be set to zero by the originator and ignored
by the receiver.

There is a data section that follows every ICMPv6 message header. The data
section is the IPv6 header from the packet that spawned the ICMPv6 message
followed by as much of the original IPv6 packet’s payload as possible without
exceeding MTU limits.

Virtual Router Redundancy Protocol (VRRP)
See page 87.

 96 Hardware-Defined Networking

Multi-Protocol Label Switching (MPLS)

Why MPLS?

That isn’t a facetious or rhetorical question. MPLS was developed long after IPv4
had proven itself to be very effective for building large, globe-spanning networks
and IPv6 was under development as a refinement of the same fundamental con-
cepts. So, what problem did MPLS promise to solve?

MPLS was developed in the mid 1990s during the ascent of the Internet. At
that time, there was a general consensus that 32-bit IPv4 longest-prefix match
lookups were too complex to be practical in silicon and must be performed in
software. This condemned IPv4 routers to being slow, expensive systems while
Ethernet bridges—which employed relatively simple exact-match lookups for
their forwarding operations—were seeing significant performance benefits from
implementing the forwarding algorithms in silicon.

A few simple observations about network characteristics led to MPLS. First, if a
packet is being forwarded by a series of IPv4 routers in the core of a network, each
router is performing an independent lookup on exactly the same destinationAd-
dress value and arriving at a functionally equivalent result. Second, packet and bit
rates tend to be higher in the core of a network where there is a high degree of con-
vergence of packet flows. Finally, to restate the preceding paragraph, exact-match
lookups (or indexed reads) are significantly simpler than longest-prefix lookups.

All this leads to a simple conclusion: perform the complex lookup just once at the
edge of the network, represent that lookup result with a proxy value (a “label”),
and have the routers in the core of the network forward the packet using a simple
lookup on the label value. Specifically, a 20-bit, locally-scoped label value is used
as a component of an exact-match search argument or as a direct index into a
table to fetch the forwarding instructions to the packet’s next hop.

Figure 40 and Table 19 define the format and field definitions of an MPLS header.

Figure 40 MPLS Header Structure Diagram

0
0 1 2 3 4 5 6 7 8 9 10

label priority ttl
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Forwarding Protocols 97

Table 19 MPLS Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

label
(Label)

20 bits 0.0 MPLS forwarding information.

It is generally locally scoped and it is without structure.
There are a small number of reserved values.

priority
(was EXP, now CoS)

3 bits 0.20 QoS priority.

This priority code point is mapped to internal traffic
class values in application-specific ways.

bottomOfStack
(S)

1 bit 0.23 Identifies the last header in a “stack.”

When set to 1, this bit marks the last header in a stack
of MPLS headers. Typically, the next byte after an
MPLS header whose bottomOfStack bit is set is the
first byte of the MPLS payload. There are, of course,
exceptions.

ttl
(TTL)

8 bits 0.24 The packet’s hop limit.

As you can see, the structure of an MPLS header is quite simple. Unfortunately,
it may be a bit too simple for it is missing something that Ethernet, IPv4, and
IPv6 have: some kind of “what to expect next” field. MPLS has no functional
equivalent to Ethernet’s ethertype field or IP’s nextHeader. The type of the MPLS
payload must be inferred from information that may only be meaningful at one
hop in the network. This and other quirks of MPLS are explored as we tour the
contents of its header structure.

Labels
The twenty-bit label width was chosen as a compromise. It is narrow enough
to use directly as a memory address value or as a space-efficient component of
an exact-match search argument, but wide enough to provide reasonable scale
for a single router node. Unfortunately for MPLS, a significant development in
networking condemned this major selling point of MPLS to irrelevance; Juniper
Networks proved with the M40 router that it was, indeed, possible to perform
high-speed longest-prefix matches in hardware.

So, why has MPLS persisted and flourished in the face of its major benefit being
nullified? The answer is that it appeals to those who want absolute control over
the forwarding decisions made for every packet rather than relinquishing that
control to routing protocols and hash functions. This is known as traffic engineer-
ing and it is very effective at allowing software-defined networking (i.e., SDN)
controllers to manage the flow of data through an network. One particular MPLS

 98 Hardware-Defined Networking

model that lends itself particularly well to management by an SDN controller is
what’s known as “segment routing.” This is, essentially, a modernized version of
source routing that was attempted and abandoned in the 1980s. The concept is
simple: a packet carries with it all of the hop-by-hop forwarding decisions that
each router in turn must carry out. In the case of MPLS segment routing, a stack
of MPLS headers are used and each MPLS label switch router in the core of the
network examines the outermost MPLS header, pops that header and forwards
the packet based on that header. The next router uses the next MPLS header. Label
switch routers and other details of MPLS forwarding behavior are described next.

MPLS Core Behavior

The narrowness of Mpls.label makes it pretty much useless as a global address
value or even an end-to-end value in a large, closed network. Hence, in most
MPLS networks, label’s value is only relevant to the single MPLS router in the
network that examines it. The same numerical value may have a very different
meaning to a different router.

The typical forwarding model of MPLS is label swapping—i.e., the result of a label
lookup is a new label value as well as a transmit interface identifier. As an MPLS
packet traverses the network, its label value is swapped for a new value at every
hop; that swapped-in value only being relevant to the very next hop in the MPLS
network. The path that an MPLS packet follows is known as a label switch path
(LSP) and the routers that do this forwarding are known as label switch routers
(LSRs) or transit routers.

Figure 41 MPLS Labels and Paths

Router A label = 537 label = 833 label = 103Router B Router DRouter C

Unlike Ethernet and IPv4/IPv6, which have both source and destination address
values in their headers, MPLS has just a single label value. The label value is not
associated with either a source or a destination but, rather, with the network seg-
ment between a source and a destination. Referring to Figure 41, when Router A
sends a packet to Router B, it does so by giving an MPLS header a label value of
537. Router B, in turn, examines that 537 value in its own forwarding database and
determines that a label value of 833 is required to identify the path between it and
Router C. The process continues thusly to Router D and beyond.

As you learned in Chapter 4, what’s happening here is that each segment in the
MPLS network is a tunnel that originates at one router is then terminated at the

 Forwarding Protocols 99

very next router (i.e., the next hop). This all occurs at the same level of hierarchy.
In other words, the depth of the tunnel encapsulations does not change with each
hop. This behavior of exiting and entering tunnels at a single forwarding point
is known as “label swapping” and is a fundamental behavior of MPLS. For an
example of how label swapping and label-based forwarding enable traffic engi-
neering, consider Figure 42.

Figure 42 IP Routing on Converging/Diverging Networks

IP

Ethernet

payload

IP

Ethernet

payload

IP

Ethernet

payload

IP

Ethernet

payload

IP

Ethernet

payload

IP

Ethernet

payload

?

Router A

Router C Router F

Router D

Router ERouter B

As shown in Figure 42, two IP packets are addressed to the same destination
across a network that, at one point, converges on a common router (Router C)
before diverging again. When the packets arrive at Router C via Router A and
Router B, they both have identical IP destination addresses. If the desired behavior
is for the upper packet to be forwarded to Router D and the lower to Router E,
how is Router C supposed to make that determination?

Figure 43 shows the same network architecture but with the IP packets encapsu-
lated inside MPLS packets.

 100 Hardware-Defined Networking

Figure 43 MPLS Routing on Converging/Diverging Networks

IP

MPLS

Ethernet

payload

IP

Ethernet

MPLS

payload

IP

MPLS

Ethernet

payload

IP

Ethernet

MPLS

payload

IP

MPLS

Ethernet

payload

IP

Ethernet

MPLS

payload

Router A

Router C Router F

Router D

Router ERouter B

With the IP packets encapsulated inside MPLS packets, they arrive at Router C
with different label values even though, ultimately, they are addressed to the
same final destination. Their label values are different because the packets are
following different label switch paths (LSPs). Because the label values differ for the
packets that arrive at Router C via Router A versus those that arrive via Router B,
Router C is able to easily distinguish between the two paths and forward the upper
packet to Router D and the lower packet to Router E.

Tunnel encapsulations of arbitrary depth are permitted in MPLS. Just as in the
other forwarding protocols, MPLS packets are allowed to enter other MPLS
tunnels. When an MPLS packet enters a new MPLS tunnel, a new MPLS header
is prepended to the packet and it becomes the new top-of-stack header. This is
known as pushing5 a label onto the stack. However, when entering a new MPLS
tunnel from an existing MPLS tunnel without terminating the existing tunnel (i.e.,
the existing tunnel enters the new tunnel as the new tunnel’s payload), it is unusual
to simply push a new MPLS header onto the stack that represents the tunnel being
entered. More commonly, a swap on the existing MPLS tunnel is performed prior
to pushing a new MPLS header onto the stack. The reason for this is that tunnel

5 The terms “push” and “pop” come from the stack concept in computer science. Indeed, a con-
secutive set of MPLS headers terminated by an MPLS header whose bottomOfStack bit is set to 1
is known as a “label stack.” But really, trust me, they’re headers.

 Forwarding Protocols 101

that is being entered can be thought of as a single hop or segment as far as its pay-
load is concerned. Therefore, the MPLS router at the exit of the tunnel that must
pop the MPLS header that corresponds to the terminating outermost tunnel must
also examine the next MPLS header in the stack and make a forwarding decision
based on its label value. If that label value isn’t swapped at the tunnel entrance,
then it becomes necessary for two MPLS routers to correctly interpret the same
label value: the router that preceded the new tunnel’s entrance and the router at
the new tunnel’s exit. By swapping before pushing, the router at the tunnel’s exit is
provided with a label value that is relevant to it.

Figure 44 MPLS Tunnels Visualized

Router C

71 12

Router D

103

Router E

152103 152

Router B

37

Router F

188 18871

Router A Router G

5512 5537

When an MPLS packet exits a tunnel that is terminated, the outermost MPLS
header is stripped from the packet. This is known as popping a label from the
stack. MPLS headers are “pushed” onto a packet to enter a tunnel. Exiting and
entering consecutive MPLS tunnels at a single hop uses a technique known as
“label swapping.”

Though the term “label” is often used when describing MPLS header manipula-
tions, it really is whole MPLS headers that are being manipulated. By building a
stack of MPLS headers, a hierarchical network structure can be built.

MPLS Edge Behavior

The MPLS routers that sit at the edges of an MPLS network—i.e., the routers that
form the boundary between an IP-based edge network and an MPLS-based core
network—are known as label edge routers (LERs). Label edge routers perform
fundamental tunneling operations just like any other tunneling scheme:

1. An Ethernet + IP packet is received, the Ethernet tunnel is terminated and the
Ethernet header is stripped.

2. Destination processing reveals that the IP packet is addressed to a destination
on the far side of an MPLS tunnel (i.e., a label switch path, or LSP).

3. The IP packet is encapsulated in one or more MPLS headers that tell the next-
hop MPLS transit router how to forward the packet.

4. The MPLS + IP packet is encapsulated in an Ethernet packet and transmitted
via an interface that delivers the packet to its next hop.

 102 Hardware-Defined Networking

At the egress edge of the MPLS network, the label-edge router terminates the
last MPLS tunnel and strips off the last MPLS header (i.e., the MPLS header
whose bottomOfStack bit is set). The egress label-edge router then processes the
encapsulated packet (IPv4 or IPv6 in this example) and forwards it as directed by
its header. However, this egress edge behavior demands that a router perform two
lookups on a single packet: one to terminate the MPLS tunnel and one to forward
the encapsulated IPv4 or IPv6 packet (or some other kind of packet). Penultimate
hop popping was developed to relieve the egress edge router of this burden (de-
scribed further below).

Not all MPLS headers imply forwarding behaviors. Non-forwarding MPLS head-
ers are commonly used to indicate the type of an MPLS tunnel. For example, a
single label switch path may need to convey Ethernet, IPv4 and IPv6 packets. To
overcome MPLS’s lack of a next-header indicator value, a label value may be used
to perform the same function. In this scenario, a next-header-identifying label is
first pushed onto the MPLS stack and is marked as being the bottom-of-stack.
Next, an MPLS header whose label value corresponds to the first hop of the label
switch path is pushed onto the MPLS stack. As the packet is forwarded, the MPLS
header at the top of the stack is interpreted and swapped as necessary while the
bottom-of-stack header is left alone. At the egress edge of the MPLS network, the
top-of-stack MPLS header is examined and its label value directs the router to
pop that header from the stack and to treat the next MPLS header’s label value
as a next-header indicator. Finally, the bottom-of-stack header is popped and the
newly-exposed payload header (whose type has been reliably determined by the
bottom-of-stack MPLS header) is processed for forwarding.

Penultimate Hop Popping (PHP)

Ordinarily, an MPLS label switch path operates by swapping MPLS labels at each
hop, with the last (i.e., ultimate) MPLS hop—the egress label edge router—pop-
ping the MPLS header from the packet, revealing a bare IP packet or some other
type of packet. That MPLS egress edge router must then route the newly-exposed
packet.

With penultimate hop popping, the MPLS transit router that immediately precedes
the MPLS egress label edge router is configured to both forward the packet based
on the MPLS header’s label value (as is normal) and also popping that header from
the packet prior to transmission instead of swapping in a new label value. If an
MPLS control word is present, it is also stripped from the packet. These actions
deliver a bare IP packet to the MPLS egress label edge router, which, in turn, for-
wards the packet according to its IP header. In this way, both the penultimate and
ultimate MPLS hop each performs just one lookup operation.

 Forwarding Protocols 103

Figure 45 MPLS Penultimate Hop Popping Illustrated

MPLS IP

MPLS
Transit
Router

Ethernet

MPLS

IP

payload

Ethernet

IP

payload

Ethernet

IP

payload

MPLS
Edge

Router

In Figure 45, an IP packet encapsulated inside of MPLS and Ethernet arrives at
an MPLS transit router (i.e., the penultimate hop). The label value in the MPLS
header directs the MPLS transit router to forward the packet to the MPLS edge
router and to also strip the MPLS header from the packet. This is the penultimate
hop popping behavior. The MPLS edge router (i.e., the ultimate hop) forwards the
IP packet in the normal manner into the IP portion of the overall network.

As is usual with MPLS, penultimate hop popping behavior is not initiated due to
some op-code or bit that is set in an MPLS header. Instead, a seemingly normal
label value is submitted to a lookup in the router’s forwarding database and
an implicit null label value is returned as a result. An implicit null label informs
the router to pop the current top of the MPLS header stack and to not push on a
replacement header. The use of an actual implicit null label value in the forwarding
database is not strictly required. Any appropriate and system-specific value may
be returned as a lookup result as long as the processing hardware knows to imple-
ment the correct behaviors in response.

Bottom-of-stack processing is a deep and complex issue with MPLS. Hence, it
merits its own section, further below.

Reserved Label Values

MPLS label values in the range of 0x0_0000 through 0x0_000f are reserved for
special purposes.

Table 20 MPLS Reserved Labels

Value Description Reference

0 IPv4 explicit null label RFC 3032

1 router alert label RFC 3032

2 IPv6 explicit null label RFC 3032

3 implicit null label RFC 3032

 104 Hardware-Defined Networking

Value Description Reference

4–6 reserved

7 entropy label indicator (ELI) RFC 6790

8–12 reserved

13 GAL label RFC 5586

14 OAM alert label RFC 3429

15 extension label RFC 7274

A number of the reserved label values are used to identify the MPLS payload or,
in the case of the entropy label indicator, stand in for the MPLS payload. These
various solutions to determining what follows the bottom-of-stack are explored in
detail below.

Bottom of Stack (and Beyond)
In virtually all material referring to MPLS, the bottomOfStack bit is known as the S
bit for the singularly irritating reason that standards body participants have a pen-
chant for only assigning names to fields that happen to fit in the space available in
a header structure diagram. Hence, one-bit fields often have one-character names.
I think we can all agree that “S” is not very descriptive.

The purpose of the bottomOfStack bit is to mark the end of the MPLS header stack
and the transition to the MPLS payload. As you will see, the bottom-of-stack is
not always the end of MPLS-related header data. And, figuring out what follows
an MPLS header stack is one of the more complex aspects of the protocol.

A variety of techniques for positively identifying the payload of a stack of MPLS
headers have been developed. What follows is a survey of those techniques.

Label Switch Path Inferred Payload

Without the functional equivalent of an ethertype or nextHeader field to unam-
biguously identify the next header, how does an MPLS router figure out what kind
of payload the MPLS header stack is conveying? The initial concept for MPLS was
that each LSP (label switch path) would carry just one kind of payload. This works
well enough for MPLS egress label edge routers that are intended to terminate the
final MPLS tunnel and then forward the packet that was the payload of the MPLS
tunnel. Such routers simply encode a protocol-type value into the MPLS label
lookup result. Thus, the label switch path is effectively used to infer the payload
type: one payload type per LSP.

Unfortunately, LSP-inferred payload determination leaves intermediate MPLS
label switch path routers at a loss when the ultimate MPLS payload is buried
within several further layers of MPLS tunnels. An MPLS router in the middle of

 Forwarding Protocols 105

an MPLS network will only have enough information in its forwarding database
to terminate any tunnels addressed to it, and to forward MPLS packets based on
the MPLS header that remains after popping those MPLS headers associated with
terminated tunnels. Problems arise, however, when performing equal-cost, multi-
path (ECMP) load balancing (discussed in Chapter 8). The identities of a series of
terminated tunnels and a single forwarding label value are generally insufficient
flow-identifying information for making egress path selections that achieve good
load balancing across the available links. The inner MPLS headers of an MPLS
header stack (i.e., those MPLS headers that follow the forwarding header) are
easily parsed and their label values should be included in a load balancing hash
computation. However, it is often beneficial to include flow-identifying fields from
headers of the MPLS payload in the hash computation. This, of course, requires
that these headers be parsed in order to extract the relevant fields. Unfortunately,
an MPLS label switch router (LSR) at the core of an MPLS network doesn’t
have forwarding database entries for label values inside of the forwarding MPLS
header, making it incapable of deterministically identifying the type of the MPLS
payload. Entropy labels can go a long way toward supporting ECMP without hav-
ing to parse beyond the bottom of the stack of MPLS headers, but entropy labels
are not universally employed.

Payload Best Guess

The LSP-inferred approach to next-header determination leaves a transit router
with having to make an educated guess regarding the type of the payload. Unfor-
tunately, the multi-protocol aspect of MPLS is quite true; just about every protocol
type can be conveyed by MPLS. IPv4 and IPv6 can be speculatively identified by
examining the first four bits that follow the MPLS header whose bottomOfStack
bit is set to 1. If that 4-bit value is equal to 4, then there’s a good chance that an
IPv4 packet is the payload. A value of 6 implies IPv6. Of course, it’s also possible
for Mac.destinationAddress values to have 4 or 6 in that location. The reliability
of a guess of IPv4 can be vastly improved by confirming that the supposed IPv4
header’s headerChecksum and totalLength values are correct. For IPv6, payload-
Length can be checked. This isn’t foolproof, but it helps a lot. The silver lining
for this situation is that these payload headers are generally being parsed for load
balancing information. If an MPLS router guesses wrong, the consequences are
that non-flow identifying fields may be hashed and packets could arrive out of
order. However, this is far from ideal.

Explicit Null Labels

Null labels are not used in MPLS forwarding decisions. They are used to direct
other router behavior. In the case of the two explicit null label values, they are
used to indicate that the payload of an MPLS header stack is either an IPv4 packet
(label == 0) or an IPv6 packet (label == 2). Explicit null label values are only

 106 Hardware-Defined Networking

allowed at the bottom of the stack (i.e., bottomOfStack must be set to 1). Explicit
null label values were originally intended for use in penultimate hop popping
where the last forwarding label is popped off of the stack and is replaced by an
explicit null label. This was done to preserve the MPLS quality of service paradigm
to the edge of the MPLS network while providing a means for indicating the
MPLS payload type. However, in modern MPLS networks, an explicit null may
be pushed onto the MPLS label stack as the bottom-of-stack by the ingress MPLS
edge router along with any number of additional MPLS headers.

Implicit Null Label

An implicit null label value is never actually assigned to label in an MPLS header.
It is distributed to MPLS routers for use in their forwarding databases to affect
router behavior. If a lookup on a label value returns an implicit null value as its
result, the MPLS router is expected to “pop” the stack (i.e., strip off the outermost
MPLS header) and not push on a replacement (i.e., the label value returned from
a successful lookup operation). In summary, getting an implicit null label value
as a lookup result means “pop” rather than “swap.” This behavior is related to
penultimate hop popping (PHP) as previously described.

Entropy Label

Transit routers may have difficulty reliably parsing any headers beyond the MPLS
headers. This means that valuable flow-identifying information from payload
headers (e.g., IPv4 or IPv6) goes unused, diminishing the quality of the computed
load-balancing hash values. To address this problem, the entropy label was
invented.

Entropy labels are simply MPLS headers whose label value contains flow-identi-
fying entropy (i.e., information). Typically, the label value of an entropy label is
computed by an ingress label-edge router using any label values that follow the
entropy label as well as fields from headers contained in the MPLS payload (e.g.,
sourceAddress, destinationAddress, nextHeader, sourcePort, destinationPort).
However, an entropy label value may also include information that precedes the
entropy label in its hash computation.

When a transit router encounters an MPLS header stack that contains an entropy
label, it may incorporate that label value into its load-balancing hash computa-
tion. It has the option of using just the entropy label, all label values in the stack
including the entropy label, or all of the label values (including the entropy label)
as well as any header fields that it is able to reliably parse from the MPLS payload.

By itself, an entropy label (EL) looks just like any other MPLS label, its label value
is any non-reserved value, its bottomOfStack bit may be set to 1 or 0 and its prior-
ity value may be set to any arbitrary value. There are, though, two things that set
entropy labels apart. First, its ttl value is always 0. This prevents an MPLS router

 Forwarding Protocols 107

from using an entropy label as a forwarding label. And, second, an entropy label
is always preceded by an entropy label indicator (ELI) MPLS header. The entropy
label indicator has a label value of 7 and its bottomOfStack value is always set to 0
(i.e., an entropy label indicator may never be the bottom of the stack since it must
be followed by an entropy label).

Flow Label

Pseudowires defined by RFC 4447 have their own method for introducing entropy
for load balancing purposes. IETF RFC 6391 specifies a method where a new
MPLS header is added to the bottom of the MPLS stack, becoming the new bot-
tom-of-stack (i.e., its bottomOfStack bit is set to 1). This new label value—referred
to as a “flow label”—is analogous to an entropy label and its value is computed
in the same manner. The big difference between a pseudowire flow label and an
entropy label is that a flow label is not preceded by any kind of special entropy
label indicator equivalent. Since there is no reserved label value present in the
MPLS stack indicating that a flow label is present, the transit routers’ forwarding
database must be configured such that the pseudowire-identifying MPLS label
value is associated with the use of a flow label. Another minor difference between
entropy labels and flow labels is that RFC 6391 also recommends setting a flow
label’s ttl value to 1.

Control Word

As was previously described, it is common practice for MPLS routers to examine
the first four bits following the bottom of the MPLS stack to determine the MPLS
payload type. A value of 4 is assumed to be IPv4 and 6 is assumed to be IPv6.
Taking advantage of this somewhat dubious practice, the MPLS control word was
defined by RFC 4385 (and updated by others). An MPLS control word immedi-
ately follows the bottom of an MPLS header stack and its most significant four bits
are always set to 0.

The remainder of the control word in Figure 46 is defined in an application-
specific manner. The pseudowire control word serves as a useful example.

Figure 46 Pseudowire Control Word Structure Diagram

0
0 1 2
0 0 0 0 flags length sequenceNumber

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 108 Hardware-Defined Networking

Table 21 Pseudowire Control Word Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

flags
(Flags)

4 bits 0.4 Used for per-payload signaling.

fragmentInfo
(FRG)

2 bits 0.8 Used when fragmenting a pseudowire payload.

length
(Length)

6 bits 0.10 Indicates the amount of Ethernet padding added to a
packet.

If the payload of the encapsulated Ethernet packet is less
than 64 bytes, its length is defined by length. Otherwise,
length is set to 0 and the length of the payload is inferred
from the overall packet length.

sequenceNumber
(Sequence Number)

16 bits 0.16 Used to re-order packets when equal-cost, multi-path
(ECMP) forwarding is being applied to the pseudowire.

One of the useful purposes of the pseudowire control word is that it lets the MPLS
router know that the MPLS payload is Ethernet. But, there may be many other
types of MPLS payloads besides, Ethernet, IPv4, and IPv6. This is where the
generic associated channel header comes in.

Generic Associated Channel Header (G-ACh)

The generic associated channel header (G-ACh or ACH) is never used to convey
user packets6. For user packets, control word encapsulation is used. The generic
associated channel header is meant to encapsulate a variety of messages that
belong to a protocol that is carried by a pseudowire, label switch path or MPLS
section associated control channel. So, yes, the control word is for user packets
and the generic associated channel header is for control packets. (Don’t get me
started!)

Like a control word, a generic associated channel header immediately follows the
bottom of the MPLS stack. And, also like a control word, it uses an unique con-
stant in its most significant four bits to almost-reliably distinguish it from all other
possible MPLS payloads. That value is 1.

Figure 47 Generic Associated Channel Header Structure Diagram

0
0 1 2
0 0 0 1 version channelType

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

6 Despite this, there are channel-type code points for IPv4 and IPv6.

 Forwarding Protocols 109

Table 22 Generic Associated Channel Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Version)

4 bits 0.4 Indicates the version of G-ACh.

Currently, version is set to 0.

channelType
(Channel Type)

16 bits 0.16 The channel (or payload) type.

This field is roughly analogous to ethertype, but its
enumerations are different. Some of the interesting values
are:

0x0007 = BFD control (RFC 5885)
0x000a = MPLS direct loss measurement (RFC 6374)
0x000b = MPLS inferred loss measurement (RFC 6374)
0x000c = MPLS delay measurement (RFC 6374)
0x000d = MPLS direct loss & delay measurement (RFC
6374)
0x000e = MPLS inferred loss & delay measurement (RFC
6374)
0x0021 = IPv4 (RFC 4385)
0x0027 = pseudowire OAM message (RFC 7769)
0x0057 = IPv6 (RFC 4385)
0x0058 = fault OAM (RFC 6427)
0x8902 = G.8113.1 OAM (RFC 6671)

Generic Associated Channel Label (GAL)

To make the presence of a generic associate channel header explicit and unambigu-
ous, a generic associate channel label is used. This MPLS header has a label value
of 13 and must be the bottom of the MPLS stack (i.e., its bottomOfStack bit is set
to 1). A generic associated channel header always immediately follows a generic
associated channel label. However, the use of a generic associated channel label to
introduce a generic associated channel header is optional.

In Summary

Figure 48 summarizes the various methods for dealing with content beyond the
bottom of the stack.

 110 Hardware-Defined Networking

Figure 48 MPLS Beyond the Bottom of the Stack

Ethernet

MPLS

Control Word

Ethernet

payload

Ethernet

MPLS

MPLSMPLS

Eth, IP, etc.

payload

LSP-inferred,
flow label or

best guess

control word generic associated channel explicit null explicit null

Ethernet

13 (GAL)

G-ACh

IPv4, IPv6, etc.

payload

MPLS

Ethernet

0 (IPv4 null)

IPv4

payload

Ethernet

2 (IPv6 null)

IPv6

payload

MPLS MPLS

entropy label

Ethernet

7 (ELI)

Eth, IP, etc.

payload

entropy label

MPLS

MPLS

Priority
The priority field (formerly known as the “EXP bits,” for “experimental bits”)
is just three bits in length. Compared to Ethernet’s four bits and IP’s six bits, those
in the MPLS camp are, understandably, left feeling somewhat inadequate. Despite
its smaller size, it serves exactly the same function as the priority bits in the other
forwarding protocols; it encodes information on how to handle a packet relative
to other packets with different priority values during times of congestion.

Time to Live
Like the two variants of IP that have been discussed in this book, MPLS also has a
time-to-live value carried in its header. In fact, a very deep stack of MPLS headers
may have many time-to-live values. Despite this apparent complexity, the basic
rules for dealing with ttl are quite simple:

The outgoing ttl value must be one less than the incoming ttl value
(but not less than 0), regardless of the number of MPLS headers that
may have been popped, swapped and pushed in between packet
reception and transmission. If the outgoing ttl value is 0, the packet
must not be transmitted.

What this means in practice is that the ttl value of the outermost (i.e., topmost)
MPLS header must be checked, decremented and set aside in temporary storage.
As labels are popped, swapped and pushed as part of the packet’s normal process-
ing by an MPLS router, that stored ttl value is then written to the packet’s new
outermost MPLS header. The ttl values for any inner headers may be safely ig-
nored (it is presumed that any forwarding labels were pushed onto the packet with
non-zero ttl values and that the payload itself has non-zero time-to-live values).

 Forwarding Protocols 111

Time to Live and Conveying IP in MPLS Tunnels

Transparent Tunnels

When an IP packet is first encapsulated within an MPLS packet, the outermost
MPLS header’s ttl value must be set to the ttl value of the encapsulated IP packet.
It is presumed the IP time-to-live value has been decremented prior to this operation.

Upon exiting the MPLS tunnel, the encapsulated IP packet’s time-to-live value may
be replaced with the outgoing MPLS header’s ttl value (i.e., post-decrement). What
this means is that, in effect, the IP packet’s time-to-live value is decremented for all
of the hops made by the MPLS encapsulation. This makes the payload of the MPLS
tunnel transparent—i.e., the payload is available and subject to actions.

Opaque Tunnels

Certain network architectures may prefer to treat the IP payload of the MPLS tun-
nel as opaque content; the IP payload consequently being immune to inspection or
modification by the tunnel itself. In this case, the IP time-to-live value is preserved
while in the tunnel and is only decremented when the packet is forwarded by the IP
header itself (i.e., at the entrance and exit of the tunnel). It may also be a configu-
rable policy that entering an MPLS tunnel be viewed as entering an IP router whose
receive and transmit interfaces physically separated by a vast distance. In this case, it
is appropriate to decrement the IP packet’s time-to-live value just once: typically just
when entering the MPLS tunnel.

Distinguishing Transparent from Opaque

Only the MPLS edge router at the entrance to an MPLS tunnel is configured to know
whether to treat a particular MPLS tunnel as transparent or opaque. To signal trans-
parent vs. opaque tunnel behavior to the MPLS egress edge router, the tunnel type is
encoded in the Mpls.ttl value.

For a transparent MPLS tunnel, the ttl value of the first MPLS header pushed onto
the IP packet is set equal to the post-decrement value of Ipv4.ttl or Ipv6.ttl. This
initial time-to-live value must be, by convention, less than or equal to 64. For an
opaque MPLS tunnel, the ttl value of the first MPLS header pushed onto the IP
packet is set to an arbitrarily large value (255, typically). In both cases, the Mpls.
ttl value is decremented by one at each hop while the IP ttl value is left alone until
reaching the MPLS egress edge router.

At the MPLS egress edge router, the Mpls.ttl value is compared to the IP ttl value.
If the Mpls.ttl value is less than the IP ttl value, then the tunnel is transparent and
the IP time-to-live value must be set to the decremented Mpls.ttl value. Otherwise,
the tunnel is opaque and the IP time-to-live value is just decremented by one (or left
alone for certain network policies).

Just to make it very clear how this works, in a transparent tunnel the initial MPLS
time-to-live value is set to the post-decremented IP time-to-live value. The MPLS
time-to-live value is then decremented by any subsequent MPLS hops (there will

 112 Hardware-Defined Networking

always be at least one). Hence, the MPLS time-to-live value is guaranteed to be less
than the IP time-to-live value. For an opaque tunnel, its identification is always also
unambiguous as long as the initial difference between the IP time-to-live value and
the MPLS time-to-live value is greater than the number of hops across the MPLS
network. If the number of hops exceeds this limit, the MPLS time-to-live value
will be less than the IP time-to-live value and the supposedly opaque tunnel will be
interpreted to be a transparent tunnel by the egress label edge router.

MPLS Time-to-Live Primitives

In summary, there are a number of operational primitives that may be applied
when MPLS labels are pushed, swapped or popped, regardless of whether the
encapsulated packet is an MPLS packet or an IP packet.

The push time-to-live primitives are:

 � Set ttl of newly pushed MPLS header to time-to-live value of the encapsulated
packet minus one (do not change time-to-live value of the encapsulated
packet).

 � Set ttl of newly pushed MPLS header to a constant (e.g., 255) and decrement
the time-to-live value of the encapsulated packet.

The swap time-to-live primitive is:

 � Decrement ttl.

The pop time-to-live primitives are:

 � Decrement the ttl value from the popped MPLS header and then copy it to the
encapsulated packet’s time-to-live value.

 � Discard the ttl value from the popped MPLS header and decrement the
time-to-live value of the encapsulated packet.

 � Discard the ttl value from the popped MPLS header and leave the time-to-live
value of the encapsulated packet unchanged.

The pop time-to-live conditions that can be used to execute any of the preceding
pop primitives are:

 � Penultimate hop popping is in use.

 � Penultimate hop popping is not in use.

 � ttl of the popped MPLS header is less than the time-to-live value of the
encapsulated packet.

 � the time-to-live value of the encapsulated packet is less than ttl of the popped
MPLS header.

These primitives and conditions may be employed in practically all possible
combinations.

 Forwarding Protocols 113

Cross Connect

In early telephone networks, a call was placed by establishing an electrical con-
nection between a twisted-pair wire coming into the telephone company’s central
office (CO) from one customer to the wire associated with another customer.
Whether that connection was established via old-timey switchboards or with au-
tomated mechanical relays, the effect was the same: all of the information arriving
on a particular physical interface (i.e., twisted-pair wire) was forwarded to a single
outbound interface with a minimum of delay and without examining the informa-
tion flowing through the connection. Typically, a reciprocal connection was also
established. Cross-connect networking operates in a similar manner.

If you recall, we’ve previously established that all packets arriving at a forward-
ing system are encapsulated by an imaginary header that represents the packet’s
receive interface. Hence, it is completely reasonable and practical to define a for-
warding entity that only knows how to interpret the imaginary physical interface
header. All this cross-connect forwarding entity has to do is map receive interfaces
to transmit interfaces. Thus, all packets arriving on a particular physical port are
forwarded to some other physical port without examining any of the encapsulated
headers for forwarding purposes.

Of course, a physical port may be a member of a link aggregation group (LAG),
so what a cross-connect forwarding entity really wants to work with is logical
ports. And, as we’ve seen with other complex forwarding systems, the output of a
forwarding entity may need to modify a packet’s encapsulation when a forward-
ing entity’s output interface is connected to an input interface of another type of
forwarding entity. Hence, we could end up with a cross-connect forwarding entity
forwarding packets to an MPLS forwarding entity within the same forwarding
system. In practice, this means, for example, that all packets received by a particu-
lar logical interface may be encapsulated by an MPLS header whose label value is
the same for all such packets. The MPLS forwarding entity may then forward the
packet via an output interface that requires Ethernet encapsulation. The net result
of this is that an Ethernet packet received via a logical port is encapsulated in a set
of Ethernet and MPLS headers before being transmitted to the next hop.

The inverse of the scenario described in the preceding paragraph is also possible
and is easy to imagine. A packet consisting of an Ethernet packet within an MPLS
packet within an Ethernet packet can reach the tunnel termination points for the
outer Ethernet header and the MPLS header, revealing the inner Ethernet packet.
The MPLS forwarding entity in this case forwards the packet via a cross-connect
forwarding entity instead of an Ethernet forwarding entity: meaning that the con-
tents of the inner Ethernet packet are ignored and the packet’s transmit interface
is, effectively, selected by the innermost forwarding header of the MPLS header
stack.

 114 Hardware-Defined Networking

Figure 49 Cross Connect Using MPLS Transport

Network A Network BMPLS
Network

Ethernet

MPLS: 101

Ethernet
payload

Ethernet

13 21

payload
Ethernet
payload

Ethernet

MPLS: 234

Ethernet
payload

Forwarding
System

Forwarding
System

Receive Port -> MPLS Label
13 -> 101

...

Mapping Table
MPLS Label -> Transmit Port

234 -> 21
...

Mapping Table

In the example shown in Figure 49, an Ethernet packet with some opaque payload
is received by the forwarding system on the left. Without even examining the
packet’s Ethernet header, the packet’s receive interface ID (13, in this case) is used
to map the packet to an MPLS encapsulation with a label value of 101. The packet
is then forwarded according to that label by the leftmost forwarding system into
an MPLS network. In the network, the MPLS header’s label value is swapped
with each hop in the usual manner. Upon exiting the MPLS network, the rightmost
forwarding system interprets the label value of 234 to mean: “forward this packet
via transmit port 21.” Hence, the packet’s outer Ethernet and MPLS headers are
stripped and the original Ethernet packet is delivered to Network B without the
headers or fields of the original packet being examined by any of the forwarding
systems between Network A and Network B.

In a similar vein as the use of logical interfaces for forwarding, virtual LANs may
also be used. In this case, the combination of a receive interface ID and one or two
VLAN IDs are used to make a forwarding decision, ignoring the destinationAd-
dress field of the outermost Ethernet header.

All kinds of variations on this general concept are possible. Logically speaking,
it’s just a matter of arranging the appropriate forwarding entity types in the right
order so as to accomplish the necessary encapsulations and decapsulations. The
important thing to keep in mind here is that a physical or logical interface is just
as useful a source of forwarding information as any header or protocol defined by
the IEEE or IETF.

8 Load Balancing

Redundant paths through networks are very common. There are number of
reasons why this is the case. First, as link speeds increase, their costs per bit per
second can also tend to increase. (At least at the very high end.) Because of this, it
is often far more cost effective to use multiple slower links instead of a single very
high speed link. Next, the bandwidth demands of some applications may exceed
the capacity of even the fastest available physical layer technology, necessitating
the adoption of multiple, parallel links in the place of a single one. Finally, links
can fail. If the physical infrastructure of a network only allows for a single path
from any point to any other point, then, when one of the links in that path fails,
that network will be severely degraded until a repair is made. Having redundant
paths already extant in the network makes it easy to quickly react to failures. If
those redundant paths are already available, it makes sense to make use of them all
the time and not just during failures.

Load Balancing Essentials

Identifying Flows and Avoiding Mis-Ordering
Bridging requires in-order packet delivery and routing greatly benefits from it.
This naturally leads to the question: what does it mean for packets to be in order?
To adequately answer this question, we must take a closer look at the definition of
a flow.

A flow is a series of packets sent from an originating endpoint to a terminating
endpoint. These packets must be received by the terminating endpoint in exactly
the same order in which they were transmitted by the originating endpoint. An
endpoint, however, is not necessarily a monolithic thing. Packets transmitted by a
physical endpoint (server, computer, etc.), may come from any number of internal
processes. For example, a web browser may be downloading HTML content at the
same time that an FTP client is downloading a file. Each of these processes expects
to receive its packets in order, but is not affected in any way by the relative order
of arrival of the packets between the two independent processes. In other words, it
does not matter if the web browser receives, say, ten packets before the FTP client
receives a burst of, say, seven packets, or if the web browser initially receives a run
of just four packets before FTP packets start to arrive. As far as each process is
concerned, it’s receiving its packets in the correct order.

 116 Hardware-Defined Networking

To take this example a bit further, each process—web browser and FTP client—
may be downloading multiple, independent files from different servers. Again, the
relative order of packet arrival between these subprocesses does not matter.

Figure 50 Endpoints

email guest OS

guest OS

guest OS

hypervisor
web browser

FTP client

endpoint

physical system physical system

endpoint

operating
system

operating
system

With this hypothetical scenario in mind, we can define a flow as being a combina-
tion of addressing, protocol, forwarding domain and priority information. If all of
the available information of these types from a packet are somehow combined to
form a unique numerical value, then that value serves as a reasonable proxy for a
flow. If another packet yields a different proxy value because one or more of these
flow-identifying values differs, then that packet can be safely said to belong to an
independent flow.

Flow identification is allowed to be imperfect. False associations are allowed.
What this means is that it is okay to map two separate flows to the same flow-
identifying proxy value. But, it is not okay for two different packets from the
same actual flow to map to two different flow-identifying proxy values. If this
were to happen, they may be queued and scheduled separately and end up being
forwarded in an order that differs the order in which they were transmitted by the
originating system.

Imperfect mapping with false associations (i.e., collisions) and not false divisions
exactly describes a hash function.

By hashing as many of the flow-identifying field values from a packet as pos-
sible, the resulting hash value serves as a very serviceable flow-identifying proxy
value. This value may be used to assign packets to flow groups, the members of
which must be forwarded in exactly the same order as the one in which they were
received. Packets belonging to different flow groups may be forwarded without
concern for their relative order.

The issue of packet order is important in the context of load balancing because
forwarding packets to a common destination via two or more separate paths
through the network is a perfect opportunity for packets to arrive out of order at
their destination.

In the scenario depicted in Figure 51, there are two forwarding systems connected
by parallel paths. The upstream forwarding system receives two packets in se-
quence: a long packet followed by a short packet. Both are addressed to the same

 Load Balancing 117

ultimate destination, but take separate paths in an effort to maximize efficiency.
The long packet is received first by the upstream forwarding system and, after
a brief processing and queuing delay, is forwarded onto one of the two parallel
paths. The second, shorter packet is received next and it, too, is forwarded after an

Figure 51 Parallel Paths Causing Packet Mis-Ordering

forwarding
system

A

A 1

1

2

2
B

time

C

B C

forwarding
system

12

equally brief processing and queuing delay. However, this shorter, second
packet is transmitted onto the second path between the two forwarding systems
because that second path was idle at the time. As shown in Figure 51, the short
packet completes its transmission from the upstream forwarding system to the
downstream forwarding system while the long packet is still in the midst of being
transmitted. The downstream forwarding system dutifully forwards the short
packet after a brief processing and queuing delay, and only then can it forward the
long packet after it’s been completely received. Thus, the order of the two packets
is reversed.

As was described previously, flows are identified by hashing packet header fields
that pertain to flow membership. Examples of these fields include source and des-
tination addresses and port numbers, ethertypes and protocol IDs, VLAN IDs and
priority values, as well as metadata such as physical and logical receive port IDs.
Headers both before and after a packet’s forwarding header are useful for load
balancing purposes. The headers before the forwarding header help identify where
the packet came from. Headers after the forwarding header help identify the
packet’s ultimate destination and the process to which the packet belongs. Taken
together, these values reliably map a packet to a flow. Fields that must be explicitly
excluded from a load balancing hash computation include length fields, sequence
numbers, checksums, opcodes and flags that may change from packet to packet

 118 Hardware-Defined Networking

within the same flow. Including this dynamic information in a load balancing hash
will cause packets within a flow to take diverging paths to their destination—all of
the packets will get where they’re going, but their relative order cannot be assured.

Though it is generally true that the more fields that are included in a flow-
identifying hash computation the better, there are situations where incorporating
fewer fields yields better results. An excellent example of this scenario is the
incompatibility between load balancing and IPv4 fragmentation. When an IPv4
packet is fragmented due to packet lengths exceeding an MTU somewhere along
the packet’s path, then all of the headers that may follow the IPv4 forwarding
header now only exist in the first fragment; the remaining fragments only convey
further payload data. If a load-balancing hash is computed as deeply as a possible,
then it is conceivable that the first fragment may include fields from the following
headers (in order): Ethernet, IPv4, UDP, VXLAN, Ethernet, IPv4. However, for
the second through the last fragment of the packet, it is impossible to parse past
the outer Ethernet and IPv4 headers. This means that the first fragment and all of
the subsequent fragments will have different hash results, mapping those packets
to different flows. This, ultimately, introduces the potential for those fragments
to arrive at their destination out of order. If fragmentation cannot be avoided, the
only practical solution is to limit the hash computation to just the outer Ethernet
and IPv4 headers in this example (i.e., the encapsulating and forwarding headers).

Figure 52 IPv4 Fragmentation and the Availability of Packet Headers

Ethernet IPv4 Ethernet IPv4VXLANUDP TCP

Ethernet IPv4VXLANUDP TCP

CRC

Ethernet IPv4 CRCpayload

payload

Ethernet IPv4 CRCpayload

original packet:

first fragment:

middle fragment:

Ethernet IPv4 CRC

last fragment:

payload

Even without the problems associated with IPv4 fragmentation shown in Figure
52, it is possible that certain header fields may tend to bias hash results such that
some paths are favored over other paths. This can be difficult to predict and a
certain amount of trial and error is required. Because of this, it is very helpful to
have fine-grained controls over which fields are included in the load balancing
hash computation.

Presuming that a good hash has been computed, how do we go about selecting a
forwarding path for a packet based on that value? Let us presume that a list of n
potential forwarding paths is available. It is simply a matter of scaling the hash

 Load Balancing 119

value to be evenly distributed across the values 0 through n-1. This is most simply
done by treating the hash value as a fraction that ranges from 0 <= hashValue <
1 and then multiplying hashValue by the number of entries in the transmit path
options list. That product is then used as an index into the list.

Hierarchical Load Balancing
It is both possible and reasonable for there to be a hierarchy of load balancing
operations applied to a packet. For a simple example, one or more of the transmit
path options for an ECMP operation (ECMP is described in detail further below)
to be a LAG (LAGs are also described in detail further below). This is not par-
ticularly challenging to implement in actual hardware. The challenge is to make
proper use of the hash value to ensure that each stage of load balancing operates
independently of all of the others.

Figure 53 Hierarchical Load Balancing—Accidental Correlation

0
1
2
3

0

ECMP LAG

1

2

3

0
1
2
3

0
1
2
3

0
1
2
3

Let’s consider a simple example. In this example, there is a 4-way ECMP where
each ECMP option is a 4-way LAG. If we took a very simple approach to the use
of our hash value, we’d essentially use the most significant two bits of the hash
value as our index into the two consecutive transmit option lists. Now, if, for ex-
ample, option number two is taken for the ECMP, then option number two is also
taken for the subsequent LAG. This means that the LAG (the second of two load
balancing operations in our example) will always choose just a single transmit
path option, leaving the other three unused.

Ideally, the path choice at each level of hierarchy is uncorrelated with all of the
other levels. To solve the accidental correlation shown above, it is necessary to use

 120 Hardware-Defined Networking

different bits of the hash value with each load balancing operation. Hence, after
performing the ECMP load balancing operation, the hash value must be rotated by
some number of bits or transformed in some other way so that new entropy may
be used by a subsequent load balancing operation.

Dealing with Link Failures
The number of next-hop paths associated with a single forwarding destination
may vary over time. Paths become unavailable due to link or equipment failures.
Those failures are eventually repaired. Paths are added and removed in order
to optimize physical resources. Ideally, these changes impact only the flows as-
sociated with the paths that are changing state. For example, if a path fails, it is
reasonable to map all of the flows that were using that path to all of the remaining
paths. The flows formerly associated with the failed path are certainly impacted
because they are now following new paths and their destinations may see some
packet loss and certainly some out-of-order packet arrivals around the time of the
transition. All of the flows associated with the surviving paths, however, are only
impacted to the extent that the addition of the re-mapped flows may increase the
utilization of paths carrying those flows.

The problem is a bit more complex when a path is added to a load-balancing
group. In this case, it is desired to take advantage of the new path by remapping
some fraction of all of the flows on all of the previously existing paths to the new
path. Thus, if p paths were active before a new path was added, then the number
of flows that should be remapped is approximately 1/(p+1). The affected flows are
likely to experience some packet mis-ordering during the transition.

The naïve approach to dealing with a path failure is to change the modulo of the
hash value to match the new number of active paths. This certainly works, but it
has the unfortunate side effect of potentially remapping every flow on every path
and not just the ones associated with the failed path.

A preferred approach is to remap just those flows associated with the affected
path. One way to do that is to perform the normal modulus of the hash value
across the original number of paths, p. Then, for all of the packets that map to the
failed path, compute a new hash value using p-1 as the modulo and then use that
value to choose from among the remaining paths. For example, assume we have a
5-way load balancing group and one of the members fails. Start by load balancing
as if all of the paths were still operational using a modulo of 5. Then, for every
packet that is mapped by modulo 5 to the failed path, use the original hash value
and apply a modulo of 4 and then use that value as an index into a list of paths
that excludes the failed path. This method assures that only the flows associated
with the failed path are affected. When the failed path is brought back on line, it is
simply a matter of no longer performing the second hash modulus.

 Load Balancing 121

An alternative to the two-step hash modulus approach is to apply a modulus to the
hash value that is significantly larger than the number of available paths, say four
times the number of paths. The output of the hash modulo function is then used as
an index into a table of path ID values. If the ratio of hash modulus values to the
number of paths is, for example, 10:1, then the table has 10 copies of each path ID
value. When a path fails, then all of the table’s entries that point to the failed path
are updated to point to various operational paths. If the number of table entries
pointing to the failed path is sufficiently high, then the flows previously using the
failed path can be distributed among the remaining operational paths.

There are many ways of achieving essentially the same results described above.
The important point is to try to limit the impact of the loss of a path to just 1/p
flows; specifically, only the flows assigned to the failed path should be impacted by
the path failure.

The Limitations of Flow-Hash Load Balancing
It is important to point out that the load balancing techniques described here are
imperfect. It is essentially impossible to guarantee that all of the transmit path
options will be utilized fully and evenly. This is true because of two fundamental
problems: hashing does not assure even distribution of outcomes, and not all flows
are created equal.

The header field data for a complex and exhaustive flow-identifying hash function
may span hundreds of bits. The hash function may, ultimately, map these multi-
hundred bit values to just a few bits in order to make a one-of-n choice where n
may be on the order of 16 (much smaller and larger ns are possible). There can be
no assurance that, say, 1,024 flows are evenly distributed across our hypothetical
16 transmit path options at 64 flows per option. A certain imbalance must be
expected.

These imbalances are compounded by the fact that there is no assurance that all
flows are going to offer the same bandwidth demands on the network. Flows that
are quite small (tens of Mbits per second) may be mixed with very large flows (tens
of Gbits per second). If just a few of the large flows are mapped to a single transmit
path option, then that path may suffer congestion and packet loss while other
paths are lightly utilized.

One way to address the inherent probabilistic nature of hash-based load balancing
is to attempt to be flow-state aware. With this approach, flows are detected and
characterized and moved from path to path as necessary to optimize the equality
of path utilization. This method of load balancing can be done either exhaustively
or approximately.

 122 Hardware-Defined Networking

The exhaustive approach requires that each forwarding entity detect the starts and
ends of flows by monitoring, for example, the TCP messages that are being passed
between endpoints. Whenever a TCP Sync7 message is detected, the associated
flow may be assigned to the least busy available path. All packets belonging to
that flow continue to use that same path until a TCP Finish message is detected.
This approach, of course, requires that the forwarding entity maintain the state of,
potentially, millions of TCP connections. In most cases this is impractical.

The approximate approach uses hashing of flow-identifying header fields and
applies a modulo that yields a series of hash buckets that is far greater than the
number of available paths. Then, for each hash bucket, state is maintained that
tracks the activity of the group of flows that correspond to each bucket. Whenever
all of the flows associated with a hash bucket cease to be active for a period of
time that is greater than the propagation delay to the convergence point of the
multi-path network, those flows become candidates for being remapped from busy
paths to less-busy paths. This technique depends on gaps between bursts of packet
being large enough and frequent enough that there is a good probability that all of
the flows associated with a hash bucket will have overlapping gaps in their bursts.
This particular load balancing method is vulnerable to improvements in the ef-
ficiency of transport protocols. If those gaps go away, so does this method.

Link Aggregation Groups

Simple LAG
In its simplest form, a link aggregation group (LAG) is a narrowly-defined and
limited form of load balancing. A LAG is intended to replace a single, point-to-
point physical connection with multiple, parallel point-to-point connections.
What this means in practice is that a LAG is considered an inseparable bundle
of links that must all originate at a single forwarding system and terminate at a
single other forwarding system. The links within a LAG are not permitted to take
separate paths from the origin of the LAG to its termination.

Figure 54 A Simple LAG

forwarding
system

forwarding
system

LACP

7 TCP is explained in Chapter 12: Connections.

 Load Balancing 123

LAG Configuration Protocol (IEEE 802.1AX)
Point-to-point physical connections are Ethernet’s realm. And, as bridging
behavior is inextricably associated with Ethernet, it follows that the spanning tree
protocol (STP) will detect multiple, parallel links between pairs of bridges and
disable all but one of the links in the aggregation group. To prevent the pruning
of redundant links by STP, the link aggregation control protocol (LACP) is used
to automatically configure Ethernet bridging systems such that groups of physical
interfaces (i.e., Ethernet ports) are presented to the Ethernet forwarding entities
(i.e., bridges) as single ports. What this means in practice is that a list of physical
interfaces are represented by a single interface ID for both packet reception and
transmission. Because the group of links is perceived by the bridge as a single,
indivisible link, then no loop exists to be detected and disabled. For example,
a broadcast Ethernet packet received via one of the links in a LAG will not be
flooded to the remaining links of that LAG.

LACP operates by periodically sending LACPDU messages via the link-level
discovery protocol (LLDP) back and forth between directly-connected Ethernet
bridges. LLDP messages are never forwarded and are assured to be terminated
by the receiving bridge. The LACPDU messages convey link ID values. A bridge
receiving these messages can determine which of its physical interfaces are collec-
tively and directly connected to a single other Ethernet bridge. Physical interfaces
that meet these criteria are candidates for link aggregation. Once a link aggregate
has been defined and configured, the associated Ethernet bridge forwarding
entity sees all of the interfaces in the aggregate as a single interface—i.e., a single
interface ID value is passed to the bridge with each packet received via any of the
interfaces in the aggregate and, in the transmit direction, the link aggregation
function is free to choose any of the member interfaces for a particular aggregate
ID based on a packet’s flow association.

Multi-Chassis LAG and Shortest-Path Bridging (IEEE 802.1aq)
Simple link aggregation between pairs of Ethernet bridges addresses one particular
aspect of network reliability: link failure. But it does not address another: system
failure. If a big chunk of a network’s traffic is conveyed via an aggregated link
through a single Ethernet bridge, that network is protected in the event of a link
failure (i.e., the traffic can be distributed across the remaining links) but is not
protected in the event of that single bridge’s failure. When that bridge goes down,
it’s going to take every member of the link aggregate with it. To address this, multi-
chassis LAG (commonly, MC-LAG) was developed, illustrated in Figure 55.

 124 Hardware-Defined Networking

Figure 55 Multi-Chassis LAG

forwarding
system

forwarding
system

forwarding
system

forwarding
system

802.1aq

LACP LACP

NOTE Even though the word “chassis” is on the tin, it doesn’t mean that the
forwarding system must adopt a chassis form factor. The forwarding system
may be a fixed configuration system or even a single-chip system.

Like a conventional LAG, MC-LAGs must originate and terminate all of the
aggregated links at common systems. However, unlike a conventional LAG, the
links of an MC-LAG may pass through two or more independent Ethernet bridges
between a common source and a common destination.

The trick to making MC-LAG work is to have the multiple chassis communicate
with one another such that LACP operates in a normal manner. In other words,
the LACP messages received by a single bridge from a group of two or more bridg-
es all appear to be coming from a single bridge. Hence, the bridge receiving these
messages freely configures multiple links connected to multiple bridges together as
a single aggregated link.

The shortest-path bridging standard (IEEE 802.1aq) applies concepts and proto-
cols from the routing world to the bridging world in order to make efficient use of
multiple paths and the use of protocol-based forwarding database updates where,
previously, spanning tree vigorously disabled redundant links and automatic
address learning dictated packet forwarding patterns without an awareness of
the overall network topology or the shortest and most efficient path through that
topology. One of the fringe benefits of 802.1aq is that it brings multi-chassis LAG
along for the ride.

 Load Balancing 125

Equal-Cost, Multi-Path Forwarding

Equal-cost, multi-path (ECMP) forwarding is analogous to LAGs, except that,
by default, the multiple paths that run from a divergence point to a convergence
point are managed by routing protocols such as IS-IS and BGP (see Chapter 19
on page 321) protocols associated with Layer 3 forwarding using IP and MPLS.
Though the protocols associated with LAGs vs. ECMP and the protocols used
to set up and manage multiple paths through a network may differ, the packet-
by-packet behavior of the two is the same. Specifically, the flow-identifying fields
from as many headers as possible are run through a hash function. The output of
that function is a flow-identifying proxy value that may aggregate some number
of flows together. A packet’s flow-identifying proxy value is then mapped in an
equal or weighted manner to one of the available paths that can convey the packet
toward its destination. And, any of those paths chosen by an ECMP function may
be a collection of paths where a further ECMP (or LAG) function is required to
make a choice from among the options. There is no predefined limit to the number
of levels of hierarchy of ECMPs and LAGs that may be configured. If a packet is
facing multiple potential paths to its destination and each of those paths entails
entering, say, two tunnels and each of those tunnels also face multi-way ECMP
choices, then a cascade of three ECMP (or ECMP-like) functions is required to
help ensure that the flows are distributed across all of those available paths.

It is, perhaps, tempting to visualize (and depict) ECMP options as all correspond-
ing to physical interfaces and cables emanating from a forwarding system.
However, in practice this need not be the case. There is nothing about ECMP that
compels those paths to follow several independent physical paths. Indeed, several
ECMP path options may map to a common physical transmit interface and me-
dium. What distinguishes these ECMP path options is not their physical path but
their virtual path—i.e., the values that identify the tunnels into which the packets
have entered. A single physical path conveying a multitude of tunnels may diverge
into several separate physical paths at a point in the network further downstream.

9 Overlay Protocols

At the time of the writing of this book there was a tremendous amount of activity
related to massively-scaled data centers and the virtualization of their resources.
These data centers are often hosts to many thousands of independent tenants or
clients who rent resources from the data center owner/operator. The resources
available include compute, storage and network access.

It is inevitable that tenant activity ebbs and flows over daily, weekly and seasonal
timescales. Also, tenants themselves come and go with the rising and falling for-
tunes of business on the Internet. To be cost effective, the owner/operators of these
data centers must be able to quickly respond to their tenants’ demands while not
allowing expensive resources to sit idle or be underutilized.

If hundreds of tenants are seeing randomly distributed bursts of activity, it is
inefficient to allocate dedicated physical resources (i.e., servers) to each tenant. It
is far more efficient to have a single physical server run several copies of the ten-
ants’ operating system of choice using virtual machine technology. With a virtual
machine, a hypervisor function runs on top of the host machine’s native operating
system. The hypervisor, in turn, presents an operating environment that appears
to the several copies of guest operating systems as if each were running on its own
dedicated hardware. The hypervisor manages access to physical resources so as to
avoid conflicts and maintain secure isolation between the guest operating systems.

With data centers having the ability to dynamically “spin up” virtual servers as
needed, it also makes sense to provide data centers with the means to move virtual
machines from one physical machine to another in order to balance loads and
ensure that, instead of having thousands of servers operating at an average load
of, say, 50%, 60% of the servers should operate at 80%, while the remaining 40%
are powered down to save electricity and reduce wear and tear.

With virtual machine mobility within a data center the need for large-scale net-
work virtualization also arises. As we’ve previously seen, IEEE 802.1Q VLANs
provide the means for isolating Layer 2 bridged traffic into virtual networks.
However, with its 12-bit vlanId value, it is limited to just 4,094 virtual networks.
This is far from adequate for modern data centers. In response to this need for net-
work virtualization at a large scale, a number of so-call “overlay” protocols were
developed. These protocols all share common behavioral characteristics (i.e., they
behave a lot like IEEE 802.1ah Provider Backbone Bridging) and only differ in the
details. Examples of these protocols include:

 Overlay Protocols 127

 � UDP + VXLAN

 � NVGRE

 � UDP + GENEVE

All three of these overlay protocols fall under a general framework known as
Network Virtualization Over Layer 3 (NVO3) as described by IETF RFC 7365.
In a nutshell, Layer 2 (Ethernet) or Layer 3 (IPv4 or IPv6) services are provided to
a (potentially) large number of independent tenants in a data center by tunneling
through (overlying on top of) a Layer 3 network infrastructure (IPv4, typically).

With these overlay protocols, the data center’s network is divided into two levels
of abstraction. At the lower “underlay” level, IPv4 or IPv6 over Ethernet is used
as a foundation upon which the tenants’ virtual networks are built. The underlay
level uses routing protocols such as BGP (or IS-IS) and ECMP to take advantage of
all of the redundant pathways that exist in the physical infrastructure.

The overlay protocol header that’s interposed between the outer headers (e.g., Eth-
ernet/IP) and the inner payload headers (e.g., Ethernet/IP or just IP) provides, most
essentially, a tenant or virtual network identifier value that’s wide enough to allow
not just thousands of such overlays, but millions. This virtual network identifier
is used to provide a forwarding domain for the payload packet; preventing traffic
from one forwarding domain from accidentally being received by another. Thus,
multiple tenants may have overlapping MAC address, VLAN ID or IP address
numbering spaces without concerns about conflicts or confusion.

Each virtual machine in a physical machine (server) has its own MAC address and
coordinates access to shared resources such as a network connection through the
hypervisor function. If two virtual machines need to exchange packet data, they
can do so using Ethernet packets (with IP payloads, if desired). The hypervisor
maintains a table that associates each virtual machine with a virtual network
identifier. This association is used to build the overlay header and to identify the
IP address of the physical system that hosts the hypervisor of the packets’ intended
destination virtual machine. The resulting final packet is shown in Figure 56.

Figure 56 Typical Overlay Application

Ethernet IP Ethernet

Addressed to physical host
Identifies tenant’s virtual network
Addressed to virtual host

IP PayloadOverlay

When the packet shown above is received by the physical system that hosts the
intended virtual machine destination, that physical system’s hypervisor checks
the overlay header’s virtual network identifier to validate that at least one of the

 128 Hardware-Defined Networking

configured virtual machines is associated with that virtual network. Finally, the in-
ner Ethernet header is used to forward the packet to the addressed virtual machine
within the specified virtual network.

It is important to point out that the overlay encapsulation and decapsulation
both occurred within the hypervisors at either end of the connection. So, in this
example, the underlay network need not be aware of nor even natively support
the chosen overlay network protocol. This is, of course, yet another example of
fundamental tunneling behavior.

There are, however, a number of scenarios where the origination and termination
of an overlay tunnel may need to reside within the data center network itself.
For example, if a data center network that uses overlays must communicate with
another network or with endpoints that do not support such overlays, then the
entry/exit point for the overlay must reside within one or more of the forwarding
systems that make up the data center network.

As with any tunnel entry/exit point, the data center overlay entry/exit points must
have forwarding databases of sufficient scale to map virtual machine addresses
to virtual network identifiers and to physical machine addresses. Depending on
the location of the overlay network entry/exit point in the overall network topol-
ogy, that forwarding database may need to support hundreds of thousands of
addresses.

If an overlay protocol is providing Ethernet tunneling services (i.e., an Ethernet
packet is the payload of the underlay network and the overlay header), then the
tunnel origination and termination points must provide the usual Ethernet bridg-
ing services: address learning and aging; flooding; etc. When an overlay tunnel
exit point receives and decapsulates a payload packet, it must submit the inner
Ethernet header’s sourceAddress value to a learning/aging lookup operation. If
that lookup fails (i.e., the sourceAddress value is unknown by the tunnel termina-
tion point in the context of the virtual network identifier), then that sourceAddress
value must be added to the forwarding system’s forwarding database. The “receive
interface” identifier that must be associated with the newly-learned sourceAddress
value is the outer IP header’s sourceAddress value. When this is done, a reciprocal
packet entering a tunnel in the opposite direction at the same point will benefit
from a successful destination lookup that maps the packet’s Mac.destinationAd-
dress value to an IP destinationAddress value for use in the new, outer encap-
sulating header. The packet is then forwarded based on that new IP destination
address.

Ethernet, of course, must also support the flooding of tenant packets with
unknown unicast, multicast, or broadcast Mac.destinationAddress values.
The flooding of these packets within a tenant’s virtual network is emulated at
Layer 3 using IP multicast. If the underlay network does not support multicast

 Overlay Protocols 129

distribution, then ingress replication must be used. In other words, if a virtual ma-
chine (server) must send a multicast packet to a thousand other virtual machines,
then its hypervisor must create and transmit one thousand copies of the packet
and transmit them in a unicast fashion to each of the intended recipients.

The bottom line is that these overlay protocols are, essentially, tunnels that are,
conceptually, not significantly different from any other tunnel type. There’s an
outer set of headers (one or more) that defines the path through the network where
the tunnel is instantiated. There’s a tunnel payload that is opaque to the tunneled
network infrastructure. Then, of course, there’s the payload packet that has its
own forwarding header(s) for getting each packet to its intended destination once
the payload emerges from the tunnel through which it was being conveyed. So,
aside from the presence of the overlay header itself, this describes pretty funda-
mental tunneling behavior.

Then why does the overlay header exist? It exists to support network virtualiza-
tion at a scale that cannot be achieved using standard VLANs. Simply tunneling
through a data center network from one hypervisor to another does not, by itself,
provide any meaningful isolation between tenants of the data center. IEEE stan-
dard VLANs could be pressed into service here, but there are two problems here:
one minor and one major. The minor problem is that adding a VLAN header to a
tenant’s packet involves modifying the tenant’s packet. This may not sit well with
some tenants. The major problem, though, is that the 12-bit vlanId value only
supports 4,094 virtual LANs (remember, values 0x000 and 0xfff cannot be used to
identify VLANs). In a modern data center, this is far too limiting. That’s where the
overlay header comes in. With its typically 24-bit virtual network identifier, up to
16 million virtual networks may be defined. In practice, the virtual network identi-
fier value is used in exactly the same manner as a vlanId value; it is mapped to a
forwarding domain identifying value which is then combined with address values
when forming search arguments for forwarding lookups.

With that overview of how overlay networks are used in data center networks out
of the way, the next few sections delve into the details of a few of the more promi-
nent and popular standards.

User Datagram Protocol (UDP)

Where TCP (see Chapter 12 on page 167) provides reliable data transport—in
order, intact—UDP provides a simple portal between two (or more) processes.
TCP is commonly used for things like file transfers and other unicast data transfer
applications, while UDP is used for streaming applications (unicast or multicast)
where data loss may be tolerated such as IP telephony or streaming video.8

8 At the time of this writing, the vast majority of streaming video on the Internet is unicast video
on demand (e.g., Netflix, et al) that relies on a TCP connection rather than UDP.

 130 Hardware-Defined Networking

A header diagram is shown in Figure 57 and the field definitions of a UDP header
are listed in Table 23.

Figure 57 UDP Header Format Diagram

0

4

0 1 2
sourcePort destinationPort

checksumlength

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 23 UDP Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

sourcePort
(Source Port)

16 bits 0.0 The origin process of a UDP packet.

This field generally identifies the originating endpoint of
communication within an operating system. This value is
optional as it is not always meaningful. sourcePort is
used to convey load-balancing entropy in a number of
applications. If the sourcePort value should be ignored, a
value of 0 is used.

destinationPort
(Destination Port)

16 bits 0.16 The terminating process of a UDP packet.

This field generally identifies the terminating endpoint of
communication within an operating system.

length
(Length)

16 bits 4.0 The length, in bytes, of the UDP header and its payload.

The minimum value for this field is 8 (i.e., the length of a
UDP header).

checksum
(Checksum)

16 bits 4.16 The checksum of the IP pseudo-header, UDP header, and
the UDP payload data.

An IP pseudo-header isn’t a real header. It’s a collection of
fields from an IP header that are included in the checksum
computation. The included fields are: source and
destination addresses, protocol, and length. Refer to IETF
RFC 768 for details.

The use of checksum is optional for IPv4. When not used,
checksum must be set to 0. The use of checksum is
mandatory for IPv6. Fortunately, the authors of the
VXLAN specification have given us a reprieve by
recommending against computing a checksum when
encapsulating a VXLAN packet and ignoring a non-zero
checksum when decapsulating a VXLAN packet.

 Overlay Protocols 131

While not generally thought of as an overlay technology, UDP does serve as a
useful tunneling glue layer between forwarding protocol header and the overlay
header. For example, an IP/UDP packet may have an MPLS/IP/TCP packet as its
payload. In these types of applications, the destinationPort field is used as a next-
header identifier instead of a process identifier in the destination endpoint. When
used as an overlay glue layer, the sourcePort value is often used for load balancing
entropy.

UDP + VXLAN

The VXLAN, or Virtual Extensible Local Area Network, protocol is described by
IETF RFC 7348. A VXLAN header never stands alone in the midst of a packet. It
is always preceded by a user datagram protocol (UDP, IETF RFC 768) header, as
shown in Figure 58.

Figure 58 Typical VXLAN Header Stack

VLAN
(optional)

VLAN
(optional)

Ethernet IP Ethernet IP PayloadUDP VXLAN

A UDP header is universally preceded by an IPv4 or IPv6 header. An IP nextHeader
value of 0x11 is used to indicate that a UDP header follows an IP header. UDP
headers are typically used to channelize an IP connection between two endpoints.
These channels are identified by the UDP header’s sourcePort and destination-
Port fields. The port numbers (not to be confused with physical ports) identify
the processes or protocols that are the originators or terminators of messages. In
the case of VXLAN, a destinationPort value of 4789 is used to indicate that a
VXLAN header immediately follows the UDP header.

There’s no need to identify the process or protocol that is the source of a VXLAN
packet, so Udp.sourcePort is used instead to convey some load balancing entropy
in the form of a hash of the inner headers’ flow-identifying fields. This is helpful
because the data center underlay network may be built with forwarding systems
that don’t understand what to do with a VXLAN header, but they’ll likely know
how to parse a UDP header, extracting the sourcePort and destinationPort
values for use in its ECMP load balancing hash computations. The entropy hash
value should be mapped into the TCP/UDP dynamic/private port number range of
49,152–65,535.

UDP headers may be followed by a wide variety of header types. It is, after all, a
generalized transport method. A VXLAN header, on the other hand, must always
be preceded by a UDP header.

 132 Hardware-Defined Networking

The VXLAN overlay header’s primary role is to convey the virtual network
identifier value. The format of a VXLAN header and the definitions of its fields are
shown in Figure 59.

Figure 59 VXLAN Header Structure Diagram

0

4

0 1 2

networkId

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 24 VXLAN Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

networkIdValid
(I)

1 bit 0.4 Indicates that the VXLAN header conveys a valid
networkId value.

For normal operation—where the overlay traffic is being
segregated into separate virtual networks—this bit must
be set to 1 to indicate that a valid networkId value is
present. If this bit is set to 0, then no valid virtual network
identifier is present.

networkId
(VXLAN Network
Identifier)

24 bits 4.0 The virtual network ID value.

When entering a VXLAN overlay network, the original
packet’s destination address (typically, Mac.
destinationAddress and, if present, vlanId) is
looked up in a forwarding database. A successful match
returns both the forwarding instructions (i.e., the transmit
port number) and a new forwarding domain value. This
new forwarding domain value is then mapped to the
networkId value for use during packet encapsulation
prior to transmission.

Overall, the VXLAN header and concept are pretty straightforward. At the tun-
nel ingress point, the packet’s destination address is used to determine both the
packet’s transmit port and the networkId value to use. At the tunnel egress point,
the networkId value (and possibly a vlanId value from the original packet) is used
to define the packet’s forwarding domain. The forwarding domain is combined
with the original packet’s Mac.destinationAddress value for a normal lookup in a
forwarding database. Like all Ethernet bridging applications, the Mac.sourceAd-
dress from the original packet (i.e., the encapsulated packet) must be submitted
to a lookup for address learning and aging purposes. The networkId value is

 Overlay Protocols 133

used to define the packet’s forwarding domain (just as was done for the destina-
tion lookup). If the lookup is successful (i.e., a matching key is found), then the
packet’s source interface is checked in order to detect a MAC move situation. In
the case of a VXLAN tunnel exit point, the encapsulating (i.e., outer) IP header’s
sourceAddress is used as the packet’s source interface. This is sensible since it is
to that IP address that a reply packet must be forwarded. At a VXLAN tunnel
entrance the packet’s physical receive ports are associated with the inner Ethernet
header’s sourceAddress value in the normal bridging manner.

Just about the only area where one might pick some nits with the VXLAN stan-
dard has to do with its VLAN tag handling in the payload packet. The VXLAN
RFC essentially says that the payload packets should be devoid of VLAN headers
unless the VTEP (i.e., the VXLAN tunnel endpoints) support those VLAN head-
ers. Pretty weak sauce, that! At least the RFC is unambiguous in declaring that
VXLAN tunnel endpoints must ignore any VLAN tag and solely use the networkId
value to determine the identity of the overlayed virtual network. Essentially, there
is an expectation that the vlanId value from the payload’s VLAN header has
already been factored into the choice of networkId values. In other words, if a par-
ticular tenant has a need for VLAN behavior and inserts VLAN headers into their
Ethernet packets, then that tenant must be allocated multiple networkId values;
one for each vlanId value.

Sharp-eyed readers will notice that the VXLAN header is missing a field that all
well-designed headers should have: some kind of next-header field. When VXLAN
was first defined, it was presumed that Ethernet+IP would be all that it would con-
vey and that, therefore, the only header that would immediately follow a VXLAN
header would be an Ethernet header. This was not an unreasonable assumption
given that the dominant virtual machine technology at the time employed hypervi-
sors that addressed the various virtual machines using Ethernet MAC addresses,
even though the messages passed between virtual machines were invariably
contained within IP packets.

To address this oversight and open up VXLAN to a broader array of applications,
work is underway to extend VXLAN to include a next-header-like field. This
effort is known as the generic protocol extension, giving rise to VXLAN GPE. The
VXLAN GPE header is shown in Figure 60 with its field definitions listed in Table
25.

Figure 60 VXLAN GPE Header Structure Diagram

0 nextHeader

4

0 1 2

networkId

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 134 Hardware-Defined Networking

Table 25 VXLAN GPE Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Ver)

2 bits 0.2 The VLAN version.

This field indicates the version of the VXLAN header/
protocol. The current version number is 0.

networkIdValid
(I, for “Instance Bit”)

1 bit 0.4 Indicates that the VXLAN header conveys a valid
networkId value.

For normal operation—where the overlay traffic is being
segregated into separate virtual networks—this bit must be
set to 1 to indicate that a valid networkId value is present.
If this bit is set to 0, then no valid virtual network identifier
is present.

nextHeaderValid
(P)

1 bit 0.5 Indicates that the nextHeader field is present and contains
a valid value.

oam
(O)

1 bit 0.7 Indicates that the payload packet is an OAM packet.

If this bit is set to 1, then the packet that is the payload
behind the VXLAN GPE header is an OAM packet and
must be processed as such by the receiving VXLAN tunnel
endpoint.

nextHeader
(Next Protocol)

8 bits 0.24 Identifies the type of the payload packet.

If nextHeaderValid is set to 1, then this field identifies
the type of the payload conveyed behind the VXLAN GPE
header. Setting this bit to 1 also requires that
destinationPort of the preceding UDP header be set to
4790.

If nextHeaderValid is set to 0, then the payload packet
type must be Ethernet.

This field is enumerated as follows:

0 = Ethernet
1 = IPv4
2 = IPv6
3 = Network Service Header

networkId
(VXLAN Network
Identifier)

24 bits 4.0 The virtual network ID value.

 Overlay Protocols 135

VXLAN GPE isn’t, as it appears to be, a simple extension of VXLAN where
previously-reserved bits are given a definition. No, VXLAN GPE is actually a
distinct protocol that stands separate from VXLAN. Even though, with all of the
new options set to zero, a VXLAN GPE header is indistinguishable from VXLAN,
the two are distinct. The most striking evidence of this is that the Udp.destina-
tionPort value that identifies VXLAN is 4789 while it’s 4790 for VXLAN GPE.
The new Udp.destinationPort value (4790) must be used if nextHeaderValid is set
to 1. Otherwise either 4790 or 4789 may be used.

The most remarkable attribute of VXLAN GPE is its nextHeader field which al-
lows a variety of payload types, freeing VXLAN from being limited to conveying
just Ethernet-encapsulated packets. If the preceding UPD header’s destination-
Port value is set to 4790 and nextHeaderValid is set to 1, then nextHeader identifies
the type of the header that follows the VXLAN GPE header.

The oam bit is set to 1 to indicate that the payload packet is an OAM packet and
must be processed accordingly. The current specification of VXLAN GPE is silent
on what exactly that means.

NVGRE

Network virtualization using generic routing encapsulation (i.e., NVGRE, IETF
RFC 7637) is pretty much defined by its own name. Conceptually nearly identical
to VXLAN, NVGRE provides a network virtualization value in a header that is
interposed between a tunnel layer (i.e., the underlay) and the payload packet (i.e.,
the overlay).

Figure 61 Typical NVGRE Header Stack

VLAN
(optional)

Ethernet IP Ethernet IP PayloadNVGRE

The structure and field definitions for NVGRE are shown in Figure 62 and listed in
Table 26.

Figure 62 NVGRE Header Structure Diagram

0 nextHeaderversion0 1 0

4

0 1 2

networkId flowId

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 136 Hardware-Defined Networking

Table 26 NVGRE Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Ver)

3 bits 0.13 The NVGRE version number.

nextHeader
(Protocol Type)

16 bits 0.16 Identifies the next header’s type.

This value is analogous to an ethertype value, but uses
different encodings. For NVGRE’s typical application of
tunneling Ethernet packets over an IP infrastructure, the value
0x6558 is used to indicate transparent Ethernet bridging.

networkId
(Virtual Subnet ID
(VSID))

24 bits 4.0 The virtual network ID value.

This value is used to distinguish one tenant from another in a
data center network and is analogous to a VLAN ID.

flowId
(FlowID)

8 bits 4.24 Per-flow entropy.

This field is used for load balancing purposes with ECMP.
Typically, a hash of the flow-identifying header fields of the
payload packet are used to populate this field. This obviates
the need for transit devices to parse beyond the NVGRE
header. If a valid flow ID value is not computed, flowId must
be set to 0.

NVGRE is, for all intents and purposes, simply an application of GRE. In fact,
both GRE and NVGRE are identified by the same IP nextHeader value: 47. The
only difference between a GRE header and an NVGRE header is that a few of the
flag bits are set to constant values—checksumPresent = 0, keyPresent = 1, sequen-
ceNumberPresent = 0—and the 32-bit greKey field is split into the 24-bit networkId
and 8-bit flowId fields.

One interesting difference between VXLAN and NVGRE is that, while VXLAN
allows for an optional VLAN header in the payload Ethernet packet, NVGRE
specifically prohibits including a VLAN header in the payload Ethernet packet.
An NVGRE tunnel entrance must strip any such VLAN header from the payload
Ethernet packet (the vlanId value may be incorporated into the determination of
the networkId value) and a NVGRE tunnel exit must discard any packet whose
Ethernet payload packet includes an VLAN header.

GENEVE

Generic network virtualization encapsulation (or, GENEVE) can be described as
VXLAN GPE with options. At the time of this writing, it is in draft form at the
IETF.

Figure 63 Typical GENEVE Header Stack

VLAN
(optional)

Ethernet IP UDP Ethernet IP PayloadGENEVE

 Overlay Protocols 137

Figure 64 GENEVE Header Structure Diagram

0 nextHeaderoptionsLength

4

0 1 2

networkId

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8 <variable length options>

Table 27 GENEVE Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Ver)

2 bits 0.0 The GENEVE version number.

The GENEVE header version is currently 0.

optionsLength
(Opt Len)

6 bits 0.2 Indicates the length of the option fields.

This length value is expressed in multiples of 32-bit words;
excluding the two 32-bit words that make up the baseline
GENEVE header. If this value is set to zero, then no options
are present. The offset of the start of the payload packet can
be determined using this value.

controlPacket
(O)

1 bit 0.8 Indicates that the packet contains a control message.

If this bit is set to 1, then a the payload packet is conveying a
control message. Control messages are always sent between
GENEVE tunnel endpoints. Therefore, such messages must
never be forwarded by a tunnel exit endpoint.

If this bit is set to 0 then the payload packet is a normal data
packet.

criticalOptionsPresent
(C)

1 bits 0.9 Indicates that critical options are present in the header’s
options section.

If this bit is set to 1, then one or more options have their own
criticalOption bit set to 1. Terminating endpoints that
detect this condition must process the critical options. If said
endpoint is unable to process the critical options, it must
discard the packet.

If this bit is set to 0, then an endpoint may strip off all of the
options and forward the encapsulated tunnel payload packet
in a normal fashion.

nextHeader
(Protocol Type)

16 bits 0.16 Identifies the next header’s type.

This field is, essentially, an ethertype field. For the typical
GENEVE application, a value of 0x6558 is used to indicate
transparent Ethernet bridging. Other values representing
other payload types are allowed.

networkId
(Virtual Network
Identifier (VNI))

24 bits 4.0 Identifies a data center tenant’s virtual network.

This value is used to distinguish one tenant from another in a
data center network and is analogous to a VLAN ID.

 138 Hardware-Defined Networking

The structure and field definitions of the GENEVE tunnel options header are
shown in Figure 65 and listed in Table 28.

Figure 65 GENEVE Tunnel Options Header Structure Diagram

0 optionLength
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

4 <variable length option data>

optionTypeoptionClass

Table 28 GENEVE Tunnel Options Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

optionClass
(Option Class)

16 bits 0.0 The option’s “name space.”

Individual tenants, vendors, etc. may have a unique ID
value assigned that is used to establish a private name
space. Thus, an entity that controls a optionClass value
may assign optionType values without fear of colliding
with any other entity’s optionType values.

criticalOption
(C)

1 bit 0.16 The critical-option indicator.

If this bit is set to 1, then the option is critical and must be
processed by a GENEVE receiving tunnel endpoint and
not forwarded. If a GENEVE tunnel endpoint is unable to
process a critical option, it must discard the packet.

If this bit is set to 0, then the option is not critical and may
be ignored by a GENEVE endpoint.

optionType
(Type)

7 bits 0.17 Indicates the option type.

length
(Opt Len)

5 bits 0.27 Indicates the length of the option data field.

This length value is expressed in multiples of 32-bit words;
excluding the 32-bit word that makes up the baseline
GENEVE tunnel option header. If this value is set to zero,
then no option data is present. The offset of the start of the
next option header (if any) can be determined using this
value.

Like VXLAN GPE, GENEVE rides on top of UDP, utilizes sourcePort for flow
entropy and features a 24-bit virtual network identifier. Unlike VXLAN GPE,
GENEVE stipulates that an Ethernet payload packet must not include a VLAN
header, the vlanId value of any previously existing VLAN header having been
incorporated into the derivation of the networkId value.

 Overlay Protocols 139

GENEVE differs from VXLAN GPE in the arrangement of its fields and, most
significantly, its support for a variable number of options appended to the header.
The base GENEVE header includes a optionsLength field which, if non-zero,
indicates that one or more options are present. The individual options are type-
length-value (TLV) variety, meaning that each option header has a type value
(optionType), a length value (length) that is used to either interpret or skip over
individual options, and an option value itself (the option data that immediately
follows the GENEVE option header).

The motivation for supporting the conveyance of more information than a
simple 24-bit virtual network identifier is based on the observation that large,
chassis-type routers with embedded, proprietary fabrics often include a prodigious
amount of metadata with each packet as they are forwarded from an ingress
packet forwarding engine (PFE) to an egress PFE. By supporting a potentially large
amount of application-specific metadata, GENEVE could be used to make a data
center’s underlay network act very much like a single router of tremendous scale.

10 Virtual Private Networks

Virtual private networks (generically, VPNs) are essentially tunneling applications
that are intended to emulate either wires (e.g., PWE3), Ethernet bridges (e.g.,
VPLS), or Ethernet bridges and routers (e.g., EVPN) across a network such as the
Internet. When these tunneling methods are considered with respect to what it is
that they’re emulating—wire, bridge, router—it becomes a fairly straightforward
task to rationalize and understand their behavior.

Wires don’t concern themselves with what they convey. They are, for the most
part, dumb pipes. When emulating a wire, the intent is to provide a point-to-point
private connection across a packet-oriented network (e.g., IP, MPLS) that can sup-
port any kind of communication. As originally envisioned, the emulation of wires
was a means to allow telecom companies to build packet-based networks that
could support their valuable legacy circuit-switched businesses.

When moving from emulating wires to emulating bridges, things get quite a bit
more complicated. Wires are point-to-point (shared media wires such as the
original coax Ethernet standard are not emulated) whereas bridges are multi-point
to multi-point. Bridges also must support the replication of packets in the case of
broadcast, unknown-destination, and multicast traffic. And, of course, transpar-
ent bridges must support the learning and aging of MAC source addresses.

At the highest level of sophistication, VPNs support the emulation of sophisticated
routers. It’s not that forwarding packets based on IP or MPLS header informa-
tion automatically make a router function sophisticated. Rather, it is the support
for ECMP, multi-homing and split horizon checks (and other things) that make
a router function sophisticated. Briefly, ECMP and multi-homing (akin to a
multi-chassis LAG) provide load balancing across multiple paths (see Chapter 8
on page 115) while split horizon checks prevent flooding packets back to their
source. With these capabilities, the emulation of a complex network function by a
geographically disperse network becomes practical.

Like all tunneling methods, VPNs require an encapsulation and, like any kind of
multi-tenant or multi-customer service, a means for identifying a specific instance
of a virtual network so as to isolate tenants or customers from one another.

The following sections provide an overview of three representative VPN technolo-
gies. There are, of course, many more VPN types since inventing new tunneling
methods is a favorite pastime for networking engineers. The three chosen for this
book are: PWE3, VPLS, and EVPN.

 Virtual Private Networks 141

Pseudowire Emulation Edge-to-Edge (PWE3)

PWE3 (specified by IETF RFCs 3916, 3985 and others) describes a basic archi-
tecture for emulating a circuit or wire tunnel across a packet-based network such
as IPv4, IPv6 or MPLS. These RFCs don’t go into the specifics of the on-the-wire
formats and encapsulations, but, instead, describe the operational requirements
and the means for establishing and maintaining a pseudowire connection. For a
specific example of a pseudowire, IETF RFC 4448 serves as a useful example.

RFC 4448, entitled “Encapsulation of Ethernet over MPLS” does pretty much
exactly what the title says. The intent is to provide a wire-like connection between
two geographically separate Ethernet networks such that the two networks behave
as if they were connected via a simple point-to-point Ethernet segment.

Like all PWE3-compliant pseudowire methods, the Ethernet over MPLS pseudo-
wire follows the prescribed encapsulation architecture as depicted in Figure 66.

Figure 66 PWE3 Protocol Stack Reference Model

Physical Layer
Packet Network
(IP or MPLS)

Emulated Ethernet

Payload

Packet Tunnel

Pseudowire

Emulated Service
Demultiplexer

Physical Layer
Packet Network
(IP or MPLS)

Emulated Ethernet

Payload

Demultiplexer

In the reference model shown in Figure 66, the physical layer may be anything that
can convey IP or MPLS packets. In modern networks, this is invariably Ethernet.
The tunnel itself is the underlying IP or MPLS network represented by either an IP
header (IPv4 or IPv6) or one or more MPLS headers. Several pseudowires may be
configured to operate simultaneously over the top of the underlying IP or MPLS
packet network. Hence, this layer is associated with some form of demultiplexer—
i.e., a value that identifies a particular pseudowire. Finally, the contents of the
pseudowire are layered on top in the form of Ethernet packets or any other suit-
able data transport.

For Ethernet over MPLS (RFC 4448), these generic layer types are replaced with
specific types. Following an Ethernet header for the physical layer, an MPLS
header is used to specify the label switch path of the packet. This label is swapped
at each label switch router hop across the underlying tunnel network. An MPLS
header at the bottom of the MPLS header stack is used to demultiplex the pseu-
dowire; the label value is interpreted as a pseudowire ID. An MPLS control word
(see "Control Word" on page 107) or associated channel header (see "Generic

 142 Hardware-Defined Networking

Associated Channel Header (G-ACh)" on page 108) may optionally follow the
MPLS header stack. The Ethernet packet then follows the MPLS header stack and
optional control word or generic associated channel header. This header structure
is diagrammed in Figure 67.

Figure 67 Ethernet Over MPLS Header Stack

Ethernet

Ethernet

 VLAN (optional)

 VLAN (optional)

(LSP)
(demultiplexer)
(optional)

 MPLS
 MPLS

 Control Word

Payload

The essential elements for Ethernet over MPLS are all present in the Figure 67.
The outer Ethernet header provides router-to-router transport while the MPLS
header at the top of the MPLS header stack is examined and swapped as needed
to forward the packet from the tunnel entrance to its exit. The MPLS header at
the bottom of the stack contains the pseudowire ID value (analogous to a virtual
network ID used in the overlays discussed in the Chapter 9).

The Pseudowire Control Word and ECMP
The optional control word (which could, instead, be a pseudowire associated
channel header) is there to support ECMP. Control words and pseudowire associ-
ated channel headers offer two different solutions to properly supporting ECMP.
A control word does not indicate the type of the MPLS payload. This means that
a transit MPLS router (an LSR) likely does not have information in its forward-
ing database to reliably determine the MPLS payload’s type. Consequently, any
attempt to parse beyond the MPLS header stack is merely a best guess and it is
entirely possible to erroneously include non-flow header fields into a flow hash,
sending packets belonging to a particular flow along disparate paths. To remedy
the inevitable mis-ordering of packets that this causes, the sequenceNumber field
is used by the router at the MPLS tunnel exit termination point to re-order the
packets into the correct order prior to transmission.

Re-ordering packets when a large number of pseudowires are in use represents a
very challenging design problem. Hundreds of thousands of pseudowires may re-
quire reordering services at a single point. This implies that hundreds of thousands
of sequence number state values must be maintained and that many packets from
each of the hundreds of thousands of pseudowire may need to be quarantined by
the router while the arrival of packets missing from the correct sequence are await-
ed. A more sensible solution is to use a pseudowire-associated channel header.

 Virtual Private Networks 143

The pseudowire associate channel header includes a channelType field that is
roughly analogous to a ethertype field, positively identifying the MPLS payload
type. With the payload type reliably identified, a greater range of flow-identifying
packet headers may be parsed and hashed, yielding good ECMP load balancing
and obviating the need for sequence numbers and reordering.

Another option for supporting pseudowire ECMP is to insert an entropy label (EL)
and an entropy label indicator (ELI) somewhere in the stack of MPLS headers.

Pseudowires and VLANs
The Ethernet over MPLS pseudowire standard defines two modes for handling
VLAN headers in the customers’ (i.e., payload) packets: raw mode and tagged
mode. These modes are configured by the service provider on the network edge
equipment that mark the pseudowire origination and termination points.

VLAN headers in the payload Ethernet packet may originate either with the cus-
tomer or with the service provider. A service provider adds a VLAN header to the
payload packet if multiple customers are sharing a Layer 2 path to the pseudowire.
These service provider VLAN headers are known as “service delimiting” VLAN
headers.

In raw mode, service delimiting VLAN headers must be stripped from the packet
prior to entering the pseudowire tunnel. It is presumed that the vlanId value from
the stripped header had previously been used to map to a particular customer-
specific pseudowire. If a packet contains a non-service delimiting VLAN header
(i.e., the VLAN header originated with the customer), then the VLAN header is
preserved. In other words, the only VLAN headers that may be carried across the
pseudowire are customer VLAN headers.

In the tagged mode (which is the default mode for Ethernet over MPLS pseudow-
ires) every packet must have a service-delimiting VLAN header. If a packet arrives
at the pseudowire entrance without such a VLAN header, then a dummy VLAN
header is added to the payload Ethernet packet ahead of any customer VLAN
headers.

In both modes of operation, customer VLAN headers are transmitted as is and
without modification by the pseudowire exit point.

In the tagged mode of operation, service-delimiting VLAN headers may be stripped
or have their vlanId values remapped by the pseudowire exit points.

Pseudowires and Ethernet Flow Control
Although a pseudowire is supposed to emulate a physical wire (or fiber, if you
prefer), it’s not a perfect emulation. Though a number of link level (e.g., LLDP)
and bridge control protocols (e.g., RSTP) work just fine, there’s one in particular
that’s just not compatible with a pseudowire: IEEE 802.3x link flow control (and
802.1Qbb priority flow control). The reason that link-level flow control breaks

 144 Hardware-Defined Networking

down across a pseudowire is that the delays across the pseudowire far exceed
those of an actual physical wire. As a consequence, if a receiving endpoint is being
overwhelmed by a transmitting endpoint on the far end of a pseudowire, the reac-
tion time due to the round trip delay of the flow control message going one way
and the packets already on the wire continuing to arrive in the opposite direction
means that the amount of data that can continue to arrive after transmitting a
pause packet can be quite significant (and certainly far larger than the designer of
the receiving endpoint was anticipating).

To remedy this, 802.3x and 802.1Qbb flow control packets must be terminated by
the service provider’s pseudowire edge equipment: pausing and buffering packets
heading toward the customer’s endpoint for as long as the flow control state
remains in effect. Conversely, a service provider’s pseudowire edge router may
issue flow control message packets toward customer endpoint if its packet buffers
are becoming congested due to a speed mismatch between the customer’s Ethernet
connection and the pseudowire or if a congestion indication has been received
from the service provider’s MPLS network.

Virtual Private LAN Service (VPLS)

The virtual private LAN service takes the point-to-point concept of pseudowires
and expands it to support multipoint-to-multipoint service. Instead of emulating a
wire, the underlay network emulates an Ethernet bridge.

VPLS is specified by two separate and incompatible standards: IETF RFC 4761
and RFC 4762. The difference between them—and the cause of their incompat-
ibility—is the signaling methods used to manage the network. RFC 4761 uses the
border gateway protocol (BGP) for auto-discovery and signaling whereas RFC
4762 uses label distribution protocol (LDP) signaling. Fortunately for those of us
who are mostly concerned with the data part of a network versus its control part,
the two versions of VPLS are essentially identical.

VPLS leverages RFC 4448 Ethernet over MPLS pseudowires to interconnect a
series of provider-edge (PE) systems. A representative model of a VPLS network is
shown in Figure 68.

The left side of the Figure 68 shows the physical view of a hypothetical VPLS
network. Provider edge routers (PE) are distributed around the perimeter of the
service provider’s network. A number of provider network core routers (P) are
used to interconnect the PE systems. Customer edge systems (CE) are connected to
nearby PE systems. The CE systems serve as the customer networks’ interface to
the service provider’s network.

The right side of Figure 68 shows the logical view of the same network. In this
view, a number of pseudowires have been configured through the service pro-
vider’s network such that every PE is connected through a pseudowire to every
other PE in a full mesh network.

 Virtual Private Networks 145

Figure 68 VPLS Network Model

CE

CE

CE

CE

CE

CE

CE

PE

PE

PE

PE

P

P P

P
P

P
P

PP

P

PE

CE

Physical View

MPLS

Logical View

CE

CE

CE CE

CE

CE

CE

CE

PE

PE

PE

pseudowire

VPLS is intended to make a service provider’s MPLS network look and act like a
geographically dispersed Ethernet bridge (from the customer’s perspective). This
means that all of the usual Ethernet bridging behaviors are expected: forwarding
based on destinationAddress; learning and aging sourceAddress values; and the
flooding of broadcast, unknown-destination and multicast (BUM) traffic.

Forwarding customer Ethernet packets across a VPLS network is fairly straightfor-
ward. A CE sends a packet to its locally-attached PE router. The PE router receives
the packet and uses the interface via which the packet was received to determine
to which VPLS instance the packet belongs. If the packet has a VLAN header, that
may also be considered in associating the packet with a VPLS instance.

The receiving PE examines the Ethernet packet’s destinationAddress via a lookup
into a forwarding database. This lookup returns the identity of the egress PE to
which the packet must be forwarded. This information is used to determine the
correct pseudowire to use to convey the packet to the egress PE. The Ethernet
packet is encapsulated into an MPLS packet according to RFC 4448 (Ethernet
over MPLS) and is transmitted via an interface that gets the packet to the pseu-
dowire’s next hop. At the egress PE, the MPLS label switch path is terminated
and its payload Ethernet packet is exposed. The bottom-of-stack demultiplexing
MPLS label provides the Ethernet packet payload with its forwarding context.
The Ethernet packet’s destinationAddress is again submitted to a forwarding
lookup to determine to which, of possibly several attached CEs, the packet must
be forwarded.

Of course, for a PE to successfully look up a MAC destination address, its for-
warding database must be populated with relevant MAC address values. This is
done through the usual Ethernet bridging process of detecting and learning Mac.
sourceAddress values and the interfaces associated with them. What makes the
VPLS implementation of bridging behavior a bit unique is that each Mac.sourceAd-
dress value must be learned twice. When an Ethernet packet arrives at an ingress

 146 Hardware-Defined Networking

PE from a CE, its sourceAddress value is submitted to a source address lookup. If
no match is found, a new entry is created for that PE’s forwarding database that
associates the just-learned sourceAddress value with the interface via which the
packet was received. At the egress PE, the payload Ethernet packet is decapsulated
from the MPLS pseudowire and its sourceAddress value is submitted to a source
address lookup. If the lookup fails to find a match, the sourceAddress value is
added to the egress PE’s forwarding database that associates the just-learned
sourceAddress value with the pseudowire via which the packet was received.

Aging is, of course, simply a lack of learning. Every time a PE successfully looks up
a MAC source address, its timestamp is reset to the current time. If a forwarding
database entry’s most recent timestamp exceeds some amount of time (five min-
utes, by default) from the current time, that entry is removed from the database.

BUM traffic (broadcast, unknown-unicast and multicast) must be flooded within
the VPLS instance. This means that an ingress PE (one that receives a packet from
a CE) must send a copy of the packet to each PE that belongs to the same VPLS
instance. Then, all of the egress PEs that receive a copy of that packet must make
further copies for all of the attached CEs that belong to the same VPLS instance as
the packet.

If the PEs in a VPLS network behaved like normal Ethernet bridges, then there
would be one of two problems: either spanning tree would prune the network
of all of its redundant pseudowires (severely impacting the efficiency and perfor-
mance of the VPLS network), or the BUM packets received from a pseudowire
would be replicated back to all of the other pseudowires (leading to an endless
storm of BUM packets). Fortunately, VPLS PE routers do not act like normal
Ethernet bridges; they treat their MPLS-facing pseudowire interfaces as being in
a separate and distinct category from the CE-facing Ethernet interfaces. This split
between these two categories of interfaces is known as split horizon.

Split horizon forwarding is used to prevent loops in networks with redundant
paths. One of the requirements of VPLS is that all of the PEs that are associated
with a particular VPLS instance must be fully connected with one another with a
mesh network (i.e., point-to-point connections are formed for every possible pair
of PEs in a VPLS instance). If you look at a diagram of a mesh network between n
points, what you’re seeing is n separate tree structures; each with n-1 leaf nodes.
When an ingress PE must flood a BUM packet to all of the egress PEs in the same
VPLS instance, it is taking advantage of that single tree network instance associ-
ated with the ingress PE and is counting on the egress PEs to not then forward
any of the BUM packets onto their own trees; for, if they did so, egress PEs would
receive multiple copies of the BUM packet, which is certainly not allowed. Split
horizon forwarding is diagrammed in Figure 69.

 Virtual Private Networks 147

Figure 69 VPLS Split Horizon Forwarding

CE

CE

CE

CE

CE

CE

CE

PE

PE

PE

PE
CE

pseudowire

In the split horizon example shown in Figure 69, there is a single VPLS instance
that includes all of the CEs. A BUM packet is received by a CE device which
forwards it to its associated ingress PE device. The ingress PE floods the packet
to all of the interfaces associated with the VPLS instance. In this example, those
interfaces include the one that leads to the second CE associated with the ingress
PE as well as the other three PEs (i.e., the egress PEs). The egress PEs receive their
copies of the BUM packet (suitably encapsulated as per RFC 4448) and then flood
the decapsulated Ethernet packet only to the attached CEs and never to any of the
pseudowires that lead to the other PEs. Thus, the egress PEs are making a distinc-
tion between the two categories of interfaces—pseudowires to PEs and attachment
circuits to CEs—and only allowing packets received from a pseudowire to flow in
a single direction: toward the attached CEs. This means that each BUM packet is
distributed by a simple tree carved out of a full mesh.

Scaling VPLS with H-VPLS
PEs in a VPLS network must learn all of the MAC addresses of all of the customer
Ethernet-based endpoints for every VPLS instance associated with each PE. In
large networks this can lead to forwarding database sizes that are in the millions of
entries. Another scaling challenge is that each VPLS instance requires a full mesh
of pseudowires between each of the VPLS instance’s PEs. With n PEs, n(n - 1)/2
pseudowires are required. Forwarding database space and encapsulation param-
eter storage space must be allocated within the PEs to all of these pseudowires. To
address these scaling concerns, hierarchical VPLS (H-VPLS) was developed.

In hierarchical VPLS, each PE system is connected to one or more aggregation sys-
tems instead of directly to the CE systems. This aggregation system can be thought
of as a remote PE and is often installed in the customers’ premises. The connection
between the aggregation system and a PE is known as a “spoke.”

The primary benefit of hierarchical VPLS is that an additional layer of tunneling
is used to simplify the scale and complexity of the full mesh that exists at the core
of the VPLS network and to reduce the table scale burden of the PE systems. The

 148 Hardware-Defined Networking

aggregation systems encapsulate the customer’s packet in whatever Layer 2 tun-
neling scheme is desired where the new encapsulation (i.e., the new outer header)
is addressed to the egress aggregation system instead of to the actual customer
endpoint. Thus the customer’s addresses are hidden from the core of the VPLS
network and do not need to be learned. The VPLS network only sees the packets
coming from and going to the aggregation systems, significantly reducing the scale
of the VPLS network.

Hierarchical VPLS is yet another example of how the proper application of tunnel-
ing can be used to build larger and larger networks without having to increase its
complexity as perceived by a single point in the network.

Ethernet Virtual Private Network (EVPN)

Just as VPLS represents the natural evolution of Ethernet over MPLS pseudowire
service—introducing multipoint-to-multipoint forwarding and bridge emula-
tion—EVPN represents the natural evolution of VPLS.

Though VPLS is quite capable and, at the time of this writing, in fairly widespread
use, it is missing a few functions and capabilities that would enable it to make
much more efficient use of the underlying MPLS infrastructure. In particular,
VPLS does not support all-active multihoming (I’ll explain what multihoming is
in just a bit) and it does not take advantage of MPLS’s ability to support multicast
replication,9 relying, instead, on the ingress PE to replicate packets for all intended
egress PEs. EVPN (IETF RFCs 7209 and 7432) was developed specifically to ad-
dress these shortcomings and make MPLS VPNs much more scalable, efficient and
reliable.

Multihoming
Multihoming is, quite simply, the practice of providing a customer with multiple,
redundant service provider connections. This is illustrated in Figure 70.

Figure 70 Multihoming

CE

CE

PE

PE

PE

CE

PE

PE

It is very common for a single provider edge (PE) system to be connected to the
customer edge (CE) systems of multiple customers. This is simply how a network

9 For those of you who are uncertain about what multicast is all about, the next chapter is en-
tirely devoted to that very topic.

 Virtual Private Networks 149

scales. However, since an organization’s external network connections to the
Internet and to remote facilities are essential for that organization’s daily opera-
tions, it is too risky for such a vital resource to rely on just a single connection to
the provider’s network: a single fiber, a single pair of optics, or a single PE router. If
any of those components fail, then the organization is cut off until the fault can be
corrected.

The obvious solution is to provide two or more redundant connections from a CE
to two or more PEs as illustrated in Figure 70. Unfortunately, since VPLS emulates
a bridge, the spanning tree protocol will disable all but one of the links in order
to prevent loops. Of course, if that remaining active link were to fail, spanning
tree would activate one of the other links. However, during normal operation, the
disabled links sit idle, representing wasted resources.

Allowing a CE to be connected to multiple PEs with multiple active links is known
as all-active, or active-active multihoming, as opposed to single-active or standby-
active. The obvious benefits of this approach are that the customer gets both a
nice increase in attachment circuit bandwidth and the resiliency of redundant
connections.

After a brief detour into how EVPN obviates the need for full-mesh pseudowires,
we’ll return to the topic of taking advantage of all-active multihoming.

Eliminating the Full Mesh
A full-mesh interconnect between all of the PE systems participating in a particular
VPLS instance is a hallmark of VPLS networking. By taking advantage of the
logical one-hop connectivity from any point to any other and simple split-horizon
rules, emulating bridging behavior is fairly simple.

The problem with the full mesh is that, from any particular point to any other
particular point, only one path is allowed, even though the underlying physical
network may have a large number of redundant paths. Significant opportunities
for bandwidth efficiency and resiliency are lost by not taking advantage of those
redundant paths. One of the key attributes of EVPN is that it takes full advantage
of all of the physical connections in a service provider’s network rather than par-
ing down those connections to a series of pseudowires that form a full mesh.

The implication of the move from a full mesh to multi-path interconnect—from
the perspective of the provider edge and provider core routers—is that ECMP load
balancing must be performed on each packet in order to distribute flows of pack-
ets among the available paths such that those paths are as fully and fairly used as
possible. EVPN uses a multi-protocol variant of the border gateway protocol (MP-
BGP) to distribute routing information among the service provider’s routers. This
routing information serves two purposes: it defines all of the possible paths from
any point to any other point for each EVPN instance, and it distributes customer
Ethernet MAC addresses and reachability information.

 150 Hardware-Defined Networking

That’s right: rather than rely on the independent learning and aging of customer
Ethernet MAC addresses by the various PE routers, EVPN relies on MP-BGP to
distribute this information. This process is described in the Bridge Emulation sec-
tion, further below.

Another benefit of moving from a full mesh of pseudowires to multi-path inter-
connect is that multicast forwarding—i.e., the receipt of a single packet and the
transmission of multiple copies of that packet to specific destinations—can be
pushed from the ingress PE router to a point deeper in the heart of the service pro-
vider’s network. With this move, it is possible to configure a multicast replication
tree that is distributed across the service provider’s network. Each node in the tree
represents a point where two or more copies of a packet are transmitted for each
one received. Ideally, no link in a network ever carries more than one copy of any
packet.

Figure 71 EVPN Multicast

P

P P

P
P

P
P

PP

P

PE

CE

EVPNVPLS

CE

CE

CE

CE

CE

CE

CE

PE

PE

PE

P

P P

P
P

P
P

PP

P

PE

CE

CE

CE

CE

CE

CE

CE

CE

PE

PE

PE

The VPLS network illustrated in Figure 71 relies on ingress replication to distrib-
ute copies of a packet to multiple transmit interfaces. Note that the ingress PE at
the lower left receives one packet and transmits three copies to the first P router;
each destined for a separate egress PE router. None of the P routers make any fur-
ther copies, but notice that several P routers must forward two copies of the packet
along a common path until a divergence point is reached.

Now, compare that behavior to the EVPN example on the right. Here, a single
copy of the ingress packet is forwarded by the ingress PE at the lower left to the
first P router on the path. That P router then transmits one copy for each of the
two diverging paths through the service provider’s network. This means that a
single copy of the packet proceeds to the right toward the next divergence point
where, again, two copies of the packet are transmitted: one each for the two
diverging paths that lead to the two egress PE routers on the right side of the cloud.

The EVPN multicast model makes much more efficient use of the service pro-
vider’s physical network infrastructure by delaying replication as long as possible.

 Virtual Private Networks 151

The example shown above isn’t terribly dramatic. But, just imagine if an ingress PE
router had to flood a packet to 100 (or 1,000) egress PE routers. You can begin to
see the benefits of the EVPN approach.

The flooding (or selective distribution) of BUM (broadcast, unknown-unicast, mul-
ticast) packets is just one aspect of Ethernet bridging. Another important aspect is
the management of the forwarding databases. That is covered immediately below.

Bridge Emulation
EVPN has a very different forwarding database management method from VPLS.
In VPLS, each PE is responsible for independently detecting and learning MAC
source addresses. This can, unfortunately, lead to some performance and stability
problems when MAC addresses move from PE to PE or when PEs go offline or
online. To address this, EVPN relies on MP-BGP to distribute MAC addresses to
the PE routers.

When an ingress PE receives a packet from a CE that has a Mac.sourceAddress
value that is unknown to that PE, it learns the address locally (and associates the
packet’s receive interface with that MAC address) and then passes the addressing
information off to the MP-BGP controller which, in turn, distributes it to all of the
PEs that participate in the same EVPN instance. The other PE routers add the MAC
address and next-hop forwarding information to their forwarding databases as
static entries (i.e., not subject to aging). The original ingress PE is responsible for
updating timestamp information for the newly learned MAC address to determine
when a sufficient amount of time has passed since last observing the MAC address
so that it may be aged out of the forwarding database. MP-BGP is, again, pressed
into service to inform the various PE routers of any MAC addresses that have aged
out or that have moved from one PE to another. This active distribution of MAC
addresses makes EVPN much more responsive to changes and much more stable
and reliable than VPLS.

All-Active Multihoming
A customer edge (CE) system’s use of multiple connections to multiple provider
edge (PE) routers is analogous to multi-chassis link aggregate groups (MC-LAGs).
Specifically, a single source of packets (a CE) is connected via multiple Ethernet
links to separate and largely independent forwarding systems (PEs) and flow-
identifying hash computations are used to assign packets to each of the available
parallel paths. The key difference between simple MC-LAG and EVPN is that the
two or more PEs that are connected to a common CE also have connections to each
other, meaning that BUM packets may be forwarded from the initial receiving PE to
another PE to which the packet’s source is also attached. That second PE then duti-
fully forwards the packet back to its origin. This, of course, must be prevented.

 152 Hardware-Defined Networking

Figure 72 All-Active Multihoming

CE

CE

PE

PE

PE

CE

PE

PE

Figure 72 illustrates two classes of problems. The first is that one of the PEs
forwards the packet back to its origin. The other is that two PEs independently
forward the packet to a shared, multihomed CE. Each problem requires its own
solution.

The solution to the first problem—that of a BUM packet being echoed back to
its origin—is a classic split-horizon problem and is solved in EVPN using what’s
known as an Ethernet segment identifier (ESI). This is simply a value that uniquely
identifies an Ethernet segment within an EVPN instance. This value is encoded
into a non-forwarding MPLS label. An Ethernet segment consists of all of the
Ethernet links that are connected to a particular CE system. So, the two links that
extend from the CE that is the origin of the packet in Figure 72 both belong to the
same Ethernet segment and packets received by any PE attached to those links are
assigned the same Ethernet segment identifier. When a PE router receives a packet
from another PE, it checks the packet’s Ethernet segment identifier and blocks
transmission onto any interface that is associated with that identifier, solving the
first accidental replication problem.

For the second problem—two egress PEs independently forwarding copies of a
BUM packet to a common CE—a “designated forwarder” is used. The idea is
fairly straightforward. The designated forwarder concept is based on the observa-
tion that traffic between PEs and CEs contain VLAN headers in the customer
packets. It is then simply a matter of allocating VLAN IDs to each of the PEs
associated with a particular Ethernet segment. When an egress PE receives a multi-
destination packet (broadcast, unknown-unicast, multicast), it only forwards
those packets whose VLAN IDs have been configured as part of its designated
forwarder set. Therefore, it is guaranteed that only one copy of each packet is
received by each CE. Unicast packets with known unicast destination addresses
are unaffected by designated forwarder tests.

Both of these solutions to accidental multihoming replication problems involve
discarding packets instead of forwarding them. This, of course, means that
unnecessary copies of those packets were created in the first place. It would be,
of course, very desirable for a network to only spawn exactly as many copies
of a multi-destination packet as necessary. Achieving this means that the extra
effort involved in creating those copies and in forwarding them can be saved.

 Virtual Private Networks 153

Unfortunately, creating exactly the right number of copies turns out to often be
quite impractical.

To accomplish this kind of precision packet replication would require the replica-
tion and distribution of a massive amount of forwarding database and system
state information. For example, in a large EVPN network, a replication P node
could be located fairly close to an ingress PE. This replication P node would have
to have a copy of the designated forwarder information for every PE and Ethernet
segment to which it has any kind of access. Also, to react quickly to state changes
(e.g., a PE router going offline), the replication P node would have to have both
primary and secondary forwarding databases. Making matters worse, if the repli-
cation P node is far from the egress PEs, then the signaling time increases, making
the reaction time to failures much worse.

So, even though it seems to be (and is) inefficient to go through the effort to copy
and transport packets that will just be discarded, it is the best option when all of
the implications of doing otherwise are considered.

EVPN Over VXLAN
EVPN is most closely associated with MPLS as its transport tunnel encapsulation.
This is reasonable since EVPN is viewed as an evolution of MPLS pseudowires and
VPLS. In recent years, however, EVPN over VXLAN has emerged as a popular
solution for building efficient, scalable data center networks. With just one excep-
tion, VXLAN serves as just as effective a tunneling technology as MPLS. That one
exception is split horizon.

Split horizon checks in EVPN over MPLS makes use of an MPLS header whose
label value is used to encode an Ethernet segment identifier. When forwarding
BUM packets, the Ethernet segment identifier carried by that MPLS header is com-
pared with the Ethernet segment identifier associated with an intended transmit
interface. If the two values match, the packet is discarded.

VXLAN does not have a field that can be used to encode an Ethernet segment
identifier, so another means must be devised. The recommended solution is for
each of the VXLAN tunnel endpoints (the equivalent of a provider edge system
in EVPN) to keep track of the IP addresses of all of the Ethernet segments of the
other VXLAN tunnel endpoints with which it has shared, multi-homed Ethernet
segments (i.e., multiple IP addresses per VXLAN tunnel endpoint). Each IP ad-
dress in the egress VXLAN tunnel endpoint’s database is then associated with an
Ethernet segment that terminates at the current VXLAN tunnel endpoint. When
a packet is received from the VXLAN overlay network, its source IP address from
the outer IP header is examined and compared to the IP addresses stored as just
described. When a match is found, the packet is filtered from being replicated onto
those transmit interfaces associated with a matching IP address from the local
database, thus preventing a packet from being received from and transmitted onto
the same Ethernet segment.

11 Multicast

Multicast has been referred to a number of times in preceding chapters. In this
chapter, we’ll dive into the details of the concepts, implications, addressing and
protocols associated with multicast traffic. But first, a quick definition of the term
“multicast.” Multicast simply means the selective forwarding of multiple copies of
a packet to multiple destinations. Multicast is not broadcast or flooding, which are
both the copying of a packet to all possible destinations. The word “selective” is a
very important part of multicast’s definition.

BUM Packets

Not all of the packets that require multicast-like treatment are multicast packets.
Broadcast packets—which are a degenerate form of multicast—are addressed to
all possible destinations instead of all interested destinations. The distinction is
important. Multicast strives to only send copies of a packet to those destinations
that are interested in receiving such a packet. Broadcast is not so polite. It’ll send
a copy to every endpoint in a VLAN, for example, regardless of their interest
or even compatibility with said packets. In Ethernet bridging, packets with an
unknown destination address must be flooded to all endpoints in a VLAN so that:
a) the packet is assured of getting to its destination, and b) all of the bridges in the
network will have a chance to observe the packet’s MAC source address for learn-
ing purposes. Flooding and broadcast have identical behaviors that are triggered
by two different events—i.e., the matching of the broadcast destination address
versus the failure to match the packet’s destination address at all.

Collectively, broadcast, unknown-unicast and multicast packets are referred to as
BUM packets. For a forwarding system’s data path, there’s no need to distinguish
between the three. In all three cases, a single packet is received and one or more
copies are transmitted. With regard to packet processing, however, broadcast and
unknown-unicast packets require very different handling than do multicast pack-
ets. It is the handling of multicast packets, specifically, that is the primary focus of
this chapter.

 Multicast 155

Multicast Representations

In packet processing, the arcane multicast addressing definitions make things
challenging. Practically speaking, IP multicast is the most interesting case because
it represents the largest type of traffic and the largest number of applications. IP
packets are always conveyed by some kind of lower-layer tunnel in the form of
Ethernet or MPLS, for example. Ethernet multicast (with a non-IP payload) is
also, of course, a real thing and has real applications.

IP Multicast Over Ethernet
IP multicast packets are, by convention, conveyed as payloads of multicast Eth-
ernet packets. Each version of IP has its own multicast addressing architecture.
For IPv4, a multicast address falls into the range: 224.0.0.0-239.255.255.255
(0xe000_000-0xefff_ffff). This means that the most significant four bits indicate
that an IPv4 address is multicast if they are set to 0xe while the remaining 28 bits
indicate the multicast destination itself (i.e., the so-called “group address”).

For IPv6, RFCs 2464, 3306 and 3956 pertain. In a nutshell, the most significant
16 bits of the 128-bit address identify an IPv6 address as being multicast (as well
as the scope of the multicast and some flags) while the next 80 bits contain either
unicast prefix (RFC 3306) or rendezvous point (RFC 3956) information. What’s
pertinent to Ethernet is that the least significant 32 bits are used to identify the
multicast destination.

For both IPv4 and IPv6, the Ethernet destination address value is derived from the
Ethernet packet’s IP payload multicast destination address. For IPv4, that Ethernet
destination address value has the form: 01-00-5e-xx-xx-xx (the most significant
bit of xx-xx-xx must be set to 0). The least significant 23 bits of a multicast IPv4
destination address are mapped to the least significant 23 bits of the Ethernet des-
tination address value. This, of course, means that five bits of the IPv4 multicast
destination address value that define the packet’s multicast group are missing from
the Ethernet destination address (remember, IPv4’s multicast group address value
is 28 bits wide).

To eliminate the ambiguity from the multicast Ethernet address where the Ethernet
packet’s payload is a multicast IPv4 packet, the Ethernet bridge function can look
into the IPv4 header and grab the missing bits (i.e., destinationAddress[4...8])
and append those bits to Mac.destinationAddress, yielding an unambiguous 53-
bit MAC address that can be used as a forwarding database entry’s key value.

Things are a bit more sensible for IPv6. Here, the Ethernet destination address
value has the form: 33-33-xx-xx-xx-xx. The least significant 32 bits of the IPv6
multicast destination address (all of the relevant group address bits) are mapped to
the lower 32 bits of the Ethernet destination address.

 156 Hardware-Defined Networking

Though multicast Ethernet addresses are called for when the Ethernet packet’s
payload is a multicast IP packet, it is not essential that this be done. If a multicast
IP packet is conveyed as the payload of a unicast Ethernet packet, then the Eth-
ernet packet is addressed to the next IP router to forward the packet while the IP
packet is addressed to the appropriate multicast group. The use of unicast Ethernet
to encapsulate multicast IP is generally not done.

IP Multicast Over MPLS
IP multicast packets may be conveyed via multicast MPLS LSPs. This means that
the label values extracted from the MPLS headers are looked up and interpreted as
multicast values if appropriate (i.e., the lookup results must return a list of destina-
tions instead of a single destination).

It is not possible to glance at an MPLS packet and determine whether it is unicast
or multicast. The original MPLS RFC (3032) defined two ethertype values for
MPLS: 0x8847 for unicast and 0x8848 for multicast. That unnecessary distinction
was deprecated by RFC 5332 which stipulates that 0x8847 is for downstream-as-
signed labels and 0x8848 is for upstream-assigned labels, regardless of their unicast
or multicast nature. Multicast MPLS packets may be conveyed either by a unicast
Ethernet packet or a multicast Ethernet packet. If unicast is used, the Ethernet
packet is addressed to the next MPLS LSR router’s MAC address. If multicast is
used, the destinationAddress value may be set to either 01-00-5e-80-00-00 or
01-00-53-8v-wx-yz, where v-wx-yz are copied from the 20-bit label value of either
the first (i.e., top) or second MPLS header.

Ethernet Multicast
A purely Ethernet multicast packet is one where the Ethernet packet’s payload
is opaque (i.e., is not either IP or MPLS and the only forwarding information
that is available is in the Ethernet header) or the packet is being forwarded by a
forwarding system that is only capable of Ethernet bridging. For these packets, the
Mac.destinationAddress value is looked up and either flooded within the packet’s
VLAN (for a lookup miss) or distributed to a subset of the transmit interfaces
within the packet’s VLAN (for a lookup hit).

Bit Index Explicit Replication (BIER)
At the time of this writing, a new multicast method is wending its way through the
standards process in the IETF. Known as Bit Index Explicit Replication (BIER), its
purported benefits over the use of traditional multicast addresses are that it avoids
having to build multicast distribution trees and minimizes the requirement for in-
termediate nodes to maintain multicast-related state. This forwarding method falls
into the broad category of source-based forwarding. Source-based forwarding was
experimented with in the early days of networking, but never really caught on. In

 Multicast 157

recent years, the idea has been revived and is being pursued with vigor on a num-
ber of fronts (e.g., MPLS segment routing where a large stack of labels is pushed
onto a packet at ingress and each hop interprets and pops the topmost label).

In a nutshell, a BIER header is imposed upon a packet between an underlay and
the payload packet, roughly akin to a VXLAN header. However, unlike a VXLAN
header, a BIER header provides destination identifying information instead of just
a virtual network identifier. The destination identification information in BIER is
in the form of a bit string where each bit corresponds to an egress BIER router at
the edge of a BIER network domain. As the a BIER packet is forwarded across the
BIER network domain, bits in the bit string are cleared such that the remaining
bits in the string that are set to 1 are those that correspond to the egress BIER rout-
ers to which the current copy of the packet is addressed.

Figure 73 BIER Replication and Forwarding Method

1

A0

B

C

D

ingress

011011 000001

011010 000010

011000

000010

001000
010000

egressintermediate

2

3

4

5

6

An IP packet is receive by a BIER ingress router (0) and is encapsulated in a BIER
header as shown in Figure 73. The packet is addressed to multiple BIER egress
routers. The BIER bit string is numbered from 1 starting at the rightmost (least
significant) bit. So, the bit string 011011 implies that the packet is destined to the
BIER egress routers with the IDs 1, 2, 4, and 5.

By convention (though it really doesn’t matter) bit string bits are processed from
bit 1. The core BIER router (A) sees that bit 1 is set to 1, so it examines its forward-
ing database to identify the next-hop router that corresponds to that bit. As it
turns out, the next-hop router in this case is a BIER egress router, so it clears all of
the other bits in the bit string to 0 and forwards the packet to router 1.

 158 Hardware-Defined Networking

Router (A) continues to process the bit string. Examining bit 2, it finds that it is
also set to 1. The forwarding database indicates that router B is a common next-
hop for BIER egress routers 2, 3, 4, 5 and 6. Router A first applies a mask to the
received bit string that clears all of the bit string bits that do not correspond to
BIER egress routers that are reachable via the next-hop for bit 2 (i.e., router B). In
this example, that clears bit 1 (bit 1 had previously been cleared, so this action has
no effect). This version of the bit string is placed in the BIER header of the packet
that is forwarded to router B. Router A then clears all of the bit string bits that do
correspond to BIER egress routers that are reachable via router B. This clears bits
2 through 6. At this point, all of the bits in the bit string being processed by router
A have been cleared, so it is done with its replication work for the packet.

The same process is carried out by routers B, C and D: the bit string is scanned for
bits that are set to 1, next-hop data associated with each such bit is fetched and
used to mask the bit string two different ways (one to eliminate destinations and
one to eliminate non-destinations), and the packet is replicated and forwarded as
necessary.

At the BIER egress routers (1–6), the BIER header should have just one bit asserted
in the bit string: the bit associated with that BIER egress node itself. The BIER
egress node strips off the BIER header and then forwards the multicast payload
packet in the normal manner.

The BIER encapsulation header is depicted in Figure 74 and defined in Table 29.

Figure 74 Transport-Independent BIER Encapsulation Header Structure Diagram

0

4

8

12

...

0 1 2
version entropy

bitForwardingIngressRouterId

setId subDomain ttl

bitString

trafficClass nextHeader

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 Multicast 159

Table 29 Transport-Independent BIER Encapsulation Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(Ver)

4 0.0 Identifies the BIER header version.

Currently, this value must be set to 0.

bitStringLength
(BSL)

4 0.4 Indicates the length of bitString.

This value is enumerated as follows:

1 = 64 bits
2 = 128 bits
3 = 256 bits
4 = 512 bits
5 = 1,024 bits
6 = 2,048 bits
7 = 4,096 bits

All other values are reserved.

entropy
(Entropy)

20 0.12 Load balancing entropy.

Typically, this value is set to a hash of the
flow-identifying fields of the payload packet
headers.

bitForwardingIngressRouterId
(BFIR-ID)

16 4.0 Identifies the BIER ingress router.

This identifying value is set within the context
defined by subDomain. In other words, the
same bitForwardingIngressRouterId
value may be used in a different sub-domain and
refer to a separate BIER ingress router.

trafficClass
(DS)

8 4.16 Specifies the packet’s traffic class.

This value is interpreted the in the same manner
as, say Ipv4.trafficClass, as specified by
RFC 2474.

nextHeader
(Protocol)

8 4.24 Identifies the BIER payload packet type.

This value is interpreted in the same manner as,
say Ipv4.nextHeader, in that the same
enumerations are used.

 160 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

setId
(SI)

10 8.0 Provides an offset to bitString.

The number of potential multicast destinations
for a packet may exceed the number of bits
available in bitString. When this is the case,
the BIER ingress router sends one or more
copies of the original packet into the BIER
network, each with a different setId value. The
actual index number of a bit in bitString is
the raw bit number of the bit in the bit string
offset by the product of setId and the
expanded form of bitStringLength.

This value is only interpreted as described above
when opaqueNumber is set to 0.

subDomain
(Sub-domain)

10 8.10 The BIER forwarding sub-domain.

This value acts as a forwarding context in which
to interpret bitString.

This value is only interpreted as described above
when opaqueNumber is set to 0.

opaqueNumber
(O-flag)

1 8.20 Indicates that setId and subDomain should be
interpreted as a single 20-bit opaque value.

If this bit is set to 1, then the 20-bit
concatenation of setId and subDomain is used
as an index or a key for fetching the setId,
subDomain and bitStringLength. This use
of a 20-bit proxy for these three values is an
adaptation of the normal behavior for the
MPLS encapsulation form of the BIER header.

ttl
(TTL)

8 8.24 A time-to-live value.

This field operates in exactly the expected
manner (see, for example, Ipv4.ttl).

bitString
(BitString)

64-4K 12.0 Variable-length bit string.

This bit string is used in conjunction with
setId (to establish a base offset) and
subDomain (a forwarding context) to identify
the BIER egress nodes to which copies of the
packet must be sent.

When MPLS is used as the transport underlay for BIER, a separate, MPLS-specific
BIER header format is used. This header format is depicted in Figure 75 and
defined in Table 30.

 Multicast 161

Figure 75 BIER Over MPLS Encapsulation Header Structure Diagram

0

4

...

0 1 2
version1010 entropy

bitString

nextHeader bitForwardingIngressRouterId

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 30 BIER Over MPLS Encapsulation Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

5 4 0.0 Disambiguates the BIER header.

These bits are intended to prevent confusion
between a control word, associated channel
header, IPv4, IPv6 and BIER when blindly
parsing beyond the MPLS bottom of stack.

version
(Ver)

4 0.4 Identifies the BIER header version.

Currently, this value must be set to 0.

bitStringLength
(BSL)

4 0.8 Indicates the length of bitString.

This value is enumerated as follows:

1 = 64 bits
2 = 128 bits
3 = 256 bits
4 = 512 bits
5 = 1,024 bits
6 = 2,048 bits
7 = 4,096 bits

All other values are reserved.

entropy
(Entropy)

20 0.12 Load balancing entropy.

Typically, this value is set to a hash of the
flow-identifying fields of the payload packet
headers.

bitString
(BitString)

64-4K 4.0 Variable-length bit string.

This bit string is used in conjunction with setId
(to establish a base offset) and subDomain (a
forwarding context) to identify the BIER egress
nodes to which copies of the packet must be
sent.

oam 2 _.0 Performance measurement bits.

These bits are used for passive performance
measurement marking.

 162 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

nextHeader 4 _.12 Identifies the BIER payload packet type.

This value is enumerated as follows:

1 = MPLS with downstream-assigned label at
the top of stack
2 = MPLS with upstream-assigned label at the
top of stack
3 = Ethernet
4 = IPv4
5 = BIER OAM
6 = IPv6

All other values are reserved.

bitForwardingIngressRouterId
(BFIR-ID)

16 _.16 Identifies the BIER ingress router.

This identifying value is set within the context
defined by subDomain. In other words, the
same bitForwardingIngressRouterId
value may be used in a different sub-domain and
refer to a separate BIER ingress router. This
value provides context for interpreting
bitString bits.

In comparing the IP overlay and MPLS overlay versions of the BIER header, you’ll
notice that the MPLS version is missing quite a few fields. In particular, the MPLS
version is missing trafficClass, setId, subDomain and ttl. All of these missing
fields are expected to be encoded in the MPLS header that precedes the BIER
header. This is the so-called “BIER-MPLS” header.

Bier.trafficClass and Bier.ttl use the native traffic class and time-to-live fields
of the MPLS header. The Bier.setId and Bier.subDomain values are encoded into
locally-relevant, 20-bit Mpls.label values and are distributed to the intermediate
BIER routers that will encounter those label values in received packets. These
intermediate BIER routers look up the BIER-MPLS header’s label value in order
to fetch the necessary setId and subDomain values. Once that is done, the BIER
header is processed normally.

Multi-Layer Multicast

In the previous section, a couple of examples of multicast addressing at multiple
layers of encapsulation—specifically, multicast IP and MPLS packets as payloads
of multicast Ethernet packets— were presented.

A reasonable question to ask at this juncture is: If the IP or MPLS addressing
directs the packets to their destination, why does the Ethernet header’s destination
address also point to the same set of destinations?

 Multicast 163

The reason that this is done is to support networks that are a combination of Eth-
ernet bridges and IP or MPLS routers. With unicast packets, the Ethernet header
is addressed to the next router along the path toward the packet’s destination.
Any Ethernet bridge (i.e., a forwarding system that is not capable of IP or MPLS
routing) can successfully forward such a packet toward its single destination by
interpreting the Ethernet header. However, for multicast, it may be the case that
multiple IP or MPLS routers serve as the next hop for a multicast packet’s replica-
tion tree within the network. If any bridges are interposed between a particular
router and the set of next-hop routers, then a unicast Ethernet packet will be insuf-
ficient to ensure that the packet is replicated and forwarded to its several next-hop
routers.

Things get really interesting when you consider the behavior of forwarding sys-
tems that support both Ethernet bridging and IP or MPLS routing.

Figure 76 Combined Multicast Bridging and Routing

Bridge Bridge

Bridge

Bridge

Router

Figure 76 shows several forwarding entities—an ingress bridge, a router and three
egress bridges—of a single forwarding system. Let us presume that a multicast
Ethernet packet with a multicast IP payload is received by the ingress bridge.
Based on the packet’s multicast Mac.destinationAddress value10, three destina-
tions are identified: two bridged transmit interfaces and an IP router instance. The
ingress bridge duplicates and forwards the packet unmodified (except for possible
VLAN translations) to the appropriate transmit interfaces. For the third copy of
the packet, the ingress bridge strips off the Ethernet header, updates the packet’s
forwarding domain and forwards the IP packet to the router forwarding entity.
The router identifies three destinations based on the IP destination address value
and forwards the packet to three separate bridging forwarding entities encapsu-
lated with new Ethernet headers and with time-to-live values decremented and
header checksums updated (if appropriate). The new Ethernet headers imposed by
the IP router have Mac.sourceAddress values that reflect the current IP router and
Mac.destinationAddress values that are derived from the IP packet’s destination
address value. Finally, the three egress bridges interpret the new Mac.destination-
Address value in order to identify the one or more transmit interfaces to which the
packet must be forwarded.

10 For IPv4, the additional five bits from Ipv4.destinationAddress may be appended to Mac.destina-
tionAddress in order to eliminate any forwarding ambiguity.

 164 Hardware-Defined Networking

It is important to note that, in the simple example shown above, the originally-
received packet is forwarded to several transmit interfaces by multiple means and
onto multiple VLANs. It is bridged to some interfaces and routed to others. This
multi-layer multicast behavior adds significant complexity to a forwarding system
compared to relatively simple unicast behavior.

Source-Specific Multicast

What one ordinarily thinks of as multicast is any-source multicast; meaning, any
endpoint may transmit a packet addressed to a particular multicast address and
reasonably expect all of the endpoints that are subscribing to that multicast group
to receive a copy of the packet. This is not at all unlike normal unicast behavior;
any packet, regardless of its source, that is addressed to a particular destination is
expected to be delivered to that destination. This permissiveness can be problem-
atic for certain applications. For example, imagine that you and a large fraction
of the world’s population are watching the finals of a singing competition via an
IP multicast video stream. It would be very unfortunate if some merry prankster
started sending their own multicast packets to the same multicast destination ad-
dress just before the announcement of the winner.

Another weakness of the any-source multicast model is that multiple, independent
multicast sources have no practical means for preventing the accidental overlap of
the assignment of multicast destination addresses to multicast streams.

To address these problems—and others dealing with setup protocols and scal-
ing—source-specific multicast was developed. A multicast destination or group is
designated by G. A source of multicast traffic is designated by S. In the any-source
multicast model, a multicast listener simply subscribes to a channel defined by
(*, G). For source-specific multicast, a multicast listener subscribes to (S, G) where
both the source address and destination address must match the specified values
before a packet may be forwarded to the listener.

Ranges of IP addresses have been allocated to source-specific multicast. For IPv4,
it’s 232.0.0.0/8 and for IPv6 its ff3x::/96. If a multicast IP router detects an IP
destination in one of these ranges, it can invoke the source-specific multicast be-
havior wherein the IP source address is combined with the IP destination address
to form a lookup search argument. However, there is a variant of the any-source
multicast method that, in many ways, behaves the same as source-specific multi-
cast; it is known as source-filtered multicast.

With source-filtered multicast, packets are only forwarded if, for a particular des-
tination address, the source address is a member of a specific set of address values,
or the source is not a member of a specific set of address values. This is essentially
a superset of the source-specific multicast behavior. Source filtered multicast uses

 Multicast 165

the normal IP multicast address ranges, and so cannot be distinguished from any-
source multicast based on the characteristics of the IP destination address value.

What this implies is:

 � The IP destination address must be submitted to a lookup.

 � This lookup returns a token and provisional next-hop data.

 � The token value is then combined with the IP source address value for a
second lookup.

 � The result of the second lookup then qualifies the result of the first.

 � If the second lookup is a miss, then the provisional next-hop data from the
destination lookup is used.

 � If the second lookup is a hit, then the next-hop data from the source address
lookup is used.

Bear in mind, that the next-hop data may specify that the packet not be forwarded.

IGMP Snooping

The default behavior for an Ethernet bridge is to flood packets with multicast
destination addresses to all of the interfaces that belong to the packet’s VLAN
(i.e., all of the interfaces of a particular Ethernet forwarding entity instance). In
other words, the multicast destination address is treated as if it were an unknown
unicast destination address. And, if there are no multicast address values in the
bridge’s forwarding database, this is the behavior that should be expected.

But what if there were multicast destination address values in the forwarding
database? Such entries could specify a list of transmit interfaces to which copies
of the packet must be forwarded. This has the beneficial effect of only forwarding
multicast packets toward endpoints that are interested in receiving particular
multicast packets.

If an Ethernet bridge is expected to build the contents of its forwarding database
by observing the Mac.sourceAddress values in the packets that it forwards, how
does it add multicast addresses? Automatic learning clearly won’t work since
multicast address values are never used as Ethernet source addresses.

An Ethernet bridge can automatically add multicast addresses to its forwarding
database by using a technique known as IGMP snooping. In a nutshell, what a
bridge is doing is listening in on the Internet group message protocol (IGMP) join
and leave messages sent between IP endpoints and routers and using that informa-
tion to determine which interfaces are associated with the multicast distribution
tree for each multicast address. This technique, while largely effective, is a bit of a
hack (kind of like how NAT can be a hack). There are a lot of exception conditions

 166 Hardware-Defined Networking

and new versions of protocols can break existing implementations. And, since
IGMP snooping entails adding behavior to a data link (Layer 2) protocol forward-
ing entity that makes it operate on packet headers that belong to the network layer
(Layer 3), neither standards entity (IEEE and IETF, respectively) have clear juris-
diction. There is, however, an informational (i.e., not normative) RFC (RFC 4541)
that surveys the requirements for implementing IGMP snooping on an Ethernet
bridge.

From a forwarding hardware perspective, the essential requirement is that IGMP
message packets be detected, intercepted and redirected to the control plane (i.e.,
the host CPU of the forwarding system) for processing. The control plane, in turn,
makes the necessary updates to the bridge’s forwarding database. Since IGMP is
IPv4-specific, RFC 4551 covers multicast listener discovery (MLD) snooping for
IPv6.

12 Connections

If you recall, Ethernet is unique among all of the forwarding protocols described
so far in that it has both a header and a trailer. Now granted, the trailer is very
simple, containing just the 32-bit CRC value that validates the correctness of the
bits of the Ethernet packet. But think about the important implications of that
trailer: it is possible for packets to become corrupted during transmission. It is, of
course, possible for packets to become lost or otherwise problematic in a number
of other ways. Packets may be dropped due to congestion, delivered out of order,
duplicated or delivered to the wrong destination. What’s important here is that
Ethernet—and all of the forwarding protocols so-far discussed—lacks any means
for correcting these problems. In short, all of these protocols are unreliable at
delivering user data. This kind of unreliable, packet-by-packet data delivery is
known as “connectionless networking.”

The loss of a small number of packets is fine for certain applications. If you’re
making a FaceTime call, a lost packet may cause some distortion or noise in the
audio or video. That’s annoying, but survivable. On the other hand, a multi-
megabyte document or application with a missing 1,000-byte string of data from
its center is pretty much useless. If a network loses one out of a thousand packets
(it’s a really crappy network) and a file requires thousands of packets to transport
it from one place to another across this network, the file may never successfully
arrive.

Fortunately, it is possible to provide reliable delivery services over unreliable
forwarding protocols. To express it a different way: a connectionless networking
technology can serve as the foundation for a connection-oriented network.

Transmission Control Protocol (TCP)

What we now know as TCP/IP was initially described as a single, monolithic,
packet-based networking technology that provided reliable data delivery in the
face of occasional packet loss. Wisely, the internetworking functions (i.e., Layer 3
packet forwarding) and the transport functions (i.e., Layer 4 reliable connections)
were split into two separate but closely associated protocols. TCP is responsible
for abstracting away all of the details of ensuring that packets are delivered in
order and intact.

 168 Hardware-Defined Networking

In addition to reliably delivering packets across an unreliable network, TCP has
three other responsibilities:

 � service demultiplexing

 � connection setup and tear down

 � congestion mitigation

We will delve into all of these. First, though, let’s take a look a the TCP header
(defined by IETF RFC 793) and shown in Figure 77. For all intents and purposes,
TCP headers are always preceded by an IP header (IPv4 or IPv6) using an IP next-
Header value of 6.

Figure 77 TCP Header Structure Diagram

0

4

8

12

16

20

...

0 1 2
sourcePort destinationPort

sequenceNumber

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ackNumber

windowSizedataOffset

urgentPointer

<TCP options>

checksum

Table 31 TCP Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

sourcePort
(Source Port)

16 0.0 Source and destination TCP process identifiers.

These values are used to identify one of, potentially,
several services as the origin or termination of a TCP
packet. When responding to a received TCP packet, it
is expected that the sourcePort value from the
received TCP packet be used as the transmit TCP
packet’s destinationPort value, and vice versa.

As a simple example, these port numbers permit an
endpoint to receive both email- and web browser-
related packets and ensure that each is delivered to the
appropriate process.

destinationPort
(Destination Port)

16 0.16

sequenceNumber
(Sequence Number)

32 4.0 The sequence number of the first byte of the TCP
packet’s data payload (except when it’s not).

If sync is false (0), then sequenceNumber behaves as
described just above. Otherwise (i.e., sync == 1),
sequenceNumber is the initial sequence number and
the first data byte is at sequenceNumber + 1.

Initial sequence numbers are chosen at random to
prevent malicious replay attacks. Separate,
independent sequence numbers are maintained for
each TCP connection.

 Connections 169

Field Name (std. name) Width Offset (B.b) Definition

ackNumber
(Acknowledgment Number)

32 8.0 Identifies the last successfully received data byte.

If ack is true (1), then this field contains the next
sequenceNumber value that the sender of the
ackNumber is expecting to receive. This has the effect
of acknowledging all of the data bytes that precede the
byte referenced by ackNumber. Put simply: “I am
expecting to receive bytes starting with byte 100.
Hence, bytes 99 and earlier have all been successfully
received.”

dataOffset
(Data Offset)

4 12.0 Indicates the presence of TCP options.

This field is analogous to Ipv4.headerLength. The
nominal value of 5 indicates that the TCP header is 20
bytes long and, hence, has no additional TCP options
appended to the basic TCP header. Each value greater
than 5 indicates that 4 additional bytes have been
appended to the TCP header. Multiplying
dataOffset by 4 yields the byte distance from the
start of the TCP header to the start of its data payload.

ecnNonceSum
(NS)

1 12.7 A 1-bit sum of random ECN (explicit congestion
notification) nonce-encoding code points.

This value is used to prevent a TCP data transfer
destination endpoint from lying about whether or not
packets experienced congestion during their transport
from their source. By lying and claiming that no
congestion has been experienced, a TCP destination
can prevent a source from slowing its offered data rate
in the face of congestion. Actual congestion marking
by forwarding systems between the source and
destination overwrites the source-generated nonce
values, making it impossible for a TCP destination
whose received packets experienced congestion from
computing a correct sum.

This function is experimental and is described in detail
in IETF RFC 3540.

congestionWindowReduced
(CWR)

1 12.8 An acknowledgment by a TCP source that its
transmitted packets have experienced congestion en
route to their destination.

This flag bit is set to 1 by a TCP source in response to
receiving one or more TCP packets from the
destination with the ecnEcho flag set to 1. (See IETF
RFC 3168 for details.)

 170 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

ecnEcho
(ECE)

1 12.9 Reflects the receipt of an IP packet indicating that
congestion has been experienced.

This flag bit serves two ECN-related functions. First, if
sync is set to 1, it indicates that the TCP peer is
ECN-capable. If sync is set to 0, it indicates that an
IPv4 or IPv6 packet was received with ecn set to 3 (i.e.,
congestion experienced). See IETF RFC 3168 for
details.

urgentPointerValid
(URG)

1 12.10 Indicates that the value in urgentPointer is valid.

See urgentPointer, below, for details.

ack
(ACK)

1 12.11 Indicates that ackNumber is valid.

See ackNumber, above, for details.

push
(PSH)

1 12.12 Forces immediate transmission and delivery of TCP
data.

TCP generally buffers up data until it has accumulated
enough bytes for an efficient data transfer (i.e., the
overhead of the headers becomes small compared to
the payload data). However, for certain applications
(e.g., Telnet), it is necessary to send small amounts of
data immediately (e.g., individual keystrokes) instead
of attempting to buffer up the data. On the receiving
end, TCP packets whose push flag is set to 1 have their
data payload immediately delivered to the destination
process.

reset
(RST)

1 12.13 Resets a TCP connection.

A TCP Reset is sent either during connection
establishment to reject a connection or during data
transfer to reject further communication.

sync
(SYN)

1 12.14 Starts a TCP connection by synchronizing sequence
numbers.

A TCP Sync is used to initiate a connection between
TCP processes on originating and target endpoints.
Only the first packet from each end of a connection
may be sent with sync set to 1 for the duration of the
connection.

finish
(FIN)

1 12.15 Ends a TCP connection.

A TCP packet with finish set to 1 is sent to indicate
that there are no more data to transfer and that the
TCP connection must be torn down.

 Connections 171

Field Name (std. name) Width Offset (B.b) Definition

windowSize
(Window)

16 12.16 The size of the receive data buffer (i.e., window).

This value indicates how many additional data bytes
the sender of the current TCP packet is able to receive
without exceeding its receive buffer capacity.

checksum
(Checksum)

16 16.0 Protects the TCP header, its data payload and a
pseudo-header.

This 16-bit, ones-complement checksum is used to
protect the TCP header and the data payload of the
TCP header. In addition, checksum is also computed
over a pseudo-header that grabs actual fields from the
preceding IPv4 or IPv6 header as well as a synthesized
header value.

For IPv4, the following fields are concatenated to form
a 12-byte pseudo-header:

•	 sourceAddress
•	 destinationAddress
•	 <one byte set to 0>
•	 Ipv4.nextHeader
•	 TCP (or UDP) length: The combined length of the

TCP or UDP header and its data payload, as
measured in bytes.

For IPv6, the following fields are concatenated to form
a 40-byte pseudo-header:

•	 sourceAddress
•	 destinationAddress
•	 TCP (or UDP) length: The combined length of the

TCP or UDP header and its data payload, as
measured in bytes.

•	 <three bytes set to 0>
•	 nextHeader

urgentPointer
(Urgent Pointer)

16 16.16 Identifies the last byte of urgent data.

The urgentPointerValid and urgentPointer
values are used to mark bytes within a TCP data
stream as being urgent (i.e., must be delivered to their
destination process in an expedited manner). All bytes
from the current value of sequenceNumber up to and
including urgentPointer must be considered urgent
data. The value of urgentPointer is held constant
across several TCP packets if an urgent TCP data
stream requires several packets to convey. The use of
urgentPointer does not affect the behavior of
sequenceNumber. RFC 793 (the TCP standard) is
updated by RFC 6093 to clarify the semantics of
urgentPointer.

 172 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

<TCP options> variable 20.0 Zero or more TCP options.

From zero to ten 32-bit words may follow the base
20-byte TCP header as TCP options. All options start
with a single-byte type value. Some options’ second
byte is an option-length value. Some of the more
interesting options include (listed by type value):

0: end of options list
1: padding byte
2: maximum segment size
3: window scale
4: selective acknowledgment permitted
5: selective acknowledgment
8: timestamp and timestamp echo

Service Multiplexing
The Tcp.sourcePort and Tcp.destinationPort values identify the two ends of a
reliable connection between two processes running on endpoints addressed by the
encapsulating IP header. Any particular endpoint, whether it’s considered a server
(web, email, file, etc.) or a client (notebook, desktop, mobile, etc.) may—and
usually does—have multiple services or processes running simultaneously. Each
endpoint system or device typically uses just a single IP address to make itself ac-
cessible across an IP network such as the Internet. The TCP port numbers are used
to address the several and separate processes running on each endpoint. Thus, it is
possible to browse web sites while streaming music, downloading an application,
and sending and receiving text messages.

Common services often operate behind so-called “well known” port numbers.
For example, a web server accepts HTTP (hypertext transfer protocol) messages
via port 80 while FTP (file transfer protocol) uses ports 20 and 21. The initiators
of the TCP connections to these ports typically use ephemeral TCP source port
numbers in the range of 49,152–65,535 to which the target of the TCP connection
is expected to reply. The use of ephemeral source port numbers makes it possible
for a single web browser to make multiple, simultaneous connections to a variety
of web servers and have the served-up contents demultiplexed, delivered and
rendered to the appropriate part of each web page.

Establishing and Ending Connections
A TCP endpoint cannot simply start sending data packets to another TCP end-
point. It must first establish a connection with that other endpoint. Connection
establishment is accomplished through a three-way handshake. This process is
initiated through the actions taken by an endpoint referred to here as an initiator.
For an initiator to succeed at establishing a connection with a target, the target

 Connections 173

must be ready to accept such a connection. A target makes itself ready to establish
a connection by “listening” on a particular TCP port number. This is known as
a passive open. The three-way handshake that’s described in detail below is the
active open portion of the process.

The steps in the TCP three-way handshake are shown in Figure 78.

Figure 78 TCP Connection Establishment Handshake

Initiator
sequence number = 5,045

ack number = ?

sequence number = 5,046
ack number = 17,765

sequence number = ?
ackNumber = ?

sequence number = 17,764
ack number = 5,046

sequence number = 17,765
ack number = 5,046

sync

ack

sync/ack

Target

The steps illustrated in Figure 78 are thus:

1. Sync

The initiator that is establishing a connection with a target generates a
random sequence number (5,045 for this example) and sends a TCP packet
with its sync flag set to 1 and its sequenceNumber set to the just-defined se-
quence number.

2. Sync/Ack

Upon receipt of the TCP Sync packet from the initiator, the target sets its ack
number value to the received sequenceNumber + 1 (5,046 in this example). The
target responds by setting its own sequence number to a random value
(17,764 in this example) and sending a TCP packet whose sync and ack flags
are both set to 1 and whose sequenceNumber is set to the just-defined sequence
number value and whose ackNumber is set to the target’s just-set ack number.

3. Ack

Upon receipt of the TCP Sync/Ack packet, the initiator sets its ack number to
the received sequenceNumber + 1. The initiator then sends a TCP Ack packet to
the target whose ack flag is set to 1 and whose sequenceNumber and ackNumber
are set to the initiator’s corresponding internal values.

At the completion of this sequence of packet exchanges, the client (initiator) and
server (target) have sequence and ack numbers that are in sync (i.e., one system’s

 174 Hardware-Defined Networking

sequence number is equal to the other system’s ack number, and vice versa) and a
two-way connection has been established.

To terminate the connection, either side may initiate the process and the two
halves of the connection are torn down separately. The finish flag bit is used to
convey the intent to terminate a connection. This four-way handshake is shown in
Figure 79.

Figure 79 TCP Connection Termination Handshake (Four-Way)

Initiator

finish

ack

ack

finish

Target

The steps in a four-way TCP connection termination handshake are thus.

1. Initiator Finish

One side of the connection (the initiator) sends a TCP packet to its connection
partner whose finish bit is set to 1.

2. Target Ack or Finish/Ack

The target of the initial termination message responds by sending a TCP
packet to the initiator whose ack bit is set to 1. This acknowledges that the
initiator-to-target data connection is closed and that the initiator will no
longer send TCP data packets to the target. The target responds by sending
two TCP packets to the initiator: one whose ack bit is set to 1 and one whose
finish bit is set to 1. If the target has no more data to send to the initiator, it
may combine these two TCP packets into a single TCP packet where both ack
and finish are set to 1. If the target does have more data to send, the connec-
tion may remain “half open” until the data transmissions are complete.

3. Initiator Ack

Finally the initiator sends a TCP packet whose ack bit is set to 1 to complete
the connection termination process.

 Connections 175

The preceding description of the TCP connection setup/tear down process is, of
course, significantly abridged. The process must be tolerant of lost packets and
other errors, so the actual state machine has a number of timers and error recovery
paths.

Reliable Data Delivery
For a data connection to be reliable, three types of problems must be detected and
corrected. These are:

 � out-of-order data

 � missing data

 � duplicated data

TCP’s sequence numbers address all three of these problems. Figure 80 illustrates
the behavior of TCP sequence numbers.

Figure 80 TCP Sequence Number Behavior

total data sent

initial
sequence
number

Sequence Number0x0 0xffff_ffff

latest
ack

number
received

latest
sequence
number

sent

data sent but not acknowledged
total data acknowledged

Briefly: The initial sequence number is chosen randomly. As the TCP sender
transmits bytes to the receiver, each TCP packet includes a sequenceNumber value
that indicates the cumulative sequence number of the last byte of each packet. The
TCP receiver responds by transmitting TCP Ack packets whose ackNumber value
identifies the highest-numbered byte received without any gaps from the first byte
of the TCP session. Sequence numbers roll over through zero upon exceeding the
maximum value that a 32-bit number can hold.

The sections below explain how the sequence number mechanism described above
solves the three fundamental data reliability problems.

 176 Hardware-Defined Networking

Data Reordering

Figure 81 illustrates the process.

Figure 81 TCP Data Reorder

1,000 bytes

offset 0 offset 1,000 offset 2,000

TCP Reorder Buffer

received 1st sequenceNumber = 1,000

sequenceNumber = 1,000 sequenceNumber = 2,000 sequenceNumber = 3,000

1,000 bytes

received 2nd sequenceNumber = 3,000

1,000 bytes

received 3rd sequenceNumber = 2,000

TCP Data Packets

You can see the presence of sequenceNumber in each packet means that a TCP
receiver can position each received packet within a TCP reorder buffer where
the original sequence of data bytes may be reassembled. Let’s consider a simple
scenario where the initial sequence number is 0. If the first packet received by the
TCP receiver has a sequenceNumber value of 1,000 and the packet has a TCP data
payload of 1,000 bytes, then this packet neatly fits within the buffer at offset 0.
The next packet received by the TCP receiver has a sequenceNumber value of 3,000
and carries 1,000 bytes of TCP data. The receiver subtracts the data byte count
from the received sequenceNumber value to arrive at a sequence number of 2,000
for this packet’s first data byte. Thus, the data is written to the buffer starting at
offset 2,000, leaving a 1,000-byte gap between the first and second received pack-
ets. Finally, a TCP packet with 1,000 data bytes and a sequenceNumber of 2,000
is received, meaning the sequence number of the first byte of this packet is 1,000.
This third packet’s data is written into the 1,000-byte gap between the first two
packets’ data, completing the in-order data transfer.

Missing Data Retransmission

Using the data reordering example from above as a starting point, let’s assume that
the TCP packet whose sequenceNumber value is 2,000 wasn’t simply delivered out
of order, but was lost due to any of a variety of the usual things that happen on
networks. From the TCP receiver’s perspective, the order in which the TCP data

 Connections 177

packets are received and its responses to the data packets are the same regardless
of whether a packet was lost in transmission (and later retransmitted) or simply
delivered out of order by the network. Figure 82 takes Figure 81 and augments it
with ackNumber values.

Figure 82 TCP Missing Data Behavior

1,000 bytes

TCP Data Packets TCP Ack Packets

offset 0 offset 1,000 offset 2,000

TCP Reorder Buffer

received 1st sequenceNumber = 1,000 ackNumber = 1,000

ackNumber = 1,000

ackNumber = 3,000

sequenceNumber = 1,000 sequenceNumber = 2,000 sequenceNumber = 3,000

1,000 bytes

received 2nd sequenceNumber = 3,000

1,000 bytes

received 3rd sequenceNumber = 2,000

In response to the receipt of the first TCP data packet, the TCP receiver transmits
a TCP Ack packet back to the sender with an ackNumber value of 1,000, indicating
that is has successfully received bytes 0 through 999. The second TCP data packet
received by the TCP receiver indicates that a gap exists from byte 1,000 through
1,999. To inform the TCP sender of this, the TCP receiver transmits another TCP
Ack packet with the exact same ackNumber value of 1,000. This informs the TCP
sender that, while the first 1,000 bytes have been successfully received, the next
packet (and possibly more) is currently missing. This duplicate acknowledge (the
sender has already received an acknowledge for the first 1,000 bytes) motivates
the sender to retransmit the first unacknowledged packet (i.e., the packet whose
sequenceNumber is 2,000).

The TCP sender, in turn, keeps track of the TCP Ack messages that have been re-
ceived and maintains an awareness of the highest-numbered data byte that’s been
successfully transmitted. Every unacknowledged byte is subject to retransmission.

Re-transmissions and acknowledges may also get lost. Hence, TCP maintains tim-
ers to detect these cases and automatically retransmit either data or Ack packets as
necessary to keep the process moving along.

 178 Hardware-Defined Networking

Duplicate Data Discard

Duplicate data may be received by a TCP receiver if a packet that is assumed miss-
ing is simply delayed and delivered out of order. The TCP receiver may request an-
other copy of the packet through the use of a TCP Ack message before the delayed
data packet is received. If both copies of the data packet are eventually successfully
received, then the receiver must deal with redundant data.

If a TCP receiver receives a TCP data packet whose sequenceNumber corresponds
to a data packet that had previously been received (regardless of whether or not it
had been acknowledged), the TCP receiver may either discard the packet or simply
overwrite the data in its receive buffer with the newly received data. Since the data
is the same, the data in the buffer does not change.

Selective Acknowledge

If a TCP data packet is lost before arriving at a receiver, but that missing packet
is followed by several successfully received TCP data packets, the receiver has
no effective means for alerting the sender to just retransmit the single missing
packet. Selective acknowledgment (defined by RFC 2018 and known colloquially
as SACK) is an optional extension to TCP that addresses this specific, common
scenario.

If both the TCP sender and TCP receiver agree to participate in selective ac-
knowledgment, then an optional header is appended to TCP Ack packets that list
the beginning and ending sequence number of ranges of packets that have been
successfully received and queued by the receiver. If two or more consecutive blocks
of data have been received, they may be represented by a single start/end entry
pair in a selective acknowledgment message. Thus, the sender is provided with a
detailed picture of which strings of bytes are missing from the receiver, allowing it
to retransmit only those ranges of data bytes that have gone missing.

TCP data packets arriving out of order at a receiver can be briefly interpreted
as missing data, prompting two actions by the sender: the retransmission of the
missing data and, significantly, a reduction of the rate of data transmission due
to the reasonable assumption that packet losses were caused by network conges-
tion. To mitigate against the unnecessary slow-down of the network, the selective
acknowledgment function was updated by RFC 2883 to support so-called “du-
plicate SACK” functionality. Essentially, this extension allows a receiver to claim
“never mind about my recent report of a missing packet; it was received after all.”
Though this doesn’t necessarily prevent a sender from sending an unnecessary
copy of data that’s not actually missing, it does allow the sender to quickly return
to normal transmission rates.

 Connections 179

Congestion Management
Congestion management in connection-oriented networks has been an area of
continuous and active research since the development of TCP in the 1970s and
it will probably remain a topic of interest for decades to come. Congestion, its
causes, and remedies, is a deep and complex topic. Chapter "13 Quality of Ser-
vice" on page 185, delves into congestion as it relates to quality of service.

The mechanics of TCP’s congestion management scheme is quite simple. Essential-
ly, the TCP receiver transmits TCP Ack messages to the sender that indicate how
many bytes the receiver is willing to accept. This limit is known as the “window
size” and is conveyed by Tcp.windowSize.

If the sender transmits a greater number of bytes than indicated by windowSize,
then those excess packets are subject to being dropped due to buffer exhaustion
on the receiver. Of course, dropped packets must be retransmitted, placing more
stress on the network. Hence, senders are obliged to respect the limits advertised
by the receiver. The receiver may advertise a smaller window size than it can
accommodate in actuality. And, the sender may, of course, transmit fewer bytes
than the windowSize value dictates and may, further, throttle its transmission to
less than a maximum rate. It is the receiver’s setting of windowSize and the sender’s
reaction to its values where the subtlety and complexity of TCP congestion control
lie.

If a receiver sets its window size parameter too small, then only one packet may be
received prior to transmitting a TCP Ack to the sender, establishing a one packet at
a time two-way handshake: data/ack, data/ack, etc. If there is a long transmission
propagation delay relative to the transmit bit rate and packet length (e.g., a packet
that can pass a particular point in the network in 1 µs but where the round-trip
transit time is 1 ms), then network utilization is going to be very low since at least
1 ms will pass between each 1 µs packet. Larger window sizes mean more data
packets received for each acknowledge transmitted.

The sender determines how many bytes to transmit based on a parameter that it
maintains called the congestion window. The congestion window is a limit of the
number of unacknowledged bytes that a TCP sender may transmit to a receiver.
When a TCP connection is first established, the sender sets its congestion window
parameter to a small multiple of the maximum TCP data payload size. If data
transmissions result in the timely reception of acknowledges, then the sender
increases its congestion window parameter roughly exponentially until reaching
the “slow-start threshold.” The slow-start threshold doesn’t mark the beginning
of the slow start portion of window size growth. No, that would be a bit too intui-
tive. Instead, slow-start is the exponential-growth initial period that is followed by
a slower linear growth period. The linear growth period is maintained until packet
loss is detected and congestion is presumed.

 180 Hardware-Defined Networking

Figure 83 TCP Congestion Window Size

slow-start threshold

time

co
ng

es
tio

n
w

in
do

w
 si

ze

packet loss detected

linear growth

slow-sta
rt

When packet loss is detected the slow-start threshold is reduced by about half and
the slow-start phase of congestion window growth is reentered.

The behaviors described above take place entirely within the sending and receiv-
ing endpoints and not in the forwarding systems in between the two; though,
of course, the endpoints are reacting to things that are happening within those
forwarding systems: i.e., packet loss due to congestion. Stated another way, the
TCP endpoints use packet loss to detect congestion and then adjust their behavior
so as to avoid future congestion.

The weaknesses with this approach are two-fold. First, it is possible for all of the
TCP endpoints to react the same way at the same time, causing the network to
oscillate between periods of congestion and periods of inactivity, even in the face
of continuous high demand by the sending endpoints. Second, the endpoints are
compelled to make inferences about the congestion state of the network based on
what’s implied by packet loss.

Random Early Detection (RED)

To address the first weakness, random early detection (RED) and later weighted-
RED (WRED) were developed. The concept is quite simple. To avoid the
accidentally-synchronized behavior of TCP senders that leads to congestion/idle
oscillations, the forwarding systems that forward TCP packets measure the aver-
age depths of their queues and use that value to assign a drop probability to each
packet. A representative probability curve is shown in Figure 84.

When a queue within a forwarding system is running near empty or at some mod-
erate value, then the drop probability assigned to each packet being enqueued into
that queue is zero. As the average queue depth increases and eventually exceeds
a particular threshold, the enqueued packets are assigned larger and larger drop
probabilities values with continued queue depth increases, leading ultimately to a
drop probability of 1—i.e., all packets are dropped.

 Connections 181

Figure 84 Random Early Detection Probability Curve

0.0

1.0

average queue depthempty full
dr

op
 p

ro
ba

bi
lit

y

By randomly dropping a few packets here and there during the early stages of
congestion without regard for which connection the packets belong to, a few TCP
connections are made to slow down in service of the greater good (the greater good
being forestalling the collapse of the network). If network congestion continues to
grow, then more and more TCP connections are affected. Over an extended period
of congestion—as packets are randomly dropped—some connections are able to
recover back to their normal speed while others are compelled to slow down. This
has the effect of evenly spreading the impact of the congestion events across all of
the active endpoints over a sufficiently long time frame.

For random early detection to be effective, a forwarding system must be forward-
ing packets from a large number of simultaneous, long-lived TCP connections.
Smaller-scale forwarding systems that forward the packets from a small number
of TCP endpoints will not see enough connection diversity to be able to gradually
modulate demand on the network.

Weighted random early detection (WRED) is a variant of RED where different
drop probability curves are applied to packets of different priorities within the
same queue. This has the effect of assigning higher drop probabilities to packets of
lower priority.

Explicit Congestion Notification (ECN)

To address the second weakness of TCP’s congestion management mechanism—
implicit congestion notification—a mechanism based on explicit congestion
notification (ECN) has been developed.

There are two observations that are relevant to explicit congestion notifications:

1. Explicit notification demands that information dedicated to the task of alert-
ing TCP senders of congestion must be carried in messages from either the
receiving endpoint or from forwarding systems along the path from the sender
to the receiver.

2. TCP sender and receiver endpoints cannot directly measure the congestion

 182 Hardware-Defined Networking

state of the forwarding systems that lie on the path between them. Thus, the
forwarding systems must be involved in the process.

Explicit congestion notification relies on a three-way handshake. The stages are:

1. Detect congestion and mark the affected data packet accordingly to inform the
receiver.

2. Feed back to the sender that one or more of its transmitted packets experienced
congestion.

3. Inform the receiver that the sender has reduced the size of its congestion
window.

Congestion detection is performed by the intermediate forwarding systems that
forward packets from a TCP sender to a TCP receiver. The marking of a packet
as having experience congestion actually takes place in the IP header, not the TCP
header. The IP ecn field is used for this purpose.

If the path from a TCP sender to a TCP receiver is capable of explicit congestion
notification (i.e., the forwarding systems have RED or RED-like mechanisms that
can be used to detect impending congestion and it can update the ecn code point)
the packets are initially transmitted with ecn set to either ecnCapableTransport0 or
ecnCapableTransport1. If a forwarding system detects congestion while forwarding
a packet, that packet’s IP header is updated by changing its ecn field to congestion-
Experienced. Once ecn is set to congestionExperienced, subsequent forwarding
systems are not allowed to change it to another value, regardless of whether or
not the packet experienced congestion while being forwarded by those subsequent
systems.

The receiving TCP endpoint reacts to a congestionExperienced notification by
transmitting TCP Ack or data packets whose ecnEcho bit is set to 1 to the TCP
sender. Packets thus marked continue to be transmitted by the receiver until it re-
ceives a TCP data or Ack packet from the sender whose congestionWindowReduced
bit is set to 1, indicating that the sender’s congestion window size has been reduced,
effectively reducing the demand for bandwidth that the sender is placing on the
network.

In summary, the forwarding systems detect and report congestion to the receiving
endpoint via IP and the two endpoints communicate about experiencing and react-
ing to congestion via TCP.

Implications for Forwarding Systems
TCP connections do not, as a general rule, terminate at forwarding systems11.
Rather, they terminate at endpoints such as mobile phones, computers, servers
and the like. Thus, forwarding systems can operate just fine while being blissfully
unaware of TCP. There are, of course, some caveats to that claim.

11 Management consoles do, indeed, connect to forwarding systems via TCP, but user data for-
warding paths do not.

 Connections 183

First, the TCP port numbers—sourcePort and destinationPort—provide rich
load balancing information and are often useful when crafting access control lists
(ACLs). So, while these applications don’t necessarily use TCP information for for-
warding purposes, it is still beneficial for a forwarding system to be able to recog-
nize and parse a TCP header in order to extract this flow-identifying information.

Second, for flow-based forwarding, it is generally beneficial for a forwarding
system to keep track of the connection state of individual or aggregated TCP
connections. Here, too, detecting and parsing TCP headers is required. But, flow-
based forwarding must go even further in that it is necessary to detect the start of
a flow—sync—and the end of a flow—finish or reset—and keep track that a flow
has been established so that TCP data packets that belong to the flow may use a
flow-based forwarding method instead of a conventional layer-by-layer forward-
ing method. When a new connection is detected, a flow-describing, multi-header
key is established in a flow forwarding database for that new flow. Upon detection
of the termination of a flow, or the termination of the final flow in an aggregation
of flows, the flow table entry that supported the just-terminated flow(s) may be
removed from the table to make room for new flows.

TCP Variants

There are a couple of interesting variations on TCP that are worth exploring. They
are described in the following sections.

Data Center TCP (DCTCP)
The explicit congestion notification mechanism of TCP is binary. Meaning, when
congestion is experienced, the sender is informed of the fact that congestion has
been experienced, but not the extent to which congestion has been experienced,
i.e., no information about the severity of the congestion is fed back to the sender.

DCTCP (currently in draft form at the IETF) remedies this by providing shades
of gray. If the congestion is modest, then the sender should reduce its congestion
window size a little bit. If the congestion is severe, then the sender should reduce its
congestion window size a lot. The behavior of the forwarding systems in a DCTCP
network is adjusted in a particular way, but no new mechanisms are required.
Specifically, the forwarding systems are configured to mark packets as congestion-
Experienced based on instantaneous measurements of queue depth rather than
computing an average queue depth. This greatly improves the responsiveness of
the algorithm.

In a classic ECN implementation, the TCP receiver reacts to receiving a conges-
tionExperienced indication by setting ecnEcho to 1 in every TCP Ack transmitted
to the sender until receiving a TCP data or Ack packet with congestionWindow-
Reduced set to 1. In DCTCP, on the other hand, there is a one-to-one correlation
between receiving congestionExperienced indications and transmitting TCP Ack

 184 Hardware-Defined Networking

packets with ecnEcho set to 1.12 The TCP sender examines a short sequence of TCP
Ack packets from the receiver and uses the proportion of 1s to 0s to determine
the setting of its congestion window size. Thus the sender can react quickly and
appropriately, avoiding the usual TCP sawtooth as it hunts for a transmission rate
that avoids congestion.

By successfully avoiding congestion, DCTCP enjoys low queue occupancy (i.e.,
low packet buffer occupation) and low latency, even during periods of significant
incast (i.e., lots of source endpoints sending data to a single destination endpoint).

DCTCP is referred to as data center TCP because it is really best (or only) suited
for controlled environments of modest physical diameter (i.e., low round-trip
time) such as a data center.

Stream Control Transmission Protocol (SCTP)
SCTP (IETF RFC 4960) was developed to overcome some of TCP’s shortcomings.
Specifically, TCP:

 � insists on in-order delivery even for applications that don’t require it;

 � operates as a stream of bytes when several applications may need to multiplex
discrete messages; and

 � is relatively vulnerable to a variety of malicious attacks, including sync
attacks.

SCTP addresses each of these areas and is well suited for applications such as
telephony signaling.

Forwarding systems that encounter SCTP packets (IP nextheader value: 132) can,
for the most part, treat such packets as if they were TCP packets. This is so be-
cause, like TCP, SCTP packets do not generally terminate at a forwarding system
and are, instead, end-to-end, session-oriented, transport packets. A forwarding
system should, though, use the Sctp.sourcePort and Sctp.destinationPort values
for computing load-balancing hash values. The format of an SCTP header is
depicted in Figure 85.

Figure 85 SCTP Header Structure Diagram

0

4

8

0 1 2
sourcePort destinationPort

verificationTag

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

checksum

Notice that the sourcePort and destinationPort fields are in the same location as
their counterparts in TCP and UDP, making parsing and hashing trivially simple.

12 The ratio may not be 1:1 if TCP Ack coalescing is being used by the TCP receiver.

13 Quality of Service

If packets never arrived at output queues any faster than the queues can transmit
those packets, then the queues would operate at essentially zero depth and no
packets would ever be delayed or dropped due to queuing resource exhaustion or
excessive delays. In such a universe, there would be no need to assign different pri-
orities to various packets nor to worry about queue service policies or congestion
avoidance. A single, zero-depth queue at every transmit interface across the entire
network would be all that is ever needed.

This fantastical universe is, of course, wildly impractical as it would entail grossly
over-provisioning the entire network so as to have bandwidth capacity that ex-
ceeds the absolute worst case demand scenarios. In the real world in which we are
compelled to exist, budgets and physics conspire to drive us to build networks that
can be oversubscribed by a little or by a lot. Once those output queues start to fill
up because the dequeue rate falls behind the enqueue rate, that’s when quality of
service (QoS) policies, protocols and mechanisms come into play.

QoS is fundamentally about managing congestion. Specifically, avoiding it in the
first place and, when it can’t be avoided, minimizing its negative consequences.

Congestion causes delays. Excessive congestion causes packet loss. Delays and
packet loss lead to high network latencies. Variable delays lead to jitter. Packet
loss is problematic for network performance and for most administration and
management protocols. Both high latencies and jitter are problematic for a variety
of real-time applications such as voice over IP (VoIP) telephony.

The Causes of Congestion

Congestion occurs whenever a queue (i.e., a FIFO) is compelled to accept new
entries at a rate that is, on average, higher than the rate at which those entries
are being read from a queue. During periods of congestion, the depth of the af-
fected queue increases (i.e., entries accumulate). If the conditions that give rise to
congestion persist indefinitely, then an infinitely deep queue is required to avoid
overrunning the queue. Of course, queues of infinite capacity are more than a little
impractical.

The two most common—and easily understood—causes of congestion are dis-
played in Figure 86.

 186 Hardware-Defined Networking

Figure 86 Queue Congestion Scenarios

Rate Mismatch Incast

10 Gbps 1 Gbps
1 Gbps
1 Gbps
1 Gbps

1 Gbps

A rate mismatch occurs when a receive interface is able to receive packet bytes
at a rate that exceeds the maximum rate at which the corresponding transmit
interface may accept the queued packet bytes and transmit them. On the right,
the incast problem is shown. Here, multiple receive interfaces—each of which
offers a receive data rate that is less than or equal to the corresponding transmit
interface—conspire to combine their data rates so as to behave as would a single
receive interface of a higher packet data rate. The net effect of these two scenarios
is exactly the same: packet bytes are received faster than they can be transmitted.

One common variant of the rate mismatch scenario is the transmit flow control
scenario. If a downstream forwarding system to which the current forwarding
system is transmitting packets experiences congestion, it may send a flow control
indication to the current forwarding system. In its most crude form, this flow
control indication completely shuts down the transmit interface of the current
forwarding system, dropping its transmit rate to zero. If packets continue to be
received and enqueued into the affected queue of the current forwarding system,
then that queue’s depth is bound to increase—potentially quite rapidly.

Figure 87 Transmit Flow Control and Queue Congestion

queue depth increases

flow control indication sent1

transmissions halted2

3

When a queue reaches its capacity, it is compelled to implement some kind of
policy to deal with the excess traffic. The simplest and most common policy is
to tail-drop. Here, packets that attempt to enqueue into an already-full queue
are dropped instead of being enqueued—i.e., the packets are dropped at the tail
of the queue. One of the hazards of the tail-drop congestion mitigation policy is
that it may unfairly bias against long packets. Consider a scenario where a queue
has room for just 100 more bytes. If a 64-byte packet attempts an enqueue into

 Quality of Service 187

the queue, it’ll succeed. If, instead, a 1,000-byte packet makes an attempt, it’ll be
dropped. If the queue advances slowly relative to the arrival rate of new packets,
then very few (if any) long packets will be successfully enqueued. To defend
against this bias, the queue must declare itself to be full when the number of bytes
remaining in the queue drops below the longest possible packet length. This
means, of course, that 64-byte packets will be dropped even though there may be
500 bytes of space left in the queue. But, drop them, it must.

The antipode of tail-drop is head-drop. Here, packets that appear at the head of
a queue ready to be dequeued are dropped instead, making room for new packet
enqueues at the queue’s tail. The benefit of this approach is that the packets at the
head of a queue are the oldest and, by getting rid of the oldest packets, the average
queuing delay may be minimized. This, of course, comes at the expense of drop-
ping packets. But, packets were going to be dropped anyway, so it might as well be
the oldest of them.

The significant challenge of head-drop makes itself obvious when the time comes
to actually implement the queuing hardware. Enqueuing and dequeuing packets
are operations that both require a certain amount of work. And work is not free.
It takes time. It consumes power. When managing a FIFO, the amount of work
required to dequeue a packet for transmission is roughly the same as that required
to dequeue a packet for a head-drop. In order to be able to actually make progress
in making the queue shorter (i.e., reduce the number of entries in the face of new
enqueues), the dequeue function must be appreciably faster than the enqueue
function (remember, in the head-drop scenario, all packets are being enqueued).
Tail-drop, by comparison works by simply doing no work—the received packet is
dropped before the enqueue mechanism is engaged.

Congestion Detection
In order to react to congestion, it must be detected. Packet loss is, of course, one
way to do so. But, it is better to detect congestion before it worsens to the point
where packets must be dropped. The simplest way to do that is to compare the
queue depth to a threshold that is set some distance before the maximum possible
depth for the queue.

Figure 88 Queue Congestion Thresholds

congestion threshold

queue depth

 188 Hardware-Defined Networking

Quite simply, whenever the queue depth exceeds the congestion threshold, the
queue is considered congested. One potential problem with this very simple ap-
proach is that if some kind of action is taken (e.g., a message is sent) every time the
queue depth crosses that threshold in either direction, it’s possible for a lot of such
actions to be executed if small packets are being rapidly enqueued and dequeued at
the same rate while the queue depth hovers near the congestion threshold. To miti-
gate this, a pair of thresholds—a higher one for entering the congestion state and a
lower one for exiting the congestion state—are used to introduce some hysteresis.
The larger the hysteresis, the lower the maximum message rate will be.

Another approach to detecting congestion hinges on the observation that one of
the most significant and damaging impacts of increasing congestion—aside from
packet loss—is increasing delays in delivering data, i.e., the deeper the queue, the
longer that it’ll take for a just-enqueued packet to be transmitted by a particular
forwarding system. So, rather than simply measuring the number of packet bytes
that are enqueued, measure the amount of time that just-dequeued packets spent
in the queue. To do this, an enqueue timestamp is included with the packet’s
metadata when it is enqueued. Upon dequeue, the timestamp value is compared
to the current time of day. The difference represents the amount of time that
particular packet resided within the queue. The delay value can either be reported
directly or it may be compared to various thresholds in order to report two or
more congestion states. When using queuing delays as a proxy for congestion, it
is still important to keep track of the queue depth and to take some kind of drastic
action if the maximum depth threshold is being approached or has been crossed
because the delay-based congestion mitigation techniques can’t necessarily protect
the queue from overflows and packet loss.

For an example of reporting congestion state to the sources of congestion, see the
preceeding discussion on DCTCP on page 183.

Congestion Avoidance Through Rate Controls

If a sender of packet data is aware that its packets are encountering congestion,
and it is inclined to be well behaved—i.e., be cognizant of the very real possibility
that it, along with other sources of packet data, are all contributing to the problem
and it is willing to make a sacrifice in order to relieve the problem for its own and
all other sources—it can modulate its transmission rates so as to relieve the pres-
sure on the network and allow the queues to drain to the point where delays and
congestion are no longer a concern.

The techniques for rate controls run the gamut from crude and brutal to subtle and
refined. On the crude and brutal end of the spectrum is link-level flow control as
codified by IEEE standard 802.3x.

 Quality of Service 189

Link-Level Flow Control (IEEE 802.3x)
In a nutshell, 802.3x “pause” packets are sent by an endpoint or forwarding
system that is experiencing congestion to the link partner of the receive interface
to which it attributes its congestion. The link partner is expected to cease all
transmissions onto the interface via which it received the pause packet. The pause
packet specifies a timeout period, after which the link partner is free to resume
transmissions, unless the link partner receives a subsequent pause packet (setting
the timeout timer to a new value) prior to the expiration of the current timeout
period.

802.3x flow control messages are conveyed by Ethernet packets using the reserved
multicast destinationAddress value 01-80-c2-00-00-01 and ethertype of 0x8808
(MAC control). The format is depicted in Figure 89 and the field definitions listed
in Table 32.

Figure 89 Link Level Flow Control (Pause) Header Structure Diagram

0
0 1 2

controlCode pauseQuanta
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 32 Link Level Flow Control (Pause) Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlCode 16 0.0 Defines the MAC control code.

For link-level flow control, the code is 0x0001.

pauseQuanta 16 0.16 The pause duration as measured in Ethernet slot times.

An Ethernet slot time is 512 bit-times. So, the pause
quanta is link bit-rate dependent. Up to 65,535 slot
times may be specified for the pause duration. At, say,
10 Gbps, that’s 6.55 µs. Each pause message resets an
Ethernet MAC’s pause timer to the value in the pause
message. A message-sending Ethernet forwarding
entity may transmit periodic pause messages in order
to prevent its link partner from transmitting
indefinitely. A pause time of zero takes a MAC out of
the pause state and enables the immediate resumption
of packet transmissions.

One of the serious weaknesses of 802.3x link-level flow control is that it shuts
down all transmission from the affected sender (except MAC control packets).
In all but the simplest of networks, this is overkill. It is overkill because Ethernet
links typically carry a variety of flows of packets that are coming from and going
to a variety of places. Some of those flows may be contributing to congestion while
others are not. Shutting down all of the flows that happen to share the affected

 190 Hardware-Defined Networking

link casts a wide net and causes a lot of collateral damage. This phenomenon is
discussed in more detail in "Head of Line Blocking" on page 201.

Random Early Detection (RED)
This method of discarding randomly-selected packets to modulate the rate at
which a TCP sender transmits packets is described in "Random Early Detection
(RED)" on page 180.

Resource Reservation Protocol (RSVP)
In the mid 1990s, the IETF embarked on a project to define a protocol to allow IP
endpoints to request connection-like reservations for certain bandwidth and delay
guarantees. The first version of RSVP is described by RFC 2205.

RSVP represents an instance of an “integrated services” model wherein a path
through a network is identified and bandwidth guarantees (and other parameters)
are granted to that path. Integrated services are in contrast to “differentiated ser-
vices” wherein prioritization is used to grant superior service to important traffic
(see "Congestion Management Through Prioritization" on page 200).

Following the multicast model where receivers subscribe to sources of data, receiv-
ers transmit RSVP messages toward the data source and the intermediate nodes
along the path are expected to process the requests and set aside the necessary
resources. Flows from a sender are identified by the three-tuple consisting of IP
destinationAddress, IP nextHeader and (optionally) TCP or UDP destination-
Port. The parameters of the resource reservation request also specify the quality of
service guarantees that are required (bandwidth, delay, etc.).

When a receiver sends a request message toward the sender with the expectation
that all of the intermediate nodes successfully received, processed and accepted
the request, it’s taking it on faith that the reservation was successfully set up. This,
of course, won’t do. So, the sender sends a reciprocal message where all of the
intermediate nodes indicate their status of the reservation request. This gives the
receiver a reliable indication that the request has been accepted.

Both unicast and multicast data streams are supported by RSVP. And, as can be
anticipated with multicast, the list of subscribers to a data stream may change over
time. To accommodate this, periodic refresh messages are sent in order to keep the
state current.

It should be fairly apparent at this point that RSVP has scaling difficulties. The
number of flows that a single IP forwarding entity may have to manage can easily
swell into the millions for a large-scale network. It is because of these difficulties
that RSVP has not seen widespread adoption in IP networks. However, RSVP has
been embraced by MPLS as RSVP-TE.

 Quality of Service 191

RSVP with Traffic Engineering (RSVP-TE)
MPLS is well suited for applications where performance guarantees are a require-
ment. For example: telephony. Though the data associated with any particular
phone call is modest (just tens of kilobits per second), it absolutely must be
delivered with a minimum of delay and loss. Delays lead to high latency, which
can make voice communication very difficult. (Have you ever been on a phone call
that’s afflicted with high delays and you and the person you’re speaking with are
constantly stepping all over each other’s sentences? The long delay is unnatural
to our ears and we reasonably assume that a reply isn’t coming.) Data loss, on the
other hand, causes clicks and pops in the audio, degrading the quality of the sound
and degrading the intelligibility of the speech.

MPLS and its label distribution protocol (LDP) provide a means for configuring
all of the MPLS label switching routers (LSRs) in a network so that label swapping
provides pre-defined pathways through the network for all of the required connec-
tions. What LDP lacks, however, is a means for making QoS guarantees. This is
where RSVP-TE comes in.

Unlike RSVP for IP—which relies on routing protocols for the establishment of
network forwarding behavior—RSVP-TE encompasses both a means for defining
the paths through a network and (optionally) establishing or provisioning QoS
guarantees for each path. So, RSVP-TE is used in lieu of LDP on those networks
where QoS guarantees are important.

RSVP-TE uses a bidirectional path allocation scheme. An MPLS label switch path
(LSP) is defined as an ingress MPLS label edge router (LER) connected to an egress
label edge router through a series of MPLS label switch routers (LSRs). The ingress
label edge router serves as the MPLS tunnel entrance while the egress label edge
router serves as its exit. The establishment of an RSVP-TE label switch path starts
at the tunnel entrance. It does this by sending an RSVP-TE path message toward
the egress label edge router. The message includes parameters that describe the
requirements of the path being established. The MPLS routers along the path keep
a record of these requirements, but do not act on them otherwise at this time.

When the RSVP-TE path message reaches the egress label edge router, it starts
the process of actually reserving the resources required by the requested path. It
does this by sending an RSVP-TE reservation message back toward the ingress
label edge router. Along the way each label switch router verifies that sufficient
resources are available and then commits those resources to the new path. Each
router also generates an Mpls.label value for use by the upstream neighbor label
switch router to use to forward packets to the current node along the path being
created.

If the QoS parameters requested by the reservation message cannot be granted, an
alternate path is attempted. If a path cannot be found that meets the requirements
of the reservation message, then the reservation is declined.

 192 Hardware-Defined Networking

The path is kept alive through the transmission of periodic refresh messages (nom-
inally, every 30 seconds per path). If a path fails to receive any refresh messages for
three minutes, the reservation is torn down and must be reestablished.

Ordinarily, the path reservation messages and, consequently, the to-be-established
path follows the shortest path as defined by the Interior System to Interior System
protocol (IS-IS, see page 332) running on the MPLS network. However, the
shortest path can be overridden through the use of explicit route objects (EROs).
Quite simply, the explicit route objects conveyed by a reservation message list the
routers through which the path must pass. The list can either be loose or strict. A
loose list specifies a subset of required hops (the remainder being chosen automati-
cally along a computed shortest path). A strict list exhaustively specifies all of the
hops that the path must follow.

The details of RSVP and RSVP-TE have no significant impact on the design of
forwarding system hardware aside from setting the stage whereby promises made
by the sources of data and the forwarding systems must be enforced.

Enforcing Rate Controls

When a client and a service provider enter into a contract to provide networking
services, part of that contract inevitably specifies the minimum bandwidth, maxi-
mum latency and maximum packet loss rate that the service provider promises to
the client. Further, the client is often bound to limit the rate at which packet bytes
are transmitted toward the service provider. Taken together, these parameters
make up what is commonly known as a service level agreement (SLA). Specialized
hardware functions within forwarding systems are used to monitor and enforce
these service level agreements. Broadly speaking, these functions fall into four
categories. They are counters, meters, policers, and shapers. Each is described in
detail in the following sections.

Counters
A counter is, as its name plainly infers, a mechanism that counts events. In a
forwarding system, the events that are counted are packets and bytes that pass
certain defined points in the forwarding system. These points may be physical re-
ceive or transmit interfaces, logical ports, forwarding domains, virtual forwarding
entities, etc.

In their ideal form, a counter starts off at zero at the beginning of time and is
able to count an infinite number of events without loss for the rest of time. More
practically, the width of these counters must be bounded to some reasonable limit.
Consider a 1 Tbps interface (1012 bits per second). If a counter is assigned the task
of counting every byte that passes that point, a 64-bit counter can do so without
rolling over for just over four and a half years.

 Quality of Service 193

Absolute totals since the beginning of time are not necessarily of any practical value.
It is events per unit of time that really matter since service level agreements and
billing cycles are often expressed in periods of days, weeks, months or years. For
example: How many gigabytes were received from a customer last month? So, even
if the period is large, we care more about event rates rather than absolute counts.

There are two fundamental methods for managing counters. The first and, perhaps,
most obvious approach is to simultaneously read and reset a counter so that it
resumes counting from zero immediately upon being read. This method certainly
works, but in practice it can be a bit tricky to read and reset a counter without
losing any counting events. The less obvious—but simpler in practice—approach is
to allow the counter to run forever without being reset and for the counter to roll
over through zero after reaching its maximum value. The process that is monitoring
the counter simply reads the current value whenever necessary. By retaining the
previously-read counter value and subtracting it from the just-read counter value,
the delta from the previous sample to the current sample can be determined. That
delta can then added to an accumulator that is of any desired width. Of course, care
must be taken when the counter rolls over through zero between two samples. The
solution is to ensure that the counter monitoring process samples the counter at
least a bit faster than the counter’s minimum rollover period. By doing so, a rollover
can be detected by noticing that the difference between two consecutive samples is
negative rather than positive.

Consider a simple case where a 4-bit counter rolls over from 15 to zero upon reach-
ing its terminal count. The counter monitoring process should be sampling the
counter frequently enough that it should never see a count delta greater than 15. If
the previous counter sample value is, say, 13 and the current counter sample value
is, say, 3, then the usual subtraction of the previous value from the current value
yields 3 - 13 = -10. To arrive at the correct value, add 16 (i.e., 2counterWidth). This yields
the correct answer: 6.

 Meters
A meter is, essentially, a counter with a leak.

Consider a bucket with a calibrated hole in its bottom. If water is poured into the
bucket faster than the hole allows water to escape, then the water level in the bucket
will increase, indicating that the designed rate is being exceeded. Conversely, slow
the pour rate below the drain rate and the water level will decrease. By monitoring
changes in the water level, it is possible on a moment-by-moment basis, to determine
if the ingress rate exceeds some target value. And, when comparing the characteris-
tics of a flow of packet data to a service level agreement, determining whether or not
the flow exceeds a defined rate is exactly what’s needed.

Rather than water, we pour in and drain out tokens in order to determine if a flow
is complying with a service level agreement. A service level agreement can allow a

 194 Hardware-Defined Networking

customer to maintain some maximum long term average data rate (also known as
an information rate). However, it is recognized that networking can be bursty, so
bursts are accommodated by also allowing a committed burst size (i.e., length) and
a peak or excess burst size. If any of those thresholds are exceeded by a flow, the
offending packets are “marked” accordingly. The marking of packets is discussed
further along. For the time being, we’ll focus on rate metering.

IETF RFC 2697 describes, among other things, a single-rate metering method us-
ing token buckets. The metering method is quite simple:

1. Two token buckets—committed and excess burst length—are initially filled all
the way up with a number of tokens that represent the maximum committed
burst length and excess burst length, respectively. Thereafter, the token buck-
ets are refilled (i.e., a counter value is incremented) at a rate that represents
the committed information rate whenever the token buckets are below their
initially-configured maximum values. However, only one of the two buckets
may be refilled with each increment; the committed burst size bucket takes
precedence over the excess burst size bucket. In other words, the tokens are
replenished at the committed information rate (up to the bucket maximums),
but the committed burst bucket is refilled first.

2. With each received packet belonging to the flow that’s being metered, the
length of the packet (i.e., the number of bytes) is compared to the committed
burst token bucket. If the number of tokens in that bucket equals or exceeds
the packet length, then the packet is designated “green” and the packet’s
length is deducted from the committed burst token bucket.

3. If the packet is longer than the number of tokens available in the committed
burst bucket, then the excess burst bucket is checked. If the packet’s length
may be deducted from the excess burst token bucket without it going negative,
then the packet is designated as “yellow” and the deduction from the excess
burst bucket is performed.

4. If both the committed and excess checks described above fail, then the packet
is designated as “red.”

The green, yellow, and red designations in Figure 90 correspond to “within the
committed sustained rate or committed burst rate,” “above the committed burst
size limit, but within the excess burst size limit,” and “above the excess burst size
limit,” respectively.

The packet color marking algorithm described above is what’s known as “color-
blind marking,” meaning, the current color of a packet—as determined by an
upstream forwarding system—is not taken into account.

In color-aware packet marking, a packet’s color may never be promoted. For ex-
ample, a packet that is received with a yellow color may not be tested by the com-
mitted-burst token bucket and then marked as being green. Only a green packet

 Quality of Service 195

may be marked as green. Green packets may be marked green, yellow, or red.
Yellow packets may be marked yellow or red. Red packets must remain red. This
is accomplished by steering packets to appropriate color marking steps according
to their received color. Green packets execute steps 1–4 as described above. Yellow
packets skip step 2. Red packets skip steps 2 and 3. Very simple, really.

Figure 90 Single-Rate Packet Color Marking

committed information rate

committed
burst size

committed burst size
token bucket

full

empty

excess burst size
token bucket

full

empty

excess
burst size

packet color

time

pa
ck

et
 b

yt
e

ra
te

IETF RFC 2698 defines a two-rate metering method that is distinct from the
single-rate method just described and illustrated in Figure 90. The two-rate meter
introduces a peak information rate to complement the single-rate meter’s commit-
ted information rate:

1. The two token buckets—committed and peak—are initially set to values
that represent the configured committed burst size and peak burst size. These
values represent the maximum levels that the two token buckets are allowed
to achieve. Tokens are added to the two buckets at rates that represent their
respective information rates—committed and peak—clipping the sums to the
maximum allowed values for the buckets.

2. A received packet’s length is compared to the peak burst bucket and, if the
packet’s length exceeds the byte length implied by that bucket’s token count,
the packet is marked “red.”

 196 Hardware-Defined Networking

3. If a received packet’s length is less than or equal to the peak burst token count,
but greater than the committed burst token count, then the packet is marked
“yellow” and the peak token bucket is decremented by the packet’s length.

4. If a received packet’s length is less than or equal to both token buckets, then
the packet is marked “green” and the committed token bucket is decremented
by the packet’s length.

Figure 91 Two-Rate Packet Color Marking

committed information rate

committed
burst size

committed burst size
token bucket

full

empty

peak burst size
token bucket

full

empty

peak
burst size

packet color

time

pa
ck

et
 b

yt
e

ra
te

peak information rate

The method described for two-rate packet color marking is the color-blind version
of the algorithm. The color-aware version differs in that the current color marking
of a packet is taken into account when determining its new marking. Specifically, a
packet’s color may never be promoted. For example, a packet that is received with
a yellow color may not be tested by the committed-burst token bucket and then
marked as being green. Only a green packet may be marked as green. Green pack-
ets may be marked green, yellow, or red. Yellow packets may be marked yellow
or red. Red packets must remain red. This is accomplished by steering packets to
appropriate color marking steps according to their received color. Green packets
execute steps 1–4 as described above. Yellow packets skip step 4. Red packets skip
steps 3 and 4.

The difference between a single-rate and a two-rate metering function is subtle,
but important. With a single-rate meter, an incoming packet data rate that exceeds
the committed information rate will eventually progress from green, through

 Quality of Service 197

yellow, to red. With a two-rate meter, the incoming packet data rate can exceed the
committed information rate forever and will only progress from yellow to red if
the peak information rate is exceeded.

The marking of packets with colors has been mentioned a number of times in the
preceding paragraphs, but it’s not been explained how this is done and why it mat-
ters. The mechanics of packet color marking is fairly straightforward. Both IPv4
and IPv6 headers have a field that is dedicated for use in conveying a packet’s qual-
ity of service attributes. This is the IP trafficClass field. This six-bit field is used
to encode all aspects of a packet’s quality of service attributes, how a particular
packet should be handled differently from other packets that have different traffic
class values. One of those parameters is the packet’s color marking by rate-meters.
There are no specific codepoint values or subsets of bits that are explicitly defined
to convey a packet’s color marking. A set of codepoints are simply defined within a
network to mean, for example, low-priority red, or high-priority green, etc.

So, what do these colors represent? They represent the degree to which a flow is
complying with the service level agreement that applies to the flow. A green flow
is completely within the most conservative limits of the agreement and there is a
reasonable expectation that the vast majority of the packets within the flow will
successfully arrive at their intended destination. Packets that are marked yellow
are exceeding the basic bandwidth commitment and that excess is either short-
lived (single-rate meter) or the degree to which it exceeds the committed rate is
small (two-rate meter). These packets are subject to being dropped if they encoun-
ter any meaningful congestion on their way to their destination. Finally, packets
in flows that are marked red are subject to being dropped even if congestion is not
encountered.

Packet order is an important consideration when marking packets. Red packets
are generally dropped (but not necessarily always so), while yellow packets are
generally forwarded (though sometimes dropped) and green packets are almost
always forwarded. All of these packets—regardless of their color—may be part of
the same flow, meaning they need to be delivered to their destination in per-flow
order. All of these packets started off green and some of them may be changed to
other colors as they are forwarded. It is important that the color of a packet does
not influence the choice of the queue into which it is enqueued. Further, it is im-
portant that, when LAG or ECMP operations are performed, the link choice is not
influenced by a packet’s color. It is generally good practice to map an IP packet’s
trafficClass value to separate priority and color values and to only consider the
priority of a packet when making queue and link choices.

Which bytes get counted during metering? An IP packet typically consists of the
IP packet itself, the encapsulating Ethernet packet and the Ethernet overhead
(preamble, inter-packet gap, CRC). The Ethernet encapsulation and the overhead
represent a significant and varying amount of additional byte-times on top of an IP

 198 Hardware-Defined Networking

packet. However, when considering IP differentiated services and implications of
the IP trafficClass field, it is just the bytes that make up the IP packet that matter.
That’s all of the bytes from the start of the IPv4 or IPv6 header through the last
byte of the IP payload (not including any Ethernet pad bytes).

It is important to point out that the RFCs that define the behavior of the two
types of meters do not necessarily dictate how these functions are implemented in
hardware or how a forwarding system must handle packets that have been marked
specific colors. The meters may be implemented in whatever fashion is desired as
long as the intended behavior is achieved. The reactions to various color markings
are a matter of policy which may have just a local scope.

Finally, metering and marking packets doesn’t count for very much if there isn’t
some means for dropping packets that have been marked yellow or red. That is the
job of the policers.

Policers
Policers consider a packet’s marking (green, yellow, or red) and the congestion
state of the queues through which it may pass and make a drop/don’t-drop deci-
sion on a packet by packet basis. Policers may use fixed queue-depth threshold,
statically or dynamically adjustable thresholds, tables, curves or some other means
to determine just how congested a queue is. The representation of queue conges-
tion is then combined with a packet’s color to determine either whether or not to
drop a packet, or the probability of dropping a packet (à la RED).

The sequence of events matters with regard to meters, markers, and policers.
Consider Figure 92.

Figure 92 Meter, Marker and Policer Sequence of Events

Policer DropMarkerMeter

marker directive

wrong

right

congestion state

packets packets

policer directive

PolicerDrop MarkerMeter

marker directive

congestion state

packets packets

policer directive

First, let’s take a look at how not to arrange these related events. In the top half of
Figure 92, the meter, marker, and policer are followed by a drop function that ei-
ther actually drops the packet or simply marks the packet to be dropped at a later
stage. The problem with this arrangement is that if a flow of packets exceeds the

 Quality of Service 199

upper limit of the relevant service level agreement, and they are consequently all
marked red, the policer will dutifully direct the drop function to drop all of those
red packets. Unfortunately, this means that the incoming flow of packets goes
from exceeding its allowed limits to zero packets actually being forwarded. This is
certainly not in keeping with the service level agreement.

The right way to do this is to place the drop function ahead of the meter function.
With this arrangement, the dropped packets are never registered by the meter
function. Thus, when a flow exceeds its rate limits and packets are marked red, the
drop function prevents those packets from being registered by the meter, reducing
the information rate of the affected flow. Eventually, the meter will cease marking
the packets red and the drop function will start to let packets through. So, over
time, the policer/drop function will drop just enough packets so that those that are
forwarded fall within the service level agreement that applies to the flow.

Shapers
Policers limit data rates by dropping excess packets. Shapers, on the other hand,
rely on buffering to modulate data rates to remain at or below some configured
limit. Figure 93 shows a policer in relation to buffering/queuing and a shaper.

Figure 93 Policing, Buffering and Shaping

Policer Shaper

Policers drop packets as they come in from a network receive interface. A shaper
modulates the rate at which a queue is allowed to deliver packets to a network
transmit interface. Ideally, a policer and a shaper work in concert. The policer
drops packets in order to prevent overrunning the queuing resources while the
shaper works to smooth out the bursts without dropping packets, improving delay
and congestion conditions further downstream. Figure 94 shows the effect of a
shaper.

Figure 94 Shaper Effect on Packet Bursts

packet burst packet gap

Shaper

Essentially, a shaper takes in bursts of packets—or, more precisely, the packets
are queued in a buffer upstream of the shaper—and then spaces the packets out in
order to smooth the flow of data.

 200 Hardware-Defined Networking

It may seem reasonable that, if all of the data source endpoints transmit their data
into the network in a shaped fashion, there should be no need for shaper functions
elsewhere in the network since the traffic is already well behaved. Unfortunately,
as well-shaped packets arrive at a forwarding system, a certain amount of clump-
ing is bound to happen as illustrated in Figure 95.

Figure 95 Packet Clumping

receive interface 1

receive interface 2

receive interface 3

transmit interface
(no shaping)

transmit interface
(with shaping)

When packets are received at a forwarding system via several interfaces either si-
multaneously or in an overlapping manner, some of those packets must be delayed
slightly if they must be transmitted by a common interface in a serial manner. This
inevitably leads to the formation of clumps of packets. A properly configured
shaper, instead, imposes a little bit of additional delay so that the packets are
spaced out, relying on the packet buffering that is upstream of the shaper to hold
onto some of the packets during the additional delays.

The relatively simple (and completely contrived) example shown Figure 95 il-
lustrates what’s possible at just single forwarding system with just a few receive
interfaces. If no shaper was in use and those clumps of packets were transmitted
as un-shaped bursts, those bursts may eventually overlap with other bursts further
downstream in the network, creating even bigger bursts. Eventually, these bursts
grow large enough to trigger the marking of some of the packets red, even though
the data rates offered by all of the data sources don’t exceed any of the service level
agreements. The use of shapers throughout a network prevents the formation of
these bursty clumps of packets and consequent packet drops.

In a well-designed network with accurately provisioned service level agreements,
the traffic shapers are busy smoothing out traffic and the policers are never com-
pelled to drop packets.

Congestion Management Through Prioritization

Not all packets are created equal. Some are more important than others. For
example, packets that convey important protocol information that keep a network

 Quality of Service 201

operating smoothly are certainly more important than packets conveying an email
whose content promises to make you young, rich, and thin. Other candidates for
preferential treatment include packets related to interactive applications such as
two-way voice/video communication, online gaming or industrial process control.

Head of Line Blocking
It is inevitable that a lot of traffic on any particular network will be non-provi-
sioned (i.e., no advance reservation is made before packets begin transmission).
These packets may react nicely to TCP flow control methods (RED, ECN, etc.),
but will not automatically avoid causing congestion; much like cars on a single
lane road trying to get past a traffic accident. In the scenario depicted in Figure 96
all vehicles are equally affected by the cause of the congestion, even those whose
destination is before the accident and the emergency vehicles trying to get to the
scene. This is known as head-of-line blocking.

Figure 96 Congestion on a Single-Lane Road

Bypass Blvd

!!!! ! ! ! !

If, instead of a single-lane road, there was a multi-lane road, where each lane was
strictly reserved for certain kinds of traffic, Figure 97 is a much different picture.

Figure 97 Congestion on a Multi-Lane Road

Bypass Blvd

Bypass
Blvd
Only

Thru
Traffic

Emerg
Vehicle
Only

! ! ! ! !

 202 Hardware-Defined Networking

Now, high-priority traffic can quickly bypass the congestion, and traffic that isn’t
bound for a destination that runs near the accident can bypass all of the stuck
traffic. Of course, this doesn’t scale indefinitely. It isn’t practical to build dedicated
lanes for all possible destinations and traffic types.

In network forwarding systems, lanes are replaced with queues to solve head-of-
line blocking problems.

Figure 98 Queues

classifier scheduler

queues

In Figure 98, packets arrive at a priority or behavior-aggregate classification func-
tion that feeds the packets into respective queues. The queues, in turn, converge on
an arbitration/scheduling function that selects which queue to service next.

A queue is available to be serviced by the scheduling function whenever the queue
is non-empty and whenever enough time has elapsed since the previous packet
was popped from the same queue such that the queue’s shaper function is satisfied.
Once both of those conditions are met, the queue throws its metaphorical hat into
the ring for the scheduler to consider.

If only one queue is ever ready to be serviced at any particular time, then the
scheduling algorithm is pretty simple: just service the currently non-empty queue.
It’s when more than one queue is simultaneously ready to be serviced that things
get interesting.

Scheduling
A huge variety of scheduling algorithms have been developed over the years.
The algorithms described below are a representative sample of some of the more
popular schemes.

Strict Priority

Strict priority is about as simple and fundamental as queue scheduling can possibly
get. In zero time:

 � If the highest priority queue is ready to be serviced, service it; else...

 � Check the next lower priority queue. If it is ready to be serviced, service it; else
repeat this step until all queues have been tested.

 Quality of Service 203

It is fairly easy to see how this works in practice. Let’s say three priority levels have
been established: a highest level for protocol packets, a medium level for streaming
media and a lowest level for best-effort data packets. The flows associated with
the high and medium priority levels have been provisioned such that, absent all
other traffic, the sum of the two can never create congestion in the network. If a
burst of medium-priority packets has been received and queued, they’ll be serviced
ahead of any low-priority data packets. The medium-priority queues are, however,
forced to wait if any high-priority packets arrive. The low priority best-effort
queue is only serviced when the high- and medium-priority queues are empty.

Difficulties arise, however, when it is deemed useful to further subdivide the non-
provisioned, best-effort data packets into two or more priority levels. If the higher
of the two best-effort traffic classes is the source of a sufficient amount of network
data, its queues may rarely be non-empty, completely starving the lowest priority
best-effort queue from being serviced. Round robin scheduling is used to ensure
that the lowest priority queue gets at least some access to the transmit interface.

Round Robin

The simplest form of round robin scheduling operates over two or more queues
that are considered equal for all intents and purposes. To understand how this
works, simply consider a set of queues of equal priority that are all always ready
to be serviced. To service them in a round robin fashion, service the first queue by
popping a packet and then move on to the next queue in sequence and popping
one packet from that queue. Upon finishing with the last queue, return to the first
one. If any of the queues are not ready to be serviced, simply skip over them.

This simple scheme ensures that packets from all of the non-empty queues are
neatly interleaved on the transmit interface. Of course, if you have several queues
that are all being treated equally, you might as well enqueue all of those packets
into a single queue in the order in which they arrive and service that single queue
serially.

To provide preferential service to some queues without starving out other queues,
weighted round robin scheduling is used.

Weighted Round Robin

In weighted round robin, each of the queues in a round robin set are assigned
weighting values that represent the ratios (or weights) of the number of packets
that the members of the round robin group are allowed transmit relative to the
other member queues. For example, consider two queues in a weighted round
robin group that are weighted 2 and 1. The queue whose weight is 2 is allowed to
transmit twice as many packets as the queue whose weight is 1.

 204 Hardware-Defined Networking

Queues that are not ready to be serviced are eliminated from the ratio computa-
tion. Consider instead, a set of three queues whose weights are 1, 2, and 4. If
the 2-weight queue is not ready to be serviced while the other two are, then the
remaining two queues are serviced with a packet ratio of 1:4.

The shortcoming of round robin and weighted round robin scheduling schemes is
that they operate on packets, not bytes. If all the queues that are competing for ac-
cess to a transmit interface are filled with packets that are all the same length, then
each queue would be granted network bandwidth in a fair manner. Unfortunately,
packets are not all the same length and it is very common for different types of
traffic to have wildly different average packet lengths.

To account for this, weighted fair queuing was devised.

Weighted Fair Queuing

Weighted fair queuing differs from the round robin schemes previously described
in that it takes the lengths of packets into account when choosing which queues
to service. The objective is to time-sort a series of events—specifically, the starts
and ends of packet transmissions—as if simultaneous packet transmission were
allowed, portioning bandwidth to each of the overlapping packets in proportion
to the queues’ weights.

Figure 99 shows weighted fair queuing at work. The top third of the figure shows
a number of packets of varying lengths queued in four queues: A, B, C, and D. The
four queues are weighted 1, 2, 2, and 1, respectively.

In the middle third of the figure, the packets are shown in a time-proportional
manner. This depiction assumes that it is possible to multiplex the packets at a bit
granularity so that, for all intents and purposes, the packets from the four queues
are being transmitted simultaneously. The weighting proportions of the queues
dictate that queues B and C can transmit two bits for each bit transmitted by
queues A and C. Notice that, when queues B and C have finished transmitting all
of their queued packets, the bit rate for queues A and D jumps up to fill the void.
The labels at the bottom of the time-proportional depiction mark the transmit
completion times for each packet. This is the desired transmit order that weighted
fair queuing strives to achieve.

The bottom third of Figure 98 shows the resulting packet sequence with normal
packet length proportions. Notice that queues B and C are serviced faster than A
and D, but A and D are not neglected.

Weighted fair queuing is very effective at providing ideal bandwidth sharing
behavior. However, it is fairly computationally expensive. At each scheduling
event, the length of the packets at the heads of all of the queues and the weights of
those queues must be combined to compute the packet completion times and those
results must then be sorted to identify the next queue to service. The workload is

 Quality of Service 205

approximately O(log n) where n is the number of queues. The development of a
scheduling algorithm that requires just O(1) workload per scheduling event brings
us to weighted deficit round robin.

Figure 99 Weighted Fair Queuing Behavior

A1—250
headQueue Contents:

Time Proportional:

tail
weight: 1

weight: 2

weight: 2

weight: 1

A4—250 A3—150 A2—500

A4—250

A1—250

A3—150

D1—150

D1—150

D2—150

D2—150

D3—150

D3—150

D4—150

D4—150

Transmit Sequence:

(first)

(last)

A2—500

B1—600B4—150 B3—200 B2—200

B4—150

B1—600

D5—600

D5—600

B3—200 B2—200

C1—200C3—150 C2—250

C1—200

C5—200

C5—200

C6—200

C6—200

C3—150

C4—150

C4—150

C2—250

A1—250
A4—250

A
3—

150

A2—500

D1—150D2—150D3—150D4—150

B1—600B4—
150

B3—200 B2—200

D5—600
C1—200

C1D1C2C4B2D3C5B3D4A2A3A4, D5
B4, C6

A1
B1, C3, D2

C3—
150

C4—
150

C2—250C5—200C6—200

Weighted Deficit Round Robin

Weighted deficit round robin has behavior characteristics that are comparable to
weighted fair queuing, but with greatly reduced workload. The algorithm is quite
simple. During each arbitration round, each non-empty queue is awarded credits
in proportion to their configured weights. A number of packets are popped from
each queue where the sum of the number of bytes of the popped packets is less
than or equal to the credits held by the queue. The queue’s credits are decremented
by the number of bytes just popped. Any remaining credit is carried over to the
next round.

 206 Hardware-Defined Networking

Let’s examine the same packet queuing scenario from the weighted fair queuing
example and see how it behaves under weighted deficit round robin.

Figure 100 Weighted Deficit Round Robin Behavior

A1—250
headQueue Contents:tail

Round 1

Key 250
A1

0start
packet ID

end

Round 2
250

-
250

Round 3
500

A2
0

Round 4
250

A3
100

Round 5
350

A4
100

500
-

500

1000
B1, B2, B3

0

500
B4

350
500

C1, C2
50

550
C3, C4, C5

50

550
C6

350
250

D1
100

350
D2, D3

50

300
D4

150

400
-

400

650
D5

50

weight: 1

weight: 2

weight: 2

weight: 1

A4—250 A3—150 A2—500

A4—250

A1—250

A3—150

D1—150

D1—150

D2—150

D2—150

D3—150

D3—150

D4—150

D4—150

Transmit Sequence:

(first)

(last)

A2—500

B1—600B4—150 B3—200 B2—200

B4—150

B1—600

D5—600

D5—600

B3—200 B2—200

C1—200C3—150 C2—250

C1—200

C5—200

C5—200

C6—200

C6—200

C3—150

C4—150

C4—150

C2—250

Like the weighted fair queuing example, the top third of Figure 100 shows the
contents of four queues (A, B, C, and D) and their respective weights (1, 2, 2, and
1). The center third shows the behavior of the weighted deficit round robin credit
allocation scheme. Each rectangle contains three values. The upper left value
shows the number of credits after a tranche of credit has been allocated to a queue
at the start of a round. The value in the middle of each rectangle shows the ID
of the packet(s) successfully popped during the current round. The value in the

 Quality of Service 207

lower right corner shows the credit retained by the queue after popping the listed
packets. For this example, the credit allocation quanta is 250 bytes. Thus, queues
A and D receive 250 credits at each round while B and C receive 500.

In the first round, 250 credits are granted to queue A. This is sufficient to pop the
250-byte packet A1, leaving queue A with 0 credits. Next, queue B is granted 500
credits. (Remember, queue B has a weight of two whereas A’s is one.) This is not
sufficient to pop the 600-byte packet at the head of queue B, so no action is taken
and queue B retains the full 500 credits. This process continues with queues C and
D. After completing round 1, round 2 starts and the overall process continues until
all of the queues are empty.

The resulting packet transmit sequence is shown in the bottom third of Figure 100.
The sequence differs in the details from the very precise weighted fair queuing,
but, in the aggregate, the results are the same. Specifically, for as long as all of the
queues are non-empty, queues B and C are granted twice as much bandwidth as
A and D. Once B and C are empty, A and D split all of the available bandwidth
evenly between them.

Priority Flow Control (IEEE 802.1Qbb)
Even with fancy queue scheduling schemes in use, queue congestion is still a very
real possibility. Exerting a flow control indication to the source of the offending
traffic is one way for mitigating the onslaught of packets. However, using the beat-
up, rusty old hammer of a tool that is link pause (IEEE 802.3x) would be a poor
choice when priority-based queues are being used. Why pause an entire link when,
perhaps, just one priority is experiencing congestion? This is where priority flow
control comes into play.

IEEE 802.1Qbb priority flow control (often referred to as PFC) extends 802.3x
link pause to support reporting flow control indications on a per-priority basis.

802.1Qbb priority flow control messages are conveyed by Ethernet packets
using the reserved multicast destinationAddress value 01-80-c2-00-00-01 and
ethertype of 0x8808 (MAC control). The format and field definitions of the flow
control message are shown in Figure 101 and Table 33.

Figure 101 Priority Flow Control Header Structure Diagram

0

4

0 1 2
controlCode

pauseQuanta0

pauseQuanta2

pauseQuanta4

pauseQuanta6

pauseQuanta1

pauseQuanta3

pauseQuanta5

pauseQuanta7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8

12

16

 208 Hardware-Defined Networking

Table 33 Priority Flow Control Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlCode 16 bits 0.0 Defines the MAC control code.

For priority flow control, the code is 0x0101.

priorityEnable7 1 bit 0.24 Per-priority enables.

Each bit in this vector corresponds to one of the eight
priority levels supported by 802.1Qbb. When set to 1, the
corresponding pauseQuanta[0...7] value is considered
valid. When a priorityEnable[0...7] bit is set to 0,
the corresponding pause quanta value is considered
invalid. However, the 16-bit pause quanta fields are
present in this message regardless of the state of these bits.

priorityEnable6 1 bit 0.25

priorityEnable5 1 bit 0.26

priorityEnable4 1 bit 0.27

priorityEnable3 1 bit 0.28

priorityEnable2 1 bit 0.29

priorityEnable1 1 bit 0.30

priorityEnable0 1 bit 0.31

pauseQuanta0 16 bits 4.0 The pause duration as measured in Ethernet slot times.

An Ethernet slot time is 512 bit-times. So, the pause
quanta is link bit-rate dependent. Up to 65,535 slot times
may be specified for the pause duration. At, say, 10 Gbps,
that’s 6.55 µs. Each pause message resets an Ethernet
MAC’s pause timer to the value in the pause message. A
message-sending Ethernet forwarding entity may transmit
periodic pause messages in order to prevent its link partner
from transmitting indefinitely. A pause time of zero takes a
MAC out of the pause state and enables the immediate
resumption of packet transmissions.

pauseQuanta1 16 bits 4.16

pauseQuanta2 16 bits 8.0

pauseQuanta3 16 bits 8.16

pauseQuanta4 16 bits 12.0

pauseQuanta5 16 bits 12.16

pauseQuanta6 16 bits 16.0

pauseQuanta7 16 bits 16.16

The behavior of priority flow control is essentially identical to link-level flow
control except that it operates on individual priority levels instead of an entire
link. Ethernet link partners that receive a priority pause message are expected to
immediately cease transmitting packets from the paused priority levels for the
specified amount of time.

14 Time Synchronization

Time Sync Primer

The IEEE 1588–2008 Precision Time Protocol (PTP) standard specifies a means
for synchronizing clocks across asynchronous, packet-based networks with sub-
microsecond accuracies. IEEE 1588 can operate over legacy networks where just
the endpoints—i.e., the master and slave clock nodes—have special hardware
provisions. However, by upgrading the midpoint systems, faster convergence times
and improved accuracies at lower computational costs are possible.

Clocking Hierarchies
IEEE 1588 arranges itself into a hierarchy of clock systems. This is, in many
ways, analogous to the way that IEEE 802.1D bridges arrange themselves into a
spanning tree. A root (or master) is chosen and loops are eliminated by disabling
redundant or circular paths.

For any particular timing domain (roughly analogous to a VLAN), a grand master
is chosen using a “best master clock” algorithm. Once this master is chosen, all of
the slave clocks synchronize themselves to this master. If the grand master clock
fails or becomes unreachable, a new grand master is chosen.

In Figure 102, the various types of clocks are depicted. The (M), (S) and (T)
designations on ports indicate whether they operate as masters, slaves or trans-
parently, respectively. A master port is an origin of time information. A clock
domain has just one grand master but may have many master ports in the form of
downstream-facing boundary clock ports. Ordinary clocks and boundary clocks
may have just one slave port per clock domain. Transparent clocks have neither
master nor slave ports as they do not terminate timing from a master; rather, they
pass the timing information along toward a downstream slave.

 210 Hardware-Defined Networking

Figure 102 Time Sync Hierarchy

(M)

(T)

(T) (T) (T)

(T)

(T)

(T)

(T)

(T)

(M) (M)

(M)

(M)

(M)

(S)

(S) (S) (S) (S)

(S)

(S)

Ordinary Clock
(Grand Master)

End-to-End
Transparent Clock

Boundary
Clock

Peer-to-Peer
Transparent Clock

End-to-End
Transparent Clock

Non-1588
Node

Boundary
Clock

Peer-to-Peer
Transparent Clock

Non-1588
Node

Ordinary Clock
(Slave)

Ordinary Clock
(Slave)

Ordinary Clock
(Slave)

Ordinary Clock
(Slave)

Ordinary Clock
(Slave)

Types of Clocks
A 1588 clocking hierarchy must have at least two ordinary clocks (one master and
one slave) and may have any number of boundary clocks, end-to-end transparent
clocks and peer-to-peer transparent clocks interposed between the master and the
slave(s). These various types of clocks are explained in the following sections.

Ordinary Clocks

Ordinary clocks are used to terminate timing domains. A timing domain must
have one grand master and at least one slave ordinary clock. A grand master
ordinary clock may have one or more active master timing ports—i.e., ports that
support the 1588 protocol. Slave ordinary clocks may only have one active slave
timing port per domain. In other words, within a domain, a master may deliver
time sync information to multiple slaves while a slave may only have a single
master.

A grand master ordinary clock typically uses some kind of external time reference.
Examples of time references include GPS, atomic clocks and local crystal oscilla-
tors. So, in effect, a grand master ordinary clock is a slave to this timing reference.

Conversely, a slave ordinary clock typically has the ability to generate clock output
signals for use by various kinds of time-dependent equipment and processes.

Any number of boundary or transparent clocks or even non-1588 forwarding
nodes may be interposed between a master ordinary clock and its slave ordinary
clocks. While non-1588 equipment may be used to build a time-aware network,

 Time Synchronization 211

their unpredictable (and not easily measured) latencies contribute to longer
convergence times, reduced accuracy and increased cost and complexity of the
filtering algorithms or circuits required to recover the grand master’s timing infor-
mation at the slave ordinary clocks.

Boundary Clocks

A 1588 boundary clock terminates a timing domain much in the same way that a
router terminates a bridged network’s broadcast domain. A simple way to think
of a boundary clock is that it is a series of ordinary clocks that are integrated into
a single network node. These separate ordinary clocks share a common time refer-
ence that is synchronized to the grand master. One of the ordinary clocks acts as a
slave to a master further up in the hierarchy, while the remainder of the ordinary
clocks act as masters to the nodes further down in the hierarchy.

Because the only thing that is shared by these ordinary clocks that make up a
boundary clock is the synchronized timing information, the various non-admin-
istrative PTP messages sent to a boundary clock are never forwarded. Instead, the
communications are terminated at the boundary clock.

Terminating these messages makes it possible to scale a time distribution network
by breaking it up into zones or levels. Rather than the grand master having to
communicate with, potentially, many thousands of slaves, it need only communi-
cate with a much small number of boundary clocks that, in turn, perform the role
of master for the slave ordinary clocks (or further boundary clocks) beyond it.

There are two disadvantages to boundary clocks. First, they are a bit more com-
plex and more expensive than a non-1588 bridge or router or a 1588-compliant
transparent clock (discussed below). This expense comes from having to fully
terminate and recover the grand master’s timing information. This can be compu-
tationally expensive and/or require sophisticated clock recovery circuits.

Second, the clock recovery process introduces errors and inaccuracies into the
clock that are passed along to subsequent clock nodes. If several boundary clocks
are interposed between a grand master and a slave, the inaccuracies may com-
pound to the point where the slave’s recovered clock is no longer suitable for the
intended application.

Transparent Clocks

Transparent clocks come in two forms: end-to-end and peer-to-peer. Though they
share a lot of common functionality, there are important differences between these
two types of transparent clocks. Their type-specific behavior is described in subse-
quent subsections. Below is a summary of their common characteristics.

Transparent clocks differ from boundary clocks in that they do not terminate all
timing messages. Instead, certain PTP messages are forwarded by transparent

 212 Hardware-Defined Networking

clocks to their addressed destinations. Unlike a non-1588 bridge or router, though,
transparent clocks compensate for their forwarding delays. Therefore, a transpar-
ent clock must be able to accurately measure the reception time and transmission
time of these PTP messages in order to make the necessary corrections with a high
degree of accuracy.

For maximum accuracy, a transparent clock’s local time reference should run at the
same frequency as the grand master’s clock. Because a transparent clock is only con-
cerned with forwarding delays (known as “residency time” in the 1588 standard),
all of its measurements are deltas between receive times and transmit times. Thus, a
transparent clock does not need to know the time of day. A clock that is frequency-
locked to a master but not phase-locked is referred to as being “syntonized.” A
clock that is both frequency and phase locked to a master is referred to as being
“synchronized.” Transparent clocks benefit from syntonized clocks but gain no
additional benefit from synchronized clocks.

By eschewing clock synchronization, a transparent clock need not compute the
transmission delay between it and the master clock. This reduces the complexity of
the transparent clock and reduces the computational load on the master clock.

It is important to point out that clock syntonization is not strictly required by a
transparent clock. A transparent clock can operate perfectly adequately using a
free-running, asynchronous time base, but can achieve somewhat higher degrees
of accuracy if the time base is syntonized. The key is the transparent clock’s
residency time. If the residency time is kept small, then the amount of error that a
free-running clock can introduce in measuring this residency time is minimized. If
a forwarding system’s architecture is such that long delays (multiple microseconds)
are commonplace for even high-priority traffic, then using a syntonized time base is
beneficial.

End-to-End Transparent Clocks

An end-to-end transparent clock gets its name from the way in which delay
measurements are performed. End-to-end transparent clocks forward delay
measurement messages between a master and its slave in largely the same way
that a non-1588 bridge or router does. This means that a slave is measuring the
delay between itself and the master. The end-to-end transparent clock, however,
makes adjustments to the delay measurement messages so that the slave is able to
compensate for the highly variable queuing delays that can occur within forwarding
systems. By doing this, the delay value that remains is just the link delay (i.e., the
delay “on the wire”). Because link delay values change very slowly and by relatively
small amounts, compensating for these delay variations is fairly easy.

So, like a non-1588 bridge or router, an end-to-end transparent clock forwards the
timing protocol messages between a master and a slave. But, unlike a non-1588
bridge or router, an end-to-end transparent clock measures the queuing delays of

 Time Synchronization 213

these messages and makes adjustments to certain parameters so that the variable
forwarding delays can be factored out with ease.

Peer-to-Peer Transparent Clocks

Unlike an end-to-end transparent clock, a peer-to-peer transparent clock actually
terminates delay measurement messages rather than forwarding them. Because of
this, a peer-to-peer transparent clock is able to measure the delay on the medium via
which it communicates with its link peer. This means that a peer-to-peer transparent
clock can compensate for both the link delay and the forwarding delay between the
master and its slaves.

The significant benefit of the peer-to-peer transparent clock is that the master does
not have to process the delay measurement messages from all of the slaves associ-
ated with the master. Instead, it need only process the delay measurement messages
from the directly attached peer-to-peer transparent clocks. In a large network, this
can result in a significant reduction in a master clock’s workload.

For peer-to-peer transparent clocks to work, the entire path between a master and
a slave (ordinary or boundary clocks) must be capable of peer-to-peer transparent
clock operation. In other words, a clock can only operate in the peer-to-peer trans-
parent clock mode if it is directly attached to a link peer that also supports peer-to-
peer delay measurement operations. Ordinary and boundary clocks (in both master
and slave roles) can be configured to support peer-to-peer delay measurement.

One interesting aspect of peer-to-peer transparent clocks is that the delay measure-
ment method should be active on all ports even if those ports are disabled by PTP
for timing use (i.e., redundant paths to the master) or blocked by the spanning tree
protocol. The reason for this is that it enables a quick transition to a new master
clock by avoiding having to perform a link delay measurement prior to using the
link.

 Precision Time Protocol
Let’s review the operation of the 1588 precision time protocol (PTP).

Message Encapsulation

The 1588 precision time protocol depends on the exchange of a series of protocol-
specific messages. These messages may be encapsulated in one of three ways:

 � Ethernet

 � IPv4/UDP

 � IPv6/UDP

When transporting PTP messages over Ethernet, the packets carrying these mes-
sages are distinguished by their MAC destinationAddress and ethertype values.
Two different MAC destination addresses are available for 1588 PTP messages:

 214 Hardware-Defined Networking

01-1b-19-00-00-00 and 01-80-c2-00-00-0e. The 01-1b-19-00-00-00 destination
address is used for all PTP messages except PTP peer delay messages. To ensure
that PTP peer delay messages (used by the peer-to-peer transparent clock method)
are not blocked by spanning tree protocols, 01-80-c2-00-00-0e is used for such
messages.

All PTP messages share the ethertype value 0x88f7.

When transporting PTP messages over IPv4 and UDP, the IPv4 destinationAd-
dress value 224.0.1.129 is used for all messages except peer delay messages while
224.0.0.107 is used for peer delay messages. The UDP destinationPort number
for all PTP event messages is 319 while general messages use port 320. (PTP mes-
sage types are discussed a bit further below.)

When transporting PTP messages over IPv6 and UDP, the IPv6 destinationAd-
dress ff0x::181 is used for all messages except peer delay messages while
ff02::6b is used for peer delay messages. The “x” in the IPv6 destination address
is substituted according to the values listed in Table 34.

Table 34 PTP Primary IPv6 Address Value

Value for “x” Meaning

1 interface — local scope

2 link — local scope

4 admin — local scope

5 site — local scope

8 organization — local scope

e global scope

0, 3 & f reserved

all others unassigned

Message Types

All PTP messages are of one of two types: event messages or general messages.
Event messages are distinctive because they trigger timestamping events in the
hardware. Both of these message types are discussed in the following subsections.

Event Messages

The receipt or transmission of a PTP event message triggers a hardware-based
timestamp mechanism. The purpose of this mechanism is to capture the exact time
that the packet’s reference point passes the receive or transmit interface. According
to the 1588 standard, the timing reference point is the dividing line between the
Ethernet packet’s preamble and the first bit of the packet itself. This is the leading
edge of the least significant bit of the first byte of the MAC destinationAddress

 Time Synchronization 215

field (i.e., the “multicast” bit). In practice, of course, every packet may trigger a
timestamp event and subsequent processing may filter out those timestamps that
do not belong to PTP event messages. Table 35 lists and defines the various PTP
event messages.

Table 35 PTP Event Messages

messageType Name (std. name) Description

0 Sync
(Sync)

Conveys the master clock’s time of day information
to its slave clocks.

1 DelayRequest
(Delay_Req)

Requests the master to generate a DelayResponse
message. Used to measure the master-to-slave delay
time.

2 PeerDelayRequest
(Pdelay_Req)

Requests the link peer to generate a
PeerDelayResponse message. Used to measure
the link delay time between link peers.

3 PeerDelayResponse
(Pdelay_Resp)

Generated in response to a PeerDelayRequest
message.

General Messages

PTP general messages fall into two broad categories: messages that convey timing
data (i.e., interesting messages) and messages that are used for the control and
management of the timing network (i.e., boring messages). Table 36 lists and
defines the various PTP general messages.

Table 36 Table 3 PTP General Messages

messageType Name (std. name) Description

8 FollowUp
(Follow_Up)

Provides the slave with the corresponding Sync’s
transmission time in a two-step timing network.

9 DelayResponse
(Delay_Resp)

Generated in response to a DelayRequest
message.

10 PeerDelayResponseFollowUp
(Pdelay_Resp_Follow_Up)

Provides the delay-requesting peer with the
corresponding PeerDelayResponse’s
transmission time in a two-step timing network.

11 Announce
(Announce)

PTP control message.

12 Signaling
(Signaling)

PTP control message.

13 Management
(Management)

PTP control message.

 216 Hardware-Defined Networking

Clock Domains

1588 PTP timing networks support multiple clock domains. Clock domains are
somewhat analogous to the per-VLAN spanning tree protocol. Each clock oper-
ates independently of the others, each domain has its own grand master clock, and
a single PTP system may operate in multiple domains.

Clock domains are distinguished from one another by the eight-bit clockDomain
field that is common to all PTP messages.

Multiple clock domains may be supported by all PTP clock types: ordinary clocks,
boundary clocks and transparent clocks.

One-Step vs. Two-Step Operation

All PTP systems (ordinary clocks, boundary clocks and transparent clocks) must
include hardware support for accurately timestamping the reception and transmis-
sion of PTP event messages. However, there are two levels of hardware support
for the conveyance of transmit timestamps of the event messages: one-step and
two-step.

The one-step method requires that the timestamp of a transmitted PTP event mes-
sage be incorporated into the transmitted event message itself. This means that the
transmit Ethernet MAC must be able to both timestamp the message (i.e., measure
its transmit time) and perform a number of arithmetic and rewrite operations on
the very same Ethernet packet. At very high data rates this can be quite challeng-
ing. The following operations are typically required:

 � timestamp transmit PTP event messages

 � add timestamp value to the messages’ 64-bit correctionField value

 � update Udp.checksum (if applicable)

 � compute the packet’s Mac.crc using updated packet contents

The principal benefit of one-step operation is improved accuracy in transparent
clocks (residency time is minimized) and greatly reduced CPU overhead in all clock
types.

Two-step clocks, while computationally more expensive (from a CPU’s perspec-
tive) are comparatively simple from a hardware implementation point of view.
Rather than attempting to incorporate a transmit timestamp into an event message
“on the fly,” a follow-up message containing the timestamp-related information is
sent some time after the event messages. A follow-up message is correlated with an
event message by the receiving device by simply comparing the messages’ clockDo-
main and sequenceId fields. A match on these two fields indicates that the messages
are related.

 Time Synchronization 217

There are two types of follow-up messages:

 � FollowUp

 � PeerDelayResponseFollowUp

Both of these messages are general messages and not event messages (i.e., they are
not, themselves, timestamped). Follow-up messages may be transmitted any time
after their corresponding event messages. However, it is recommended that the
follow-up messages be transmitted as quickly as possible and that they are trans-
mitted prior to the transmission of a subsequent event message.

A single PTP system may operate in both one-step and two-step modes simultane-
ously—even on the same physical port. The PTP system must examine each PTP
event message’s twoStep bit to determine how to handle the message. If this bit
is set to 1, then two-step operation is required. Otherwise, one step operation is
required. A node that is not capable of transmitting in the one-step mode may
receive a one-step event message and transmit a two-step message pair.

Time Sync Methods
Now that the various types of PTP clock systems and messages have been intro-
duced, the actual time sync methods are described.

Time Representations

There are two means for representing time that are of interest. The first of these is
the time interval. Time intervals are used for measuring the time that has elapsed
between events. A specific example of their use is the correctionField value that
appears in all PTP message types. A time interval is a 64-bit integer that counts 2-16
nanosecond units of time. This representation gives a time interval value a resolu-
tion of 1/65,536 of a nanosecond and a maximum value of 281,475 seconds, or 3
days, 6 hours, 11 minutes and 15 seconds.

For example, a time interval value of 2.5 nanoseconds is represented as:
0x0000_0000_0002_8000.

The other time representation is the timestamp. This is an absolute time counting
from the start of a particular epoch. The default epoch for PTP started at the first
instant of January 1st, 1970 (UTC). A timestamp is an 80-bit value that is divided
into two parts: a 48-bit seconds part and a 32-bit nanoseconds part. A 48-bit sec-
onds value means that an epoch has a maximum duration of 8.926 million years.
Therefore, there should be no need to ever use an alternate epoch.

It is important to note that the 32-bit nanoseconds part of the timestamp value is
an actual representation of integer nanoseconds and does not represent fractions
of a second. Therefore, the nanoseconds value does not roll over at 232-1. Instead,
its value is always less than 109.

 218 Hardware-Defined Networking

Syncing a Slave to a Master

The simplest way to visualize clock synchronization is to first assume that there
exists some kind of zero-delay communications medium (we’ll deal with delays
later). In this imaginary world, time sync is simply a matter of multicasting a Sync
message from the grand master clock to all of the slaves.

Figure 103 Simple Master-Slave Time Sync Scenario

M

S

SS

S

The grand master timestamps the precise transmit time of its Sync message using
its local clock value (ostensibly the correct, absolute time of day) and the slave
clocks each capture a timestamp of the receipt of the Sync messages using their
own local time value. Because of our magical zero-delay transmission medium,
these transmit and receive timestamp events occur simultaneously. By simply
subtracting the transmit timestamp conveyed by a Sync message from its receive
timestamp, a slave clock can determine the offset that is required to bring its local
clock into sync with the master:

clockOffset = syncTransmitTimestamp - syncReceiveTimestamp
synchronizedTime = localTime + clockOffset

By repeating this process with some regularity, a slave clock can determine the
ratio of the grand master’s clock to its local clock and make the necessary rate
adjustments to its local clock so that the slave clock may track the grand master
accurately between Sync messages. Sync messages are typically transmitted 10
times per second. However, rates well above and well below this rate are allowed.

In reality, of course, all transmission media impose delays and, even worse,
forwarding systems (1588 and non-1588, alike) installed between a master and
a slave can impose delays that are both significant and highly variable. The next
section discusses how transmission delays are measured and utilized.

End-to-End Delay Measurement

If the delay between a master and a slave cannot be measured, it is possible to
achieve syntonization between the grand master and a slave (i.e., frequency
lock) but not synchronization (i.e., phase or time of day lock). The first step in
measuring the delay between a master and a slave is to syntonize the slave’s clock
to the grand master. Doing so increases the accuracy of the delay measurements
because both ends of the system then have a common definition of the duration of
a second.

 Time Synchronization 219

Delay measurements require a two-way measurement of the path between a
master and a slave. This is necessary because the master and slave clocks, though
syntonized, are operating with an unknown offset between them. The Sync mes-
sage sent from a master to its slaves provides a slave clock with one half of the
necessary data: the transmission and reception times of the Sync message. Of
course, with the unknown offset between the master and slave clocks, this data is
not useful on its own for measuring the path delay.

Part two of the path delay measurement process is initiated by the slave clock. It
sends a DelayRequest message to its master clock. The transmit timestamp of this
message is captured and retained by the slave clock. The master clock captures the
DelayRequest’s receive timestamp and returns it to the slave via a DelayResponse
message. This exchange of messages is diagrammed in Figure 104.

Figure 104 Basic Sync and Delay Message Exchange

Intermediate
Forwarding System(s)

Master
Time

t1

t1 t2, t2

t1, t2, t3

t1, t2, t3, t4 t1, t2, t3, t4

t1, t2, t3

t1, t2

t4

t2

t3

round
trip

time

turn around time

timestamps known by slave
(one-step) (two-step)

Sync

DelayResponse

DelayRequest

FollowUp(two-step only)

Slave
Time

In one-step time sync, the Sync transmit time (t1) is embedded in the Sync message,
so the slave knows t1 and t2 (Sync receive time) upon receipt of the Sync. Two-step
time sync does not embed the transmit time in the Sync message. A FollowUp

 220 Hardware-Defined Networking

message is used instead to convey t1 to the slave. Because t4 (DelayRequest receive
timestamp) is measured at the master, this value is conveyed back to the slave via a
DelayResponse message.

An intuitive way to view the path delay is that the difference between t4 and t1
represents the round trip time, while the difference between t3 and t2 represents
the turnaround time between a Sync message and a DelayRequest message. By
subtracting the turnaround delay from the total path delay and dividing by two,
the one-way path delay can be computed:

pathDelay = 4 1 3 2(t - t) - (t - t)
2

The path delay value is used to correct the offset in the slave’s clock to exactly
synchronize it to the master.

Though Sync and DelayRequest messages are depicted as being paired, they are
actually transmitted at different rates in practice. Because link delays vary com-
paratively slowly over time (relative to the drift rates of crystal-based local clocks),
the delay measurement messages are typically sent about once per second. Of
course, higher and lower rates are supported.

The intermediate forwarding systems depicted in Figure 104 introduce a variable
and unpredictable amount of delay in the path between the master and the slave. It
is possible to filter out this delay variation, but this filtering is quite complex, time
consuming and tends to diminish the accuracy of the slave clocks. To address this
problem, transparent clocks were introduced into the standard. By measuring the
residency time and accumulating it into a correction value, it is possible to zero out
the effects of a transparent clock’s variable queuing delays.

There are two versions of transparent clocks defined:

 � end-to-end transparent clock

 � peer-to-peer transparent clock

These are described in detail in the following two subsections.

End-to-End Transparent Clock Delay Measurement

The delay measurement message exchange sequence between a master and a slave
for end-to-end transparent clocks is illustrated in Figure 105.

The delay request and response messages are sent between a slave and its master
via any intervening transparent clocks. The accumulation of useful time informa-
tion occurs as depicted. The slave directly captures time t1 while the receive time
(t2) is delivered from the master directly in DelayResponse. The transparent clocks’
participation in this exchange is limited to making adjustments to DelayRequest
and DelayResponse so as to compensate for their queuing and forwarding delays.

 Time Synchronization 221

In two-step operation, the transparent clocks keep track of DelayRequest and
corresponding DelayResponse message time parameters so as to compensate for
queuing delays.

Figure 105 End-to-End Transparent Clock Delay Measurement Message Exchange

Master Time

t1

t2

DelayResponse

DelayRequest

Slave Time

The ultimate goal of end-to-end delay measurement is to measure the wire delays
and not the queuing delays. The queuing delays are measured during sync opera-
tions (by computing and compensating for residency time through each transpar-
ent clock) and the previously-measured wire delays are then used to determine the
absolute offset between the master and the slave.

Peer-to-Peer Transparent Clock Delay Measurement

The delay measurement message exchange sequence between link peers for peer-
to-peer transparent clocks is shown in Figure 106.

Figure 106 Peer-to-Peer Transparent Clock Delay Measurement Message Exchange

Responder
Peer Time

t1

t4

t2

t3

round
trip
time

turn around time

PeerDelayResponse

PeerDelayRequest

PeerDelayResponseFollowUp
(two-step only)

Requestor
Peer Time

 222 Hardware-Defined Networking

Each peer-to-peer transparent clock and each slave ordinary or boundary clock
generates PeerDelayRequest messages on each of the ports that are directly at-
tached to a clock that is capable of peer-to-peer link delay measurement. This
is true even of the ports that are not currently being used for time sync (i.e., not
receiving Sync messages) and for ports that are blocked by spanning tree. Main-
taining current link delay measurements for all ports reduces the recovery time
if it becomes necessary to switch from one grand master to another or if the path
between the grand master and a slave should change.

PeerDelayRequest, PeerDelayResponse and PeerDelayResponseFollowUp messages
are never forwarded by peer-to-peer transparent clocks. There is no need for the
slave clock to send DelayRequest messages directly to the master clock. Instead,
it sends PeerDelayRequest messages to its link peers. Hence, the master clock
receives PeerDelayRequest messages from only the directly connected peer-to-peer
transparent clocks rather than DelayRequest messages from all of the slaves in the
clock domain. This significantly reduces the master clock’s CPU workload.

Nuts and Bolts of Time Sync

IEEE 1588-compliant, time-aware forwarding systems have some specific hard-
ware requirements. First and foremost, the Ethernet media access controllers must
be able to generate accurate packet receive and transmit timestamp values.

Timestamps
A packet is said to begin reception at the divide between the start-of-packet delim-
iter (i.e., the last bit of the Ethernet preamble) and the first bit of Mac.destination-
Address. The start-of-transmission point in a packet is similarly defined. For both
receive and transmit timestamps, the timestamps must be measured as close to the
physical medium as possible. By “close,” it is not meant to imply spatial closeness,
but temporal closeness. If there are delays between the physical medium and the
timestamp point, these are, ideally, fixed delays. Any fixed delays may simply be
accounted for as propagation delays along the physical medium. It is also ideal for
any delay between the physical medium attachment point and the timestamp point
to be the same for receive and transmit. This is important because the one-way de-
lay is assumed to simply be one half of the round-trip delay. Skew between receive
and transmit delays will reduce the accuracy of the one-way delay assumption.
Any skew must be characterized and included in a compensation computation for
the one-way delay.

All receive packets, regardless of their type, must be timestamped upon detection
of the start of reception. This is required because there is no way to know which
packets are PTP event messages without first receiving and examining the PTP
message. Unneeded timestamp values may be disregarded.

 Time Synchronization 223

Transmit timestamping behavior depends on whether the forwarding system is
operating in one-step or two-step mode. In one-step mode, the hardware must
update correctionField as required during the transmission process. Specialized
hardware within the Ethernet media access controller is required to perform these
updates. For two-step operation, the transmit timestamp value is returned to the
forwarding system’s control plane so that an appropriate follow-up message may
be generated and transmitted. To correlate a transmit timestamp value with a
particular transmit packet, certain identifying information (transmit interface ID,
clockDomain, sequenceId) must be included along with the timestamp value.

To enable timestamping, a time-aware forwarding system must have a local time-
base. This local timebase can either run off of a local, asynchronous clock source
(e.g., a crystal oscillator) or a frequency-locked clock source (e.g., synchronous
Ethernet). In the case of an asynchronous clock source, the timebase counter
must increment by a time value that represents the count interval period of the
grand master clock as expressed in units of the local clock source. For example,
if we presume that the timebase must count nanoseconds and it is determined by
comparing a sequence of Sync messages that the local asynchronous clock source
is actually running at 501 MHz instead of the 500 MHz at which it is supposed
to operate, then the local timebase counter must increment by 1.996 on every
clock instead of 2.000. Thus, the local timebase counter will advance time at the
same rate as the timing grand master. The timebase counter’s increment amount
is adjusted dynamically as continuous analysis of Sync messages is performed in
order to compensate for variable drift between the timing grand master and each
timing slave.

For synchronous Ethernet, there is a continuous timing chain from the timing
grand master to each time-aware forwarding system. Therefore, no such compen-
sation and tracking is necessary.

Timebase Counters
There are two types of timebase counters: an interval counter and a time-of-day
counter. It is possible to build a time-aware forwarding system with just one type
of counter, but often both types are present. For time sync purposes, the interval
counter is the most useful form since it makes correctionField math quite simple.
The time-of-day counter can also be used for this math, but, more importantly, it
is really quite useful for OAM applications where a time-of-day value is required.

For a maximal implementation, two separate but synchronous counters are used
for easy operation of the PTP time sync protocols. The first counter counts seconds
and nanoseconds (time-of-day). The second counter counts nanoseconds and frac-
tions of a nanosecond (interval).

The reason that two separate counters are required is that the interval counter’s
nanoseconds value rolls over at 248-1 nanoseconds (a little over three days) while

 224 Hardware-Defined Networking

the time-of-day’s nanoseconds value is always less than 109 (exactly one second).
Maintaining two counters that advance at exactly the same rate (but with two
different modulo values) makes the conversion from one time space to the other a
fairly simple matter.

The intervalNanoseconds value is what is captured by the network and device-to-
device interfaces when PTP event messages are received or transmitted. This value
is subsequently used as the basis for adjustments to PTP messages’ correction-
Field value.

NOTE The names used here for the two counter systems can cause some
confusion with the terms defined in the IEEE 1588 standard. For these coun-
ters, the timestamp value represents an absolute time of day reference. The
time-of-day counter’s value is not actually used directly by the timestamping
hardware to measure receive and transmit times. Instead, the intervalNano-
seconds counter is used. Because intervalNanoseconds operates modulo 248
nanoseconds, computing intervals between timestamp events is made much
simpler.

Drift and Offset Adjustment

In a large system, the devices that receive, forward and transmit packets will,
inevitably, be driven by separate, local crystals. Hence, they will all operate at
somewhat different rates. Even those devices that operate off of a common crystal
clock source will likely emerge from reset at varying times, introducing an offset
between their notions of the time of day. Of course, it is also unlikely that any
system built today can come out of reset on January 1st, 1970. So, not only is there
an offset between devices, there’s a huge offset between these devices and the start
of the time domain’s epoch.

The drift and offset controls are used to correct for these differences among the
various local clocks and between these local clocks and the grand master. Drift
control was described briefly above. Offset adjustment is a bit more tricky. Gener-
ally, introducing a significant discontinuity in time by suddenly adding, say, 20
years to the time of day can seriously confuse things. However, during system
startup, introducing an offset is necessary in order to get the clocks in fairly close
alignment with the grand master. Once an offset has been established, small
adjustments to the timebase counters’ increment values are used to maintain fre-
quency and phase lock with the grand master clock. So, the offset is set once and
then small rate adjustments are used thereafter to maintain sync.

CPU and External Event Timestamping
In order for the CPU to participate in time sync operations and make any neces-
sary drift and offset adjustments, it must be able to determine the value of the vari-
ous timebase counters at some instant. Similarly, when an external event occurs,

 Time Synchronization 225

such as, for example, the assertion of a one-pulse-per-second sync signal input, the
time at which that event occurred must be measured so that the CPU can compare
the external time of that event and the internal time of that same event.

In support of these requirements, the hardware must have multiple sets of sam-
pling registers that simultaneously capture all of the timebase counter values for
subsequent examination by the CPU. One set of timebase sampling registers is
controlled by (i.e., triggered by) the CPU. One or more additional sets of registers
are triggered by external events (e.g., one-pulse-per-second external signal). Exter-
nal events include signals generated by external functions as well as signals gener-
ated by internal functions such as digital frequency synthesizers or analog PLLs.

Message-Related Operations

This section describes the hardware and software operations required to generate
or respond to various PTP messages.

NOTE In the discussions that follow, a number of variables are used whose
names begin with cpuSampled. These variables represent CPU-accessible
hardware registers into which sampled time values are deposited in response
to specific events. These variables are not part of any PTP message structure.

NOTE When “timestamps” is used as a verb, it refers to the sampling of
time values in response to a PTP event message. It does not imply that the
corresponding message is updated in any way by the timestamping action.
However, subsequent action taken by the hardware may, indeed, modify the
corresponding packet as a consequence of the timestamping action. These
details are spelled out as needed.

PTP Message Prefix
All PTP messages share a common prefix and only differ in their suffixes. The
prefix occupies the first 32 bytes of each PTP message and its structure is shown
Figure 107.

Figure 107 PTP Message Prefix Structure Diagram

0

4

8

12

16

20

24

28

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
messageType

clockDomain

version messageLength

sequenceId

correctionField[0:31]

correctionField[32:63]

sourcePortId[0:31]

sourcePortId[32:63]

sourcePortId[64:79]

 226 Hardware-Defined Networking

The fields that make up the PTP message prefix are defined in Table 37.

Table 37 PTP Message Prefix Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

transportSpecific
(transportSpecific)

4 bits 0.0 May be used by lower-layer protocols.

messageType
(messageType)

4 bits 0.4 Identifies the message type.

This field is enumerated as follows.

0 = Sync
1 = DelayRequest
2 = PeerDelayRequest
3 = PeerDelayResponse
8 = FollowUp
9 = DelayResponse
10 = PeerDelayResponseFollowUp
11 = Announce
12 = Signaling
13 = Management

version
(versionPTP)

4 bits 0.12 Indicates the version of PTP running the originating
node.

messageLength
(messageLength)

16 bits 0.16 The total length of the PTP message as measured in
bytes.

clockDomain
(domainNumber)

8 bits 4.0 Indicates the clock domain to which the message
belongs.

alternateMaster
(alternateMasterFlag)

1 bit 4.16 Set to 1 if the originating port is not a master port.

twoStep
(twoStepFlag)

1 bit 4.17 Indicates one-step vs. two-step operation.

Set to 1 for two step operation. Set to 0 for one-step
operation.

unicast
(unicastFlag)

1 bit 4.18 Set to 1 to indicate that the transport layer protocol
address for this message is a unicast address, otherwise
it is a multicast address.

profileSpecific1
(PTP profile Specific 1)

1 bit 4.21 As defined by an alternate PTP profile.

profileSpecific2
(PTP profile Specific 2)

1 bit 4.22 As defined by an alternate PTP profile.

correctionField
(correctionField)

64 bits 8.0 A time interval used for correction purposes.

This interval is measured in nanoseconds and then
multiplied by 216. For example, 2.5 nanoseconds is
represented as 0x0000_0000_0002_8000.

sourcePortId
(sourcePortIdentity)

80 bits 20.0 A globally-unique source port identity value.

 Time Synchronization 227

Field Name (std. name) Width Offset (B.b) Definition

sequenceId
(sequenceId)

16 bits 28.16 Uniquely identifies an event message within a clock
domain.

sequenceId is incremented monotonically using a
unique sequence for each combination of clock domain
and message type.

Note: PeerDelayResponse, FollowUp,
DelayResponse and PeerDelayResponseFollowUp
all share a common sequenceId pool.

Sync and FollowUp
The structure of a Sync message is shown in Figure 108 and defined in defined
Table 38.

Figure 108 Sync Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
originTimestamp[0:15]

originTimestamp[16:47]

originTimestamp[48:79]

logMeasurementIntervalcontrolField

Table 38 Sync Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with hardware
designed to conform to version 1 of the PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type is to
be generated.

originTimestamp
(originTimestamp)

80 bits 32.16 The time at which the Sync message was transmitted.

The structure of a FollowUp message is shown in Figure 109.

Figure 109 FollowUp Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
preciseOriginTimestamp[0:15]

preciseOriginTimestamp[16:47]

preciseOriginTimestamp[48:79]

logMeasurementIntervalcontrolField

 228 Hardware-Defined Networking

And the fields of the FollowUp message are defined in Table 39.

Table 39 FollowUp Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with
hardware designed to conform to version 1 of the
PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type is
to be generated.

preciseOriginTimestamp
(preciseOriginTimestamp)

80 bits 32.16 The time at which the associated Sync message was
transmitted.

Sync Transmission by Ordinary and Boundary Clocks

Sync messages originate in ordinary and boundary clocks and are terminated by
ordinary and boundary clocks. The local CPU of the master ordinary or boundary
clock is responsible for initiating the transmission of Sync messages. Nominally,
these messages are transmitted 10 times per second and are multicast to all of the
slave ordinary and boundary clocks. However, faster or slower message rates and
unicast distribution are also possible.

For a one-step clock (i.e., twoStep is set to 0), the CPU must fill in originTime-
stamp with an estimate of the time of day of the transmission the Sync message.
This estimate must be within ±1 second of the actual transmission time. During
transmission, the hardware fills in correctionField such that the sum of origin-
Timestamp and correctionField equals the actual time of day of the transmission
of the message.

To accomplish this in practice, the CPU triggers a simultaneous sampling of the
forwarding system’s local timeOfDaySeconds, timeOfDayNanoseconds and inter-
valNanoseconds counter values. The CPU sets originTimestamp equal to a concat-
enation of the sampled timeOfDaySeconds and timeOfDayNanoseconds values, and
correctionField is set equal to intervalNanoseconds. During transmission, the
Ethernet media access controller timestamps the message (i.e., by sampling the
intervalNanoseconds counter) and updates the Sync message’s correctionField
value as follows:

correctionField = intervalNanoseconds - correctionField

Thus, as transmitted, the sum of the Sync message’s originTimestamp and correc-
tionField values equal the message’s actual transmission time.

For a two-step clock (i.e., twoStep is set to 1), the CPU must fill in originTimestamp

 Time Synchronization 229

with an estimate of the actual transmission time of the Sync message. This estimate
must be within ±1 second of the actual transmission time. To accomplish this, the
CPU triggers a simultaneous sampling of the forwarding system’s local timeOf-
DaySeconds, timeOfDayNanoseconds and intervalNanoseconds counter values and
storing them in cpuSampledTimeOfDaySeconds, cpuSampledTimeOfDayNanoseconds
and cpuSampledIntervalNanoseconds, respectively.

The CPU sets its Sync message’s originTimestamp equal to the concatenation of
previously-sampled cpuSampledTimeOfDaySeconds and cpuSampledTimeOfDayNano-
seconds, and sets correctionField to zero. The CPU then initiates the transmis-
sion of the Sync message.

The Ethernet media access control hardware timestamps the Sync message dur-
ing transmission by sampling the intervalNanoseconds counter and delivering
that value to the CPU where it is stored in transmitIntervalNanoseconds. The
hardware also delivers the Sync message’s transmit port ID, Sync.clockDomain and
Sync.sequenceId values to the CPU to correlate transmitIntervalNanoseconds
with the just-transmitted Sync message. The CPU composes a FollowUp message
by setting FollowUp.preciseOriginTimestamp to the same value placed in Sync.
originTimestamp and setting FollowUp.correctionField as follows:

correctionField = transmitIntervalNanoseconds - cpuSampledIntervalNanoseconds

Thus, the sum of FollowUp.preciseOriginTimestamp and FollowUp.correction-
Field equals the Sync message’s actual transmission time.

Sync Reception and Transmission by a Transparent Clock

Sync messages are forwarded by transparent clocks toward their addressed
destinations. However, adjustments are made to the messages (or their follow-up
messages) as they are being forwarded in order to compensate for the queuing
delay imposed by the transparent clock (i.e., residency time).

For a one-step transparent clock, the residency time of the Sync message must be
added to its correctionField. To accomplish this, the hardware timestamps the
Sync message upon reception by sampling the receive intervalNanoseconds coun-
ter and immediately updates correctionField as follows:

correctionField = correctionField - receiveIntervalNanoseconds + pathDelay

NOTE If the clock is an end-to-end transparent clock, then pathDelay is set
to zero.

The modified Sync message is then forwarded to the appropriate transmit
interface(s). During transmission, the hardware timestamps the Sync message by
sampling the transmit intervalNanoseconds counter and updates correctionField
as follows:

 230 Hardware-Defined Networking

correctionField = correctionField + transmitIntervalNanoseconds

Thus, correctionField is updated to reflect the residency time across the transpar-
ent clock and, if the clock is a peer-to-peer transparent clock, corrected for the peer
path delay as well.

For a two-step transparent clock, the Sync message is forwarded normally and
without modification. The message’s hardware-generated timestamp values
receiveIntervalNanoseconds and transmitIntervalNanoseconds (along with
its transmit port ID, Sync.clockDomain and Sync.sequenceId for correlation
purposes) are delivered to the CPU. Upon receipt of the associated FollowUp, its
correctionField value is updated as follows:

FollowUp.correctionField = FollowUp.correctionField +
 (transmitIntervalNanoseconds - receiveIntervalNanoseconds) + pathDelay

Thus, FollowUp.correctionField is updated to reflect the residence time of the
associated Sync message. The FollowUp message is forwarded normally after it has
been updated.

Sync Reception by Ordinary and Boundary Clocks

Ordinary and boundary clocks use Sync messages to align their local clocks to the
grand master by measuring the absolute value and the rate of change of the offset
between the two. Received Sync messages are not forwarded by ordinary and
boundary clocks.

For a one-step clock, the reception of a Sync message triggers a timestamp event
for the received message. This timestamp value (receiveIntervalNanoseconds) is
delivered to the CPU along with the receive packet’s interface ID, Sync.clockDo-
main and Sync.sequenceId. The Sync message itself is also forwarded to the CPU as
a normal packet reception.

In response, the CPU triggers the simultaneous sampling of timeOfDaySeconds,
timeOfDayNanoseconds and intervalNanoseconds from the local timebase clock
in order to compute the time of day of the reception of the Sync message. These
sampled values are stored in variables with the prefix “cpuSampled...”. By calculat-
ing the difference between the cpuSampledIntervalNanoseconds and the Sync
message’s hardware-timestamped receiveIntervalNanoseconds value, the CPU
can determine the time of day that the Sync was received (based on the local slave
clock’s understanding of time of day). This is done as follows:

1. Figure out how much time has transpired between the reception of the Sync
message and the CPU-driven sampling of the slave device’s various time
counters:

 Time Synchronization 231

sampleDelayNanoseconds = cpuSampledIntervalNanoseconds - receiveIntervalNanoseconds

2. Subtract sampleDelayNanoseconds from the CPU-sampled time-of-day values
(cpuSampledTimeOfDaySeconds and cpuSampledTimeOfDayNanoseconds) to
arrive at the time of day (according to the slave device’s time counters) of
the arrival of the Sync message. Because the interval counters are modulo 248
while the time of day counters are a two-part counting system counting sec-
onds and nanoseconds (modulo 109) separately, a little extra math is required
as described below.

 � If sampleDelayNanoseconds is less than 109, then: Subtract sampleDe-
layNanoseconds from cpuSampledTimeOfDayNanoseconds. If this subtraction
results in a carry, subtract 1 from cpuSampledTimeOfDaySeconds.

 � Else, if sampleDelayNanoseconds is greater than or equal to 109, then:
Subtract 109 from sampleDelayNanoseconds and subtract 1 from cpuSampled-
TimeOfDaySeconds. Now, subtract the newly-updated sampleDelayNanoseconds
from cpuSampledTimeOfDayNanoseconds. If this subtraction results in a carry,
subtract an additional 1 from cpuSampledTimeOfDaySeconds.

3. At this point, cpuSampledTimeOfDaySeconds and cpuSampledTimeOfDayNano-
seconds reflect the time of day of the reception of the Sync message according
to the slave’s clock. The offset between the slave and master clocks is com-
puted as follows:

offsetFromMaster = {cpuSampledTimeOfDaySeconds, cpuSampledTimeOfDayNanoseconds} -
 originTimestamp - pathDelay - correctionField13

This offset is then applied to the slave clock in order to align it with the master
clock.

For a two-step clock, the process is roughly the same as described above for
the one-step clock. The only significant difference is that the Sync message’s
originTimestamp value is delivered by a FollowUp message rather than in the Sync
message itself. Therefore, the clock offset computation must be deferred until the
reception of the FollowUp message, and both the Sync and FollowUp messages must
be delivered to the CPU along with the Sync message’s hardware-generated receive
timestamp value.

13 The 80-bit values in this equation (offsetFromMaster and originTimestamp) are actually two-
part numbers (seconds and modulo 109 nanoseconds). Carries and borrows between nanosec-
onds and seconds must be handled accordingly.

 232 Hardware-Defined Networking

DelayRequest and DelayResponse
The structure of a DelayRequest message is depicted in Figure 110 and Table 40.

Figure 110 DelayRequest Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
originTimestamp[0:15]

originTimestamp[16:47]

originTimestamp[48:79]

logMeasurementIntervalcontrolField

Table 40 DelayRequest Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with hardware
designed to conform to version 1 of the PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type is to
be generated.

originTimestamp
(originTimestamp)

80 bits 32.16 The time at which the DelayRequest message was
transmitted.

The structure of a DelayResponse message is shown in Figure 111 and defined in
Table 41.

Figure 111 DelayResponse Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
receiveTimestamp[0:15]

receiveTimestamp[16:47]

receiveTimestamp[48:79]

44

48

requestingPortId[0:31]

requestingPortId[32:63]

logMeasurementInterval

52 requestingPortId[64:79]

controlField

Table 41 DelayResponse Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with hardware
designed to conform to version 1 of the PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type is to
be generated.

 Time Synchronization 233

Field Name (std. name) Width Offset (B.b) Definition

receiveTimestamp
(receiveTimestamp)

80 bits 32.16 The time at which the DelayRequest message was
received.

requestingPortId
(requestingPortIdentity)

80 bits 44.0 The identity of the port that issued the DelayRequest
message.

DelayRequest Transmission by Ordinary and Boundary Clocks

DelayRequest messages are transmitted periodically by ordinary and boundary
slave clocks toward their master clock in order to measure the round trip delay
between the two. Dividing this round trip time by two provides the slave system
with the pathDelay parameter.

To generate a DelayRequest message, the slave clock sets DelayRequest.cor-
rectionField value to zero and DelayRequest.originTimestamp either to zero or
to an estimate of the message’s transmit time that is within ±1 second of its actual
transmission time.

Upon transmission, the hardware timestamps the message and returns the trans-
mitIntervalNanoseconds value to the CPU along with the message’s transmit
interface ID, clockDomain and sequenceId for correlation purposes. The CPU saves
transmitIntervalNanoseconds in anticipation of the reception of a DelayResponse
message.

DelayRequest/DelayResponse Reception and Transmission by a Transparent
Clock

DelayRequest messages are forwarded by transparent clocks toward their ad-
dressed destinations. However, adjustments are made to the messages as they are
being forwarded in order to compensate for the queuing delay imposed by the
transparent clock.

For a one-step transparent clock, the residency time of the DelayRequest message
must be added to the DelayRequest.correctionField value. To accomplish this,
the hardware timestamps the DelayRequest message upon reception and updates
its correctionField as follows:

correctionField = correctionField - receiveIntervalNanoseconds + pathDelay

NOTE For end-to-end delay measurements, pathDelay is equal to 0.

The modified DelayRequest message is then forwarded to the appropriate transmit
interface. During transmission, the hardware timestamps the DelayRequest mes-
sage and updates its correctionField as follows:

correctionField = correctionField + transmitIntervalNanoseconds

 234 Hardware-Defined Networking

Thus correctionField is updated to reflect the residency time across the transpar-
ent clock and, if the clock is a peer-to-peer transparent clock, corrected for the peer
path delay as well.

For a two-step transparent clock, the DelayRequest message is forwarded normal-
ly. The message’s hardware-based receiveIntervalNanoseconds and transmitInt-
ervalNanoseconds timestamp values (along with the receive and transmit interface
IDs an the clockDomain and sequenceId values from the DelayRequest message
for correlation purposes) are delivered to the CPU. Upon receipt of the associated
DelayResponse message (traveling in the opposite direction), its correctionField
value is updated by the CPU as follows:

correctionField = correctionField + (transmitIntervalNanoseconds -
 receiveIntervalNanoseconds)

Thus, The DelayResponse message’s correctionField is updated to reflect the resi-
dence time of the associated DelayRequest message. The DelayResponse message is
forwarded normally after it has been updated.

DelayRequest Reception and DelayResponse Transmission by Ordinary and
Boundary Clocks

When a master receives a DelayRequest, its hardware detects the event message
and generates receiveIntervalNanoseconds. This value (along with the receive
interface ID, clockDomain and sequenceId for correlation purposes) is delivered
to the CPU. The DelayRequest message itself is delivered to the CPU as a normal
receive packet.

Upon receiving the DelayRequest message from the hardware, the CPU triggers the
simultaneous sampling of the timeOfDaySeconds, timeOfDayNanoseconds and in-
tervalNanoseconds values. The difference between receiveIntervalNanoseconds
and cpuSampledIntervalNanoseconds is subtracted from cpuSampledTimeOfDaySec-
onds and cpuSampledTimeOfDayNanoseconds values in order to calculate the time of
day when the DelayRequest message was received.

The CPU generates a DelayResponse message by setting its correctionField equal
to the received DelayRequest message’s correctionField value and sets its re-
ceiveTimestamp to the corrected receive time of day (described above).

The DelayResponse message is then transmitted to the slave that issued the De-
layRequest message.

 Time Synchronization 235

PeerDelayRequest, PeerDelayResponse, and PeerDelayResponseFollowUp
The structure of a PeerDelayRequest message is shown in Figure 112.

Figure 112 PeerDelayRequest Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
originTimestamp[0:15]

originTimestamp[16:47]

originTimestamp[48:79]

44

48

logMeasurementInterval

52

controlField

The fields of a PeerDelayRequest message are defined in Table 42.

Table 42 PeerDelayRequest Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with hardware
designed to conform to version 1 of the PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type is to
be generated.

originTimestamp
(originTimestamp)

80 bits 32.16 The time at which the PeerDelayRequest message
was transmitted.

The structure of a PeerDelayResponse message is shown in Figure 113.

Figure 113 PeerDelayResponse Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
requestReceiptTimestamp[0:15]

requestReceiptTimestamp[16:47]

requestReceiptTimestamp[48:79]

44

48

logMeasurementInterval

52

requestingPortId[0:31]

requestingPortId[32:63]

requestingPortId[64:79]

controlField

The fields of a PeerDelayResponse message are defined in Table 43.

 236 Hardware-Defined Networking

Table 43 PeerDelayResponse Message Field Definitions

Field Name (std. Name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with
hardware designed to conform to version 1 of the
PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type
is to be generated.

requestReceiptTimestamp
(requestReceiptTimestamp)

80 bits 32.16 The time at which the PeerDelayRequest message
was transmitted.

requestingPortId
(requestingPortIdentity)

80 bits 44.0 The identity of the port that issued the
PeerDelayRequest message.

The structure of a PeerDelayResponseFollowUp message is shown in Figure 114.

Figure 114 PeerDelayResponseFollowUp Message Structure Diagram

32

36

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
responseOriginTimestamp[0:15]

responseOriginTimestamp[16:47]

responseOriginTimestamp[48:79]

logMeasurementInterval

44

48

requestingPortId[0:31]

requestingPortId[32:63]

52 requestingPortId[64:79]

controlField

The fields of a PeerDelayResponseFollowUp message are defined in Table 44.

Table 44 PeerDelayResponseFollowUp Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

controlField
(controlField)

8 bits 32.0 This field is provided for compatibility with
hardware designed to conform to version 1 of the
PTP standard.

logMessageInterval
(logMessageInterval)

8 bits 32.8 Indicates the rate at which the current message type
is to be generated.

responseOriginTimestamp
(responseOriginTimestamp)

80 bits 32.16 The time at which the PeerDelayResponse
message was transmitted.

requestingPortId
(requestingPortIdentity)

80 bits 44.0 The identity of the port that issued the
PeerDelayRequest message.

 Time Synchronization 237

PeerDelayRequest Transmission

Any type of clock (ordinary, boundary, transparent) that has a port that is con-
figured for peer-to-peer delay measurement transmits periodic PeerDelayRequest
messages. These messages are link-local and are not forwarded by the port’s link
partner.

The CPU generates a PeerDelayRequest message by setting its originTimestamp
and correctionField values to zero. Upon transmission of the PeerDelayRequest
message, the hardware generates a transmitIntervalNanoseconds value, which
is delivered to the CPU along with the PeerDelayRequest message’s transmit
interface ID, clockDomain and sequenceId values (for correlation purposes). The
transmitIntervalNanoseconds value is stored by the CPU in anticipation of the
eventual reception of a PeerDelayResponse message.

PeerDelayRequest Reception and PeerDelayResponse/
PeerDelayResponseFollowup Transmission

Upon reception of a PeerDelayRequest message, the hardware generates a re-
ceiveIntervalNanoseconds value. This value is delivered to the CPU (along with
the packet’s receive interface ID and the PeerDelayRequest message’s clockDomain
and sequenceId values for correlation purposes). The PeerDelayRequest message
itself is also delivered to the CPU via a separate path.

In response to the PeerDelayRequest message, the CPU generates a PeerDelayRe-
sponse message.

If the clock is a one-step clock, the PeerDelayResponse message is generated by set-
ting its requestReceiptTimestamp to zero and setting correctionField to the two’s
complement of receiveIntervalNanoseconds.

During transmission, the hardware generates a transmitIntervalNanoseconds
value and then updates correctionField as follows:

correctionField = correctionField + transmitIntervalNanoseconds

Thus, PeerDelayResponse message’s correctionField contains a value that
represents the turnaround time from the receipt of the PeerDelayRequest to the
transmission of its associated PeerDelayResponse.

If the clock is a two-step clock, the PeerDelayResponse message is generated by
setting both requestReceiptTimestamp and correctionField to zero.

During the transmission of PeerDelayResponse, the hardware generates transmi-
tIntervalNanoseconds and delivers that value along with the message’s transmit
interface ID, clockDomain and sequenceId to the CPU. The CPU, in turn, generates
a PeerDelayResponseFollowUp message by setting its responseOriginTimestamp to
zero and correctionField[63:0] to transmitIntervalNanoseconds

 238 Hardware-Defined Networking

- receiveIntervalNanoseconds. The PeerDelayResponseFollowUp message is then
transmitted to the requestor.

PeerDelayResponse Reception

Upon reception of a PeerDelayResponse message, the hardware generates a
receiveIntervalNanoseconds value and delivers it to the CPU along with the mes-
sage receive interface ID, clockDomain and sequenceId.

If the clock is a one-step clock, the path delay is computed as follows:

pathDelay = ((receiveIntervalNanoseconds - transmitIntervalNanoseconds) -
 correctionField)/2

NOTE The transmitIntervalNanoseconds value used here is the value that
was stored by the CPU when it transmitted the PeerDelayRequest message.

If the clock is a two-step clock, the path delay is computed using the correction-
Field value from the PeerDelayResponseFollowUp message instead of from the
PeerDelayResponse message.

Accommodating UDP Checksums
The methods described in the preceding sections specify that changes are made
to correctionField values. This means that Udp.checksum must be updated if
a PTP event message is encapsulated by IP/UDP. The challenge that is faced by
high performance Ethernet MACs is that the Udp.checksum value is likely to have
been transmitted (or at least shifted toward the physical medium so far that it can
no longer be modified) before the update to correctionField is performed. One
method to account for this is to ensure that at least 2 pad bytes follow the PTP
message. These pad bytes are included in the checksum computation, so any change
made to correctionField can be balanced out—from a checksum perspective—by
making a complementary update to these pad bytes at the end of the packet. Of
course, this scheme only works if the original PTP event message was generated
with these pad bytes in place.

15 OAM

As packet-based networking is being adopted more and more as a replacement
for traditional synchronous, circuit-switched optical networks in telecom ap-
plications, certain functional aspects of these legacy networks must be grafted
onto the packet-based standards in order to take advantage of their simplicity and
efficiency without sacrificing the robustness and maintainability of the legacy net-
works. The fault detection and maintenance functions of the legacy synchronous
networks are collected into a suite of functions known as Operations, Administra-
tion and Maintenance, or OAM. This chapter provides an overview of OAM and
describes the requirements for implementing these functions in a hardware-centric
environment (as opposed to a software or micro-code environment).

OAM strives to test and monitor a network to help ensure that its fundamental
operating characteristics are within specified tolerances. These operating charac-
teristics include:

 � basic connectivity

 � forwarding delays

 � packet loss

 � user data throughput

A series of specialized messages, protocols and hardware features combine to test
these characteristics.

OAM functions have been defined for Ethernet and MPLS. Though they both
serve roughly the same purpose, there are enough differences in the details that it is
beneficial to describe them separately. Let’s start with Ethernet OAM.

Ethernet OAM Architecture

Ethernet OAM is defined by two overlapping international standards: ITU-T
Y.1731 and IEEE 802.1ag. The ITU standard is a superset of the IEEE standard.
Where they do overlap, the message formats and algorithms are compatible, but
the terminology is slightly different. In this chapter, I have chosen to present the
ITU version of Ethernet OAM.

Ethernet OAM is intended to operate over an extended Layer 2 network in
which certain elements are actually services provided by a variety of independent

 240 Hardware-Defined Networking

organizations. For example, a single customer may operate a series of distributed
networks that it interconnects at Layer 2 using the services provided by one or
more network operators. This customer must be able to test the connections be-
tween its sites without having to involve the network operators and without hav-
ing to know anything about the operator’s internal network topology. Similarly,
each network operator must be able to test the end-to-end connectivity for their
portion of the network, as well as the links to the other operators with which it has
service exchange agreements.

Overview
The logical and physical connections in OAM are known as maintenance entities
(MEs). Essentially, a maintenance entity is a relationship between two endpoints
that require management. A maintenance entity group (MEG) is a group of main-
tenance entities that exist within the same administrative boundary, have the same
maintenance entity group level (defined below) and belong to the same point-to-
point or multipoint Ethernet network.

A maintenance entity group endpoint (MEP) represents the point at which OAM
packets may originate or terminate. Maintenance entity group endpoints are
further differentiated by the functional direction that they are facing (i.e., the
direction that packets are launched and received) — either toward a network con-
nection (down MEP endpoints) or toward the switching plane of a bridge (up MEP
endpoints). The up vs. down naming convention is explained more completely
later on in this chapter.

A maintenance entity group intermediate point (MIP) may also be configured.
OAM packets do not originate or terminate at a maintenance entity group inter-
mediate point, but a maintenance entity group intermediate point may react to
certain OAM packets. The purpose of a maintenance entity group intermediate
point is to provide additional visibility into a network without necessarily expos-
ing the entire network topology.

Maintenance entity groups are often nested. The nesting of maintenance entity
groups is beneficial when, say, a customer’s distributed networks are intercon-
nected by an independent network operator. In this case, it is required for a
customer to be able to test the connections across the independent operators’ net-
works while allowing those networks to be opaque. At the same time, the network
operator must be able to test its own network using the same physical and virtual
connections that the customer uses without interfering with customer traffic or
exposing the customer to the operator’s tests. The nesting of maintenance entity
groups is accomplished by assigning maintenance entity group level values to the
various maintenance entity groups.

A simple network case study is presented in Figure 115.

 OAM 241

Figure 115 Ethernet OAM Hierarchies and Service Access Points

Level 0 (physical)

down MEP
up MEP
MIP

Level 2 (operator)

Level 4 (operator)

Level 5 (service provider)

Level 7 (customer)

Customer
Equipment

Customer
Equipment

Operator B BridgesOperator A Bridges

Figure 115 depicts a pair of bridges operated by a single customer that are con-
nected to one another via a set of intermediate bridges that are operated by two
independent network operators. Each bridge is depicted as a box enclosing two
black squares: one square on each of their vertical edges. These black squares
represent the per-port functionality of the bridge and the line between the squares
is the bridge’s packet filtering/forwarding function.

The thin line that serpentines up and down as it progresses across the bottom of
Figure 115 represents the logical flow of packets through the various bridges.
Notice that for each port function, there is a pair of vertical segments of this logi-
cal packet flow. These vertical segments are on either side of the port’s topology
enforcement function (i.e., spanning tree filtering). This means that OAM packets
that are sourced or sunk by a port/VLAN are not subject to spanning tree block-
ing associated with that port/VLAN. On the other hand, OAM packets that are
forwarded by a bridge are subject to spanning tree blocking.

The horizontal lines with triangles and, optionally, circles attached represent the
various maintenance entities within various maintenance entity groups, arranged
so that one or more maintenance entity groups is nested within a maintenance
entity group of a higher maintenance entity group level number. The triangles in
Figure 115 represent maintenance entity group endpoints. The circles represent
maintenance entity group intermediate points.

Maintenance entity group endpoints may be instantiated either on the port side
of the spanning tree state enforcement function or the filtering/forwarding side.
The maintenance entity group endpoints on the port side are known as “down
MEPs” and are depicted as blue triangles. Down MEPs send their generated OAM
packets toward the port and receive their OAM packets from the port. Up MEPs
(depicted as red triangles), on the other hand, send their generated OAM packets

 242 Hardware-Defined Networking

toward the bridge’s filtering/forwarding function and receive them from the same.
Maintenance entity group intermediate points straddle the dividing line formed by
the spanning tree enforcement function. Several examples of maintenance entity
groups terminated by down and up MEP endpoints are depicted in Figure 115.

The maintenance entity group at level 7 in the example is representative of a main-
tenance entity group that a customer may establish to test and monitor its connec-
tions through the third-party independent networks. The down MEP endpoints
(blue triangles) show that the maintenance entity group spans from the port on
the customer’s bridge on one side of the extended network to a similar customer
port on the other side. The OAM packets sent from one down MEP endpoint to
the other do not actually pass through any of the bridging functions within the
customer’s networking equipment. Transmit OAM packets are generated just
ahead of the Ethernet media access control (MAC) function and are terminated
just beyond the MAC function by the receiving down MEP endpoint.

The maintenance entity group intermediate points that are established at level 7
by a cooperative agreement between the customer and the two network operators
provide the customer with a degree of visibility into the network to help isolate
faults more quickly.

Up MEPs face toward the bridges’ forwarding function. This means, for example,
that the service provider can establish an up MEP endpoint on one end of an op-
erator’s network and on the far end of another operator’s network (red triangles).

OAM packets generated by one of these up MEPs must go through the bridge
filtering/forwarding process of the bridge in which the up MEP endpoint is config-
ured. This means that these OAM packets experience exactly the same forwarding
and handling (though perhaps different QoS levels) as the customer’s network
packets. Specifically, the OAM packets and the customer packets use the same
VLAN tagging.

Maintenance entity groups may be configured to reside within a VLAN. There-
fore, it is possible for thousands of maintenance entity groups to be configured
across a single set of physical connections. When maintenance entity group
endpoints are configured within a VLAN, the expectation is that these are the
same VLANs that carry customer, service provider or operator traffic across their
respective networks. In other words, VLANs are not used to separate OAM pack-
ets from customer packets.

The physical connections between bridges are an implied maintenance entity
group level (at level 0). The physical layer maintenance entity group endpoints
may only be down MEP endpoints and are intended for point-to-point link testing
and monitoring.

 OAM 243

Maintenance Entity Group Levels and End Point Details
As was introduced in the section above, levels are used to allow the establishment
of nested maintenance domains. This section provides more details and examples
of the implications of maintenance entity group levels.

Within a single VLAN, multiple maintenance entity group endpoints and a single
maintenance entity group intermediate point may be configured on a bridge port.
The maintenance entity group endpoints are arranged in such a way that their
maintenance entity group levels increase as their logical distance from the span-
ning tree port filtering function decreases. Refer to Figure 116.

Figure 116 Maintenance Point Placement

V
ID

 2

V
ID

 7

V
ID

 9

V
ID

 2

V
ID

 7

V
ID

 9

VLAN Multiplexer

Down MEPs

MIPs

Up MEPs

MEG level 2

MEG level 3

MEG level 4

MEG level 7

MEG level 5
Spanning Tree Filtering

MEG level 3

MEG level 2

MEG level 0

VLAN Multiplexer

Bridge Packet Forwarding

Bridge Network Interface

The “pointy” end of a triangle is the active side of a maintenance entity group end-
point while the opposite side is considered the passive side. If a packet arrives at a
maintenance entity group endpoint via its passive side, no action is taken and the
packet passes through the maintenance entity group endpoint. A packet’s arrival
at a maintenance entity group endpoint’s active side triggers an examination of the
packet and, potentially, some kind of action is taken.

Referring to Figure 116, let’s consider an OAM packet arriving at a bridge’s port
with a VLAN ID of 2 and a maintenance entity group level of 3. This packet is first

 244 Hardware-Defined Networking

considered by the down MEP at maintenance entity group level 0. This maintenance
entity group endpoint is a physical port maintenance entity group endpoint and is
VLAN unaware. Because the maintenance entity group level of the OAM packet is
greater than that of the maintenance entity group endpoint, the maintenance entity
group endpoint passes it along. The VLAN multiplexer function steers the packet to
the appropriate column of maintenance entity group endpoints where it next encoun-
ters a down MEP at maintenance entity group level 2. Here also the maintenance
entity group level of the packet is greater than that of the maintenance entity group
endpoint so it is passed along to the next maintenance entity group endpoint.

The next down MEP that is encountered has a maintenance entity group level that
matches that of the OAM packet, so the packet is terminated at this maintenance
entity group endpoint and the appropriate processing is carried out. This down MEP
may generate an OAM packet in reply. The down MEP can only direct its packets
toward the port, so the packet encounters the down MEP at maintenance entity
group level 2. Because this packet entered the passive side of the maintenance entity
group endpoint, no action is taken and the packet is passed along to the down MEP
at maintenance entity group level 0 and to the transmit port.

If an OAM packet is received via the port whose maintenance entity group level
exceeds the maintenance entity group level of all of the configured down MEPs in the
packet’s VLAN, the packet is passed along to the packet forwarding function and is
forwarded normally. This scenario occurs when, say, a customer packet (with a high
maintenance entity group level) is processed by a network operator’s bridge whose
maintenance entity group endpoints all have lower maintenance entity group levels.
Such a packet must be forwarded normally, making the operator’s bridge appear
transparent to the transient OAM packet.

Now consider an OAM packet received via the port whose VLAN ID is 7 and
whose maintenance entity group level is 2. This packet will pass through the down
MEP at maintenance entity group level 0 and will next encounter the down MEP
at maintenance entity group level 3 in VLAN 7. When a maintenance entity group
endpoint receives an OAM packet whose maintenance entity group level is lower
than maintenance entity group level of the MEP, then some kind of configuration or
forwarding error has occurred. Such a packet should have been consumed by a pre-
ceding maintenance entity group endpoint elsewhere in the network. It is incumbent
upon the maintenance entity group endpoint to discard all such packets and indicate
that a maintenance entity group level violation has been detected.

Another interesting case is where an OAM packet is processed whose maintenance
entity group level falls between the configured maintenance entity group levels for its
port and VLAN—i.e., the OAM packet’s maintenance entity group level is greater
than that of one or more of the configured maintenance entity group endpoints and
also less than that of one or more of the configured maintenance entity group end-
points, but is not equal to any of them. Such a packet is discarded because the packet
is eventually examined by an active maintenance entity group endpoint interface
whose maintenance entity group level is greater than that of the OAM packet.

 OAM 245

Generalized OAM Packet Filtering
OAM packets are detected based on their ethertype value. The value 0x8902 is
reserved for this purpose. If the packet’s ethertype matches this value, the packet
is subjected to further tests. The packet’s logical receive port (for ingress packets)
or transmit next-hop (for egress packets) is used to retrieve a set of MEP and
MIP vectors. For ingress packets (i.e., packet heading toward the Ethernet bridge
forwarding entity), a down MEP endpoint vector is used. For egress packets, an
up MEP endpoint vector is retrieved. A MIP vector is retrieved for both ingress
and egress. Each of these vectors is eight bits wide with one bit set to 1 for each
maintenance entity group level at which a MEP or MIP has been configured for the
port/VLAN combination.

If an OAM packet has a unicast MAC destination address that matches the MAC
address of the bridge port, then the packet is automatically directed to either the
OAM processing function or to the local CPU, depending on the OAM packet’s
OAM opcode. If a unicast OAM packet’s destination address does not match the
bridge port’s MAC address, then the packet is forwarded as a normal data packet.

If an OAM packet has a multicast MAC destination address, then the least signifi-
cant three bits of that address are used to determine the packet’s maintenance en-
tity group level. The packet’s maintenance entity group level is then tested against
the MEP and MIP vectors that are associated with the packet. If the packet’s main-
tenance entity group level corresponds to a bit that is set to 1 in one of the vectors,
then the packet is directed to either a hardware-based OAM processing function
or to the local CPU, depending on the OAM packet’s opcode. If the packet’s
maintenance entity group level points to a bit in a maintenance entity group level
vector that is set to 0 and that bit is lower-numbered than any of the vectors’ 1
bits, then the packet is discarded. If the packet’s maintenance entity group level is
greater than the highest numbered bit that is set to 1 in the vectors, then the packet
is forwarded normally. Figure 117 illustrates this process.

Figure 117 Maintenance Entity Group Level Vector and Packet Disposition

forward0

MEG Level Vector

packet disposition

0

1

1

0

0

1

0

7

6

5

4

3

2

1

0

forward

process

process
choice based on packet’s MEG level

discard

discard

process

discard

 246 Hardware-Defined Networking

Once an OAM packet has been forwarded to the OAM processing function, the
packet’s opcode, maintenance entity group ID and maintenance entity group end-
point ID are checked to further validate the packet. The details of these operations
are described next in "Ethernet OAM Functions" on page 246.

OAM Packet Addressing

OAM packets may either use a reserved multicast address or they may use the
unicast MAC address of the MEP to which they are directed. There are two classes
of multicast addresses reserved for Ethernet OAM: class 1 and class 2. Class 1
multicast addresses are used in OAM packets that are addressed to all of the
maintenance entity group endpoints in a maintenance entity group. Class 2 mul-
ticast addresses, on the other hand, are addressed to all maintenance entity group
endpoints and maintenance entity group intermediate points in a maintenance
entity group.

The reserved multicast address is: 01-80-c2-00-00-3x. The value of x is defined in
Table 45.

Table 45 OAM Multicast Destination Address Least-Significant Bits Definition

x[0:3] Meaning

x[0] This bit distinguishes class 1 destination addresses from class 2 address as
follows:

0 = class1
1 = class2

x[1:3] These bits encode the OAM packet’s maintenance entity group level value.

Ethernet OAM Functions

Ethernet OAM is a series of functions that use normal Ethernet packets and
normal packet forwarding methods to monitor the health of an extended Layer 2
network and to quickly detect a variety of faults. These functions are listed below:

 � continuity check

 � loopback

 � link trace

 � alarm indication signal

 � remote defect indication

 � locked signal

 OAM 247

 � test signal

 � automatic protection switching

 � maintenance communications channel

 � alarm loss measurement

 � packet loss measurement

 � delay measurement

 � throughput measurement

Of the several functions listed above, only a few benefit significantly from some
form of specific hardware-based assist. These are:

 � continuity check

 � loopback

 � packet loss measurement

 � delay measurement

These four functions have some common characteristics; they either have a very
high packet rate (continuity check, loopback) or require real-time hardware
interaction (loss measurement, delay measurement). Since the focus of this book is
the hardware implications of implementing OAM, those few OAM functions that
benefit from hardware assistance are introduced and described in the following
sections. For more information on the remaining OAM functions and the software
implications of all of the functions, please refer to ITU-T Y.1731.

Common Ingress/Egress Processing
There are certain processing steps that all OAM packets must go through in
order to determine if the packets must be forwarded, discarded or delivered to a
hardware-based Ethernet OAM processor module. The packet’s receive interface
and vlanId are used to determine to which maintenance entity group the packet
belongs. This maintenance entity group is then represented by a megIndex value.
The megIndex value is, in turn, used to access the maintenance entity group level
vectors in the MegLevelVectors table. If a check of a packet’s Mac.destinationAd-
dress (if it’s a unicast address) or the maintenance entity group level vectors (in the
case of a multicast address) indicates that the packet must be delivered to an Ether-
net OAM processor module, the packet is forwarded to that module, accompanied
by megIndex as metadata.

 248 Hardware-Defined Networking

Continuity Check
The continuity check function operates by detecting the loss of reception of
regularly-transmitted continuity check messages (CCMs). These continuity check
messages are generated by network nodes that serve as maintenance entity group
end points. Continuity check messages are addressed and transmitted to all of the
other end points within the same maintenance entity group using either unicast
or multicast destination addresses. The continuity check messages are consumed
by the maintenance entity group endpoints that define the boundary of the main-
tenance entity group. Each maintenance entity group endpoint expects to receive
these continuity check messages on a regular basis from all of the maintenance
entity group endpoints that make up the maintenance entity group (a maintenance
entity group endpoint does not expect to receive continuity check messages from
itself, though).

The continuity check message format and field definitions are presented in Figure
118 and Table 46.

Figure 118 Ethernet OAM Continuity Check Message Structure Diagram

0 opcodeversion period tlvOffset

sequenceNumber

mepId megId[0...1][0:7]

megId[2...5][0:7]

megId[6...9][0:7]

megId[10...13][0:7]

megId[14...17][0:7]

megId[18...21][0:7]

megId[22...25][0:7]

megId[26...29][0:7]

megId[30...33][0:7]

megId[34...37][0:7]

megId[38...41][0:7]

megId[42...45][0:7]

megId[46...47][0:7]

endTlv

transmitPacketCountF[0:15]

transmitPacketCountF[16:31] receivePacketCountB[0:15]

receivePacketCountB[16:31] transmitPacketCountB[0:15]

transmitPacketCountB[16:31]

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 OAM 249

Table 46 Ethernet OAM Continuity Check Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The continuity check message’s maintenance entity
group level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For a continuity check message, this field must be
set to 1.

remoteDefectIndication
(RDI)

1 bit 0.16 Defect indication.

This bit is set to 1 to indicate to a remote
maintenance entity group endpoint that a fault or
defect has been detected in the local maintenance
entity group endpoint.

period
(Period)

3 bits 0.21 Nominal continuity check message transmission
period.

This field specifies the period between continuity
check messages that a remote maintenance entity
group endpoint may expect. It is enumerated as
follows:

0 = reserved
1 = 3.333 milliseconds
2 = 10 milliseconds
3 = 100 milliseconds
4 = 1 second
5 = 10 seconds
6 = 1 minute
7 = 10 minutes

tlvOffset
(TLV offset)

8 bits 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For continuity check messages, this
value must be 70.

sequenceNumber
(Sequence number)

32 bits 4.0 The continuity check message sequence number.

This field must be set to 0.

 250 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

mepId
(maintenance entity group
endpoint ID)

16 bits 8.0 Identifies the maintenance entity group endpoint
within the context of a maintenance entity group.

This value uniquely identifies the maintenance
entity group endpoint that is the source of a
continuity check message. The most significant
three bits of mepId are always set to 0.

megId
(maintenance entity group ID)

384
bits
(48
bytes)

8.16 Globally unique maintenance entity group identifier.

All continuity check messages within a maintenance
entity group (regardless of the maintenance entity
group endpoint IDs of their source or destinations)
must use the same megId value. Any continuity
check message received with a megId value that
does not match the ID configured for the packet’s
maintenance entity group (as identified by the
packet’s port and VLAN identifiers) must be
discarded. A discard due to a mismatch indicates
that a packet has somehow leaked out of its
expected forwarding domain.

transmitPacketCountF
(TxFCf)

32 bits 56.16 The number of packets transmitted toward a
maintenance entity group endpoint addressed by
this OAM packet.

receivePacketCountB
(RxFCb)

32 bits 60.16 The number of packets received by the maintenance
entity group endpoint addressed by this OAM
packet.

transmitPacketCountB
(TxFCb)

32 bits 64.16 The transmitPacketCountF value from the
continuity check message most recently received
from a maintenance entity group endpoint’s peer
maintenance entity group endpoint.

endTlv 8 bits 72.16 Marks the end of a sequence of TLVs.

This field must be set to 0.

All of the maintenance entity group endpoints and maintenance entity group
intermediate points that make up a maintenance entity group are configured to
expect these continuity check messages to arrive at a particular rate. Seven differ-
ent continuity check message rates are supported. They are defined in Table 47.

Table 47 OAM Continuity Check Message Transmission Rates

Period Rate Intended Application

3.333 milliseconds 300 per second Protection switching

10 milliseconds 100 per second Protection switching

100 milliseconds 10 per second Performance monitoring

 OAM 251

Period Rate Intended Application

1 second 1 per second Fault management

10 seconds 6 per minute Fault management

1 minute 1 per minute Fault management

10 minutes 6 per hour Fault management

If the stream of continuity check messages from any maintenance entity group
endpoint in a maintenance entity group is interrupted for more than 3.5 times
the configured continuity check message period, a fault is indicated to the OAM
management plane.

Other faults are detected as well. These faults are described in Table 48.

Table 48 OAM Fault Detection

Fault Description

mismerge A maintenance entity group endpoint detects a mismerge when a continuity check
message packet with a correct maintenance entity group level is received that has an
incorrect maintenance entity group ID. This indicates that packets from a different
service instance (i.e., VLAN, etc.) have leaked into the maintenance entity group
endpoint’s service instance.

unexpected maintenance
entity group endpoint

A maintenance entity group endpoint detects an unexpected maintenance entity group
endpoint fault when it receives a continuity check message packet with a correct
maintenance entity group level, and a correct maintenance entity group ID but an
unexpected (or “unknown”) maintenance entity group endpoint ID (including the
maintenance entity group endpoint’s own maintenance entity group endpoint ID).
Each maintenance entity group endpoint maintains a list of peer maintenance entity
group endpoint IDs and checks each continuity check message against this list.

unexpected maintenance
entity group level

A maintenance entity group endpoint detects an unexpected maintenance entity group
level fault when it receives a continuity check message packet with an incorrect
maintenance entity group level.

unexpected period A maintenance entity group endpoint detects an unexpected period fault condition
when a continuity check message packet with a correct maintenance entity group level,
a known maintenance entity group endpoint ID, and a correct maintenance entity
group ID, is received whose period field differs from the continuity check message
period configured for the maintenance entity group.

remote defect indication A maintenance entity group endpoint detects a remote defect indication when it
receives a continuity check message packet with its remoteDefectIndication bit
set.

Continuity Check is a one-way protocol. Meaning each maintenance entity
group endpoint transmits a stream of continuity check messages to each of its
peer maintenance entity group endpoints, but never generates any kind of packet

 252 Hardware-Defined Networking

in reaction to the reception of a continuity check message. Maintenance entity
group endpoints merely transmit continuity check messages periodically and listen
for asynchronously received continuity check messages. Each locally configured
maintenance entity group endpoint expects to receive one continuity check mes-
sage per period from each remote maintenance entity group endpoint in the same
maintenance entity group. If the stream of continuity check messages from one or
more peer maintenance entity group endpoints is ever interrupted for more than
3.5 times the configured continuity check message period, an alarm indication is
generated.

Only those continuity check messages whose maintenance entity group level
matches that of the maintenance entity group endpoint are processed. Continuity
check messages with a higher maintenance entity group level are forwarded with
the expectation that a downstream maintenance entity group endpoint will have
a matching maintenance entity group level. Continuity check messages whose
maintenance entity group level is lower than that of the maintenance entity group
intermediate point or maintenance entity group endpoint indicate that a fault has
occurred — i.e., the continuity check message should have been consumed by an
upstream maintenance entity group endpoint.

Loopback
OAM loopback packets (loopback messages, or LBMs) are generated at the discre-
tion of the OAM management plane. These packets are generated by the local
CPU and are addressed to either a unicast or multicast destination. The destination
of a unicast loopback message may be either a peer maintenance entity group
endpoint or a maintenance entity group intermediate point. The destination of a
multicast loopback message must be a set of one or more peer maintenance entity
group endpoints (maintenance entity group intermediate points are not responsive
to loopback messages with multicast destination addresses).

The loopback message format and field definitions are presented in Figure 119 and
Table 49.

Figure 119 Ethernet OAM Loopback Message Structure Diagram

0 opcodeversion tlvOffset

sequenceNumber

endTlv<optional TLV>

4

last

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 OAM 253

Table 49 Ethernet OAM Loopback Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The loopback message’s maintenance entity group
level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an loopback message, this field must be set to 3.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For loopback messages, this value
must be 4.

sequenceNumber
(Sequence number)

32 4.0 The transaction ID or sequence number.

The receiver of this message is expected to copy this
value into its loopback reply.

endTlv 8 last Marks the end of a sequence of TLVs.

This field must be set to 0.

The loopback reply format and field definitions are presented Figure 120 and
Table 50.

Figure 120 Ethernet OAM Loopback Reply Structure Diagram

0 opcodeversion tlvOffset

sequenceNumber

endTlv<optional TLV>

4

last

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 254 Hardware-Defined Networking

Table 50 Ethernet OAM Loopback Reply Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The loopback reply’s maintenance entity group
level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an loopback reply, this field must be set to 2.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For loopback messages, this value
must be 4.

sequenceNumber
(Sequence number)

32 4.0 The sequence number.

This field is copied from the corresponding
loopback message.

endTlv 8 last Marks the end of a sequence of TLVs.

This field must be set to 0.

The receiver of a loopback message must formulate a loopback reply (LBR) and
send it to the originator of the loopback message. Because it is possible for a large
number of remote maintenance entity group endpoints to transmit an unlimited
number of loopback messages at very high rates to the local maintenance entity
group endpoint, a hardware-based loopback reply mechanism is beneficial.

In the simplest sense, the receiver formulates a loopback reply message by simply
swapping the MAC destination and source addresses of the loopback message and
changing its opcode value to the loopback reply opcode. Of course, if the loopback
message was addressed to a multicast destination, the loopback message’s mul-
ticast MAC destination address field cannot be used as the source address of the
loopback reply. So, the transmitting maintenance entity group endpoint’s MAC
address is used instead in this case.

In order to avoid inundating an originator of a multicast loopback message with a
flood of loopback replies from all of its peer maintenance entity group endpoints,
the remote maintenance entity group endpoint inserts a randomized delay of from
zero to one second ahead of its transmission of the loopback reply.

 OAM 255

If a configured maintenance entity group intermediate point receives a multicast
loopback reply message, it forwards the packet in the same direction that it was
heading when it was received by the maintenance entity group intermediate point.
This is done because maintenance entity group intermediate points are transparent
to multicast loopback reply messages.

Packet Loss Measurement
Packet loss measurement bears some similarity to time sync and delay measure-
ment. Specifically, statistics counters (rather than timestamp counters) are sampled
in reaction to the transmission or reception of certain packet types. Packet loss is
detected by comparing deltas of local counters with deltas of remote counters over
a period of time. Differences between the deltas represent packet loss.

And, as is the case with time sync, the closer to the transmission medium the
sampling of the counters occurs, the more accurate the measurements will be.
Consider a CPU-only implementation of an OAM function; in such an implemen-
tation, the CPU determines that it is time to transmit a loss measurement message
(LMM) to a remote maintenance entity group endpoint. First it must sample the
relevant statistics counter in order to include its value in the loss measurement
message. After sampling the counter, the CPU formulates the packet and queues
it for transmission. Of course, during the period between the sampling of the
counters and the queuing of the loss measurement message packet, a large and
unpredictable number of packets may be transmitted that are (correctly) counted
by the just-sampled counter. Thus, when the loss measurement message is actually
transmitted, its counter value is immediately out of date. Similar accounting errors
can occur on the receiving remote maintenance entity group endpoint.

Hardware-based sampling of the counter values and hardware-based writing of
the loss measurement message’s counter values are beneficial to enhance the ac-
curacy of the loss measurement. The details of this follow, but in a nutshell:

CPU-generated loss measurement message and loss measurement reply packets
are detected in the egress processing function prior to transmission. The relevant
statistics are sampled and inserted into the packets upstream of the transmit MAC.
When loss measurement message or loss measurement reply packets are received,
the relevant statistics are sampled and their values are delivered to the CPU for
processing. The points at which this work is accomplished must be close enough to
the transmit MAC that it is impossible (or extremely unlikely) that other packets
in the same flow may arrive at the counter sample point out of order relative to
loss measurement message and loss measurement reply message packets between
the transmission medium and the statistics sampling points.

The loss measurement message format and field definitions are presented in Figure
121 and Table 51.

 256 Hardware-Defined Networking

Figure 121 Ethernet OAM Loss Measurement Message Structure Diagram

0 opcodeversion tlvOffset

transmitPacketCountF

endTlv

4

8

12

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 51 Ethernet OAM Loss Measurement Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The loss measurement message’s maintenance entity
group level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an loss measurement message, this field must be
set to 43.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For loss measurement messages,
this value must be 12.

transmitPacketCountF
(TxFCf)

32 4.0 The number of packets transmitted toward a
maintenance entity group endpoint addressed by
this OAM packet.

endTlv
(End TLV)

8 16.0 Marks the end of a sequence of TLVs.

This field must be set to 0.

The loss measurement reply format and field definitions are presented in Figure
122 and Table 52.

 OAM 257

Figure 122 Ethernet OAM Loss Measurement Reply Structure Diagram

0 opcodeversion tlvOffset

transmitPacketCountF

receivePacketCountF

transmitPacketCountB

endTlv

4

8

12

16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 52 Ethernet OAM Loss Measurement Reply Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The loss measurement reply’s maintenance entity
group level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an loss measurement reply, this field must be set
to 42.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For loss measurement replies, this
value must be 12.

transmitPacketCountF
(TxFCf)

32 4.0 The number of packets transmitted toward a
maintenance entity group endpoint addressed by
this OAM packet.

receivePacketCountF
(RxFCb)

32 8.0 The number of packets received from the direction
of the peer maintenance entity group endpoint at
the time of the reception of the corresponding loss
measurement message.

transmitPacketCountB
(TxFCb)

32 12.0 The transmitPacketCountF value from the loss
measurement message most recently received from a
maintenance entity group endpoint’s peer
maintenance entity group endpoint.

endTlv
(End TLV)

8 16.0 Marks the end of a sequence of TLVs.

This field must be set to 0.

 258 Hardware-Defined Networking

Loss Measurement Method

There are two fundamental modes of operation for packet loss measurement:
single-ended and dual-ended. Single-ended loss measurement utilizes dedicated
message types: loss measurement message (LMM) and loss measurement reply
(LMR). Loss measurement messages are generated by the local maintenance entity
group endpoint in an on-demand basis and loss measurement replies are generated
in response to received loss measurement messages. The exchange of messages
between peer maintenance entity group endpoints gives the initiating maintenance
entity group endpoint all of the information required to determine the packet
loss counts for both directions on the path between the maintenance entity group
endpoints.

Dual-ended loss measurement uses provisions in the continuity check messages
(CCMs). Since OAM continuity check is a one-way protocol (i.e., no explicit reply
is sent for each received continuity check message), each maintenance entity group
endpoint must rely on the periodic reception of continuity check messages bearing
the necessary statistics counter values. From these received continuity check mes-
sages and the sampling of its own local statistics counters, the local maintenance
entity group endpoint is able to determine the packet loss counts for both direc-
tions on the path between the maintenance entity group endpoints.

Loss measurement messages, loss measurement replies and continuity check
messages each have provisions for 32-bit counter value fields. These fields are
described in Table 53.

Table 53 Loss Measurement Counter Fields

Field Name Single-Ended Dual-Ended

LMM LMR CCM

transmitPacketCountF Count of packets
transmitted by local
maintenance entity group
endpoint to peer
maintenance entity group
endpoint at time of loss
measurement message
transmission.

Value of
transmitPacketCountF
from the last loss
measurement message
received from the peer
maintenance entity group
endpoint (i.e., the
received value is copied
back to the initiating
maintenance entity group
endpoint).

Count of packets
transmitted by the local
maintenance entity group
endpoint to the peer
maintenance entity group
endpoint at the time of
continuity check message
transmission.

receivePacketCountF Placeholder for loss
measurement reply
receivePacketCountF
value.

Count of packets
received from peer
maintenance entity group
endpoint at the time of
the last loss measurement
message reception.

N/A

 OAM 259

Field Name Single-Ended Dual-Ended

LMM LMR CCM

transmitPacketCountB N/A N/A Count of packets received
from a peer maintenance
entity group endpoint at
the time of the last
continuity check message
reception from that peer
maintenance entity group
endpoint.

receivePacketCountB Placeholder for loss
measurement reply
receivePacketCountB
value.

Count of packets
transmitted by the local
maintenance entity group
endpoint to a peer
maintenance entity group
endpoint at the time of
loss measurement reply
transmission.

Value of
transmitPacketCountF
from the last continuity
check message received
from the peer maintenance
entity group endpoint (i.e.,
the received value is copied
back to the peer
maintenance entity group
endpoint).

Consider the single-ended loss measurement technique. The initiating mainte-
nance entity group endpoint transmits a loss measurement message that contains
the relevant statistics counter (the number of transmit packets at the time the
loss measurement message is transmitted). The remote maintenance entity group
endpoint has no real need for this information. It is simply embedded in the loss
measurement message to avoid the local maintenance entity group endpoint (the
initiator of the transaction) from having to store that state while it awaits a reply
from its peer maintenance entity group endpoint; the peer maintenance entity
group endpoint returns the value to the local maintenance entity group endpoint
in its loss measurement reply.

When the peer maintenance entity group endpoint receives the loss measurement
message, it immediately samples the relevant receive packet statistics counter and
formulates the loss measurement reply. The loss measurement reply loops back
the transmit packet statistics from the loss measurement message and includes the
receive packet statistic as well as the transmit packet statistic that is valid at the
time of the loss measurement reply’s transmission.

Upon receipt of the loss measurement reply, the local maintenance entity group
endpoint samples the relevant receive packet statistic. This gives the local mainte-
nance entity group endpoint four statistics counter values:

1. outbound (from local to peer) transmit packet count
2. outbound receive packet count
3. inbound (from peer to local) transmit packet count
4. inbound receive packet count

 260 Hardware-Defined Networking

By computing the differences between transmit and receive counts for the
outbound and inbound paths, an offset for the two sets of counters can be
determined. When a second loss measurement message/loss measurement reply
transaction takes place a short time in the future, any change in the offset of the
counter-pairs reflects packets that have been lost on the path being measured.

Now consider the dual-ended loss measurement technique. This loss measurement
method is intended to give a local maintenance entity group endpoint an indica-
tion of packet loss among the packets that it has transmitted to a peer maintenance
entity group endpoint. To do this, each local maintenance entity group endpoint
transmits continuity check messages to its peer maintenance entity group end-
points on a periodic basis. These transmit continuity check messages convey the
transmit packet count statistic that corresponds to the path that is being tested by
the continuity check message.

When the remote maintenance entity group endpoint receives a continuity check
message, it immediately samples the relevant receive statistics counter. The
sampled receive statistics and the transmit statistic contained in the received
continuity check message are packaged into the next available transmit continuity
check message, which is then transmitted back to the local maintenance entity
group endpoint.

Upon receipt of the continuity check message by the local maintenance entity
group endpoint, it has both its own transmit count and the remote maintenance
entity group endpoint’s receive count, giving it the information necessary to detect
any packet losses in the outbound path. The local maintenance entity group
endpoint cannot compute the inbound packet losses using the dual-ended loss
measurement method.

Counting Packets

A series of packet counters is required in order to support the OAM packet loss
measurement function. Each configured local maintenance entity group endpoint
must maintain a pair of counters for each of its peer maintenance entity group end-
points. One counter counts packets transmitted toward a peer maintenance entity
group endpoint while the other counts packets received from a peer maintenance
entity group endpoint.

Each MAC address/VLAN ID combination can be associated with a maintenance
entity group endpoint through which packets must pass if they are addressed to
that combination or originate from that combination. Therefore, it is a simple
matter to associate each address in the source and destination MAC address tables
with a loss measurement statistics counter. Because to-many relationships between
the maintenance entity group endpoints and the stations that are addressable
via the maintenance entity group endpoints are common, the number of loss

 OAM 261

measurement statistics counters can be far less than the number of known MAC
addresses.

These statistics counters do not count every packet associated with a maintenance
entity group endpoint. Specifically, while OAM packets whose maintenance entity
group level is greater than that of the local maintenance entity group endpoint are
counted just a normal data packet would be counted, other OAM packets (those
at the same maintenance entity group level) are counted selectively. Table 54 sum-
marizes the criteria.

Table 54 Loss Measurement OAM Packet Counting Criteria

OAM Function Single-Ended
Loss Measurement

Dual-Ended
Loss Measurement

Loopback do not count do not count

Link Trace do not count do not count

Loss Measurement do not count do not count

Delay Measurement do not count do not count

Test Signal do not count do not count

Continuity Check count do not count

Automatic Protection Service count count

All loss measurement statistics counters are 32-bit counters. It is required that the
loss measurement message, loss measurement reply and continuity check message
packets are sent often enough relative to data packet rates in the maintenance
entity group that counter rollover is not an issue. These counters do not need to
be reset to zero since deltas between counter samples are used, rather than their
absolute values, for packet loss determinations.

Supporting Loss Measurement in Up MEPs and Down MEPs

Supporting packet loss measurement in down MEPs (the ones that face the ports)
is fairly straightforward. Packets entering ingress packet processing are treated
like receive packets—just like their data-packet brethren. Similarly, packets that
enter egress packet processing are typically on the verge of being transmitted by
one of the local transmit ports.

Up MEPs, on the other hand, are a bit less intuitive. In the ingress path, up MEPs
are a source of packets that need to be transmitted after being bridged. This also
means that the packet loss measurement process needs to start prior to encounter-
ing the queuing functionality that is part of the bridging process. In other words,
it is required for an up MEP to also measure the packet losses that occur in the

 262 Hardware-Defined Networking

queuing operations of the maintenance entity group endpoint’s own bridge.

Similarly, an up MEP configured in the egress packet processing path is a destina-
tion for packets that just crossed the bridge’s queuing and forwarding system.
So, even though these packets are in the bridge’s transmit path, they are received
packets from the up MEPs’ perspective. So, loss measurement packets that are ter-
minated in an up MEP must trigger the same kind of receive packet behavior that a
similar receive packet triggers as it is being terminated by a down MEP.

Delay Measurement
The OAM delay measurement function is used to measure the packet delay
between peer maintenance entity group endpoints in the same maintenance entity
and at the same maintenance entity group level. Delay measurement can be ac-
complished using either a one-way method or a two-way method. The one-way
method requires that the clocks in the maintenance entity group endpoints be
synchronized via IEEE 1588 or some other means. Because the clocks are synchro-
nous, it is a simple matter to insert a transmit timestamp into a delay measurement
message (DMM) and for the destination maintenance entity group endpoint to
compare that timestamp value to the receive timestamp measured upon receipt of
the packet. The difference between the two timestamp values is the delay from the
originating maintenance entity group endpoint and the terminating maintenance
entity group endpoint.

The delay measurement message format and field definitions are presented in
Figure 123 and Table 55.

Figure 123 Ethernet OAM Delay Measurement Message Structure Diagram

0 opcodeversion tlvOffset

transmitTimestampF[0...31]

transmitTimestampF[32...63]

endTlv

4

8

12

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

16

20

24

28

32

 OAM 263

Table 55 Ethernet OAM Delay Measurement Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(MEG level)

3 bits 0.0 The delay measurement message’s maintenance
entity group level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an delay measurement message, this field must
be set to 47.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For delay measurement messages,
this value must be 32.

transmitTimestampF
(TxTimeStampf)

64 4.0 The timestamp of the transmit time of this delay
measurement message packet.

endTlv
(End TLV)

8 36.0 Marks the end of a sequence of TLVs.

This field must be set to 0.

The delay measurement reply format and field definitions are presented in Figure
124 and Table 56.

Figure 124 Ethernet OAM Delay Measurement Reply Structure Diagram

0 opcodeversion tlvOffset

transmitTimestampF[0...31]

transmitTimestampF[32...63]

receiveTimestampF[0...31]

endTlv

4

8

12

36

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

receiveTimestampF[32...63]

transmitTimestampB[0...31]

transmitTimestampB[32...63]

16

20

24

receiveTimestampB[0...31]

receiveTimestampB[32...63]

28

32

 264 Hardware-Defined Networking

Table 56 Ethernet OAM Delay Measurement Reply Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

megLevel
(maintenance entity group level)

3 bits 0.0 The delay measurement reply’s maintenance entity
group level.

Higher maintenance entity group levels span greater
distances across the network and are associated
with end-to-end connections (i.e., customers).
Lower levels are associated with shorter hops (i.e.,
network operators).

version
(Version)

4 bits 0.3 Protocol version number.

Must be set to 0.

opcode
(OpCode)

8 bits 0.8 The message’s opcode.

For an delay measurement reply, this field must be
set to 46.

tlvOffset
(TLV offset)

8 0.24 Offset of the next TLV.

This field specifies the offset of the TLV that follows
the current TLV. For loss measurement replies, this
value must be 32.

transmitTimestampF
(TxTimeStampf)

64 4.0 The transmit time of the corresponding delay
measurement message packet.

receiveTimestampF
(RxTimeStampf)

64 12.0 The receive time of the corresponding delay
measurement message packet.

transmitTimestampB
(TxTimeStampb)

64 20.0 The transmit time of this delay measurement reply
packet.

receiveTimestampB
(RxTimeStampb)

64 28.0 The receive time of this delay measurement reply
packet.

endTlv
(End TLV)

8 16.0 Marks the end of a sequence of TLVs.

This field must be set to 0.

Two-way delay measurement must be used if the maintenance entity group end-
points do not have synchronized time-of-day clocks. The two-way method uses the
following sequence of events:

1. Delay measurement message Transmission

The local maintenance entity group endpoint periodically transmits delay
measurement messages to the remote maintenance entity group endpoints.
During transmission, a hardware-based timestamping mechanism inserts the
actual transmission time into the delay measurement message packet.

2. Delay measurement message Reception and delay measurement reply
Transmission

 OAM 265

Upon reception of the delay measurement message packet by the remote main-
tenance entity group endpoint, the remote maintenance entity group endpoint
timestamps the reception of that packet and formulates a delay measurement
reply packet. The original transmit time stamp from the delay measurement
message packet is copied over to the delay measurement reply packet long
with the receive timestamp of the delay measurement message. As the delay
measurement reply is being transmitted, a hardware-based timestamping
mechanism inserts the actual transmission time into the delay measurement
reply packet.

3. Delay measurement reply Reception

Upon reception of the delay measurement reply packet by the local mainte-
nance entity group endpoint, the local maintenance entity group endpoint
timestamps the reception of that packet. This gives the local maintenance
entity group endpoint a total of four timestamp values that can be used to
compute the round trip time between the local and remote maintenance entity
group endpoints using the following formula:

delay = (tlocalReceive - tlocalTransmit) - (tremoteTransmit - tremoteReceive)

The packet formats differ between ITU-T Y.1731 and IEEE 1588 and the time-
stamping differs in the details as well. Whereas IEEE 1588 can get by just fine with
a 64-bit timestamp mechanism that is used as a basis for interval time measure-
ment (i.e., nanoseconds and fractions of nanoseconds), OAM requires a 64-bit
absolute time of day (i.e., 32 bits of seconds and 32 bits of nanoseconds wall clock
time) timestamp (essentially, the least significant 64 bits of the 80-bit IEEE 1588
timestamp).

Supporting Delay Measurement in Up MEPs and Down MEPs

In the ingress path, up MEPs are a source of packets that need to be transmitted
after being bridged. This also means that the delay measurement process needs to
start prior to encountering the queuing functionality that is part of the bridging
process. In other words, it is required for an up MEP to also measure the delays
that are incurred in the queuing operations of the maintenance entity group
endpoints own bridge. To do this, the packet must be timestamped as it enters the
ingress processing function (generally at a point that is just downstream of the
Ethernet MACs). This is a separate timestamping function from the one imple-
mented in the Ethernet MACs.

Similarly, an up MEP configured in the egress packet processing path is a destina-
tion for packets that just crossed the switching fabric. So, even though these
packets are in the bridge’s transmit path, they are received packets from the up
MEPs’ perspective. So, delay measurement packets that are terminated in an up
MEP must trigger the same kind of receive packet behavior that a similar receive

 266 Hardware-Defined Networking

packet being terminated by a down MEP triggers. Meaning, the up MEP configured
to support delay measurement also measures the delay encountered by a packet
across the switching fabric of the maintenance entity group endpoint’s bridge.
Timestamping the packet in the egress processing pipeline prior to reaching the
Ethernet MACs is required to support delay measurement in up MEPs.

 MPLS OAM

Two different IETF RFCs specify OAM behavior for MPLS that largely mimics
the OAM features previously described for Ethernet. The two standards are: RFC
6374 (Packet Loss and Delay Measurement for MPLS Networks) and RFC 5880
(Bidirectional Forwarding Detection).

 Packet Loss and Delay Measurement
RFC 6374 specifies three different message types:

 � loss measurement

 � delay measurement

 � loss and delay measurement

Since the loss and delay measurement message is really just a loss measurement
message combined with a delay measurement message, the loss measurement and
delay measurement messages and functions may be described separately while still
adequately describing their combined message type.

Packet Loss Measurement Method

The MPLS packet loss measurement method entails configuring pairs of periodic
MPLS query and response messages. When generating a query message, the query-
ing node samples a packet (or byte) counter that is associated with the packet’s
outermost MPLS label (i.e., the packet’s path) and inserts that counter value into
one of four fields reserved for this purpose in the loss measurement message. Upon
receipt of a loss measurement query, the responding node samples its own per-path
counter and inserts the value in the appropriate field in the message. The loss mea-
surement message is then turned into a response message and is transmitted back to
the original querying node, gathering two more path-specific counter sample values
along the way (a transmit count from the responder and a receive count from the
querier). When two such two-way exchanges occur (with plenty of non-OAM traf-
fic using the same path between the pair of exchanges), the differences between the
counters are compared to determine how many packets or bytes were lost.

A loss measurement query begets a loss measurement reply. The reply that is
received by the querier contains all four relevant packet counter values: querier

 OAM 267

transmit, responder receive, responder transmit, and querier receive. Table 57 lists
some example values and how packet loss is derived.

Table 57 Loss Measurement Example

Counter Type Response n Response n+1 Delta Loss

Query Transmit 1,000 1,500 500 0

Response Receive 800 1,300 500

Response Transmit 3,400 3,850 450 5

Query Receive 2,100 2,545 445

In the example in Table 57, the differences between the two loss measurement
response measurements are equal in the querier-to-responder path, but there’s a
difference of 5 in the responder-to-querier path.

RFC 6374 allows 32- or 64-bit counters and the counting of packets or bytes. By
default, 64-bit counters are used. However, if any of the forwarding systems in
a maintenance entity group are only capable of supporting 32-bit counters, then
all of the forwarding systems must revert to using 32-bit counters. When 32-bit
counters are in use, the upper 32-bits of the 64-bit counter fields in the loss mea-
surement messages are set to 0.

A table of counters of some sufficient size is used to maintain the various loss
measurement counters. The contents of this table are addressed by, at least, the
label value from the topmost MPLS header. Additional information such as Mpls.
priority and even Mac.destinationAddress may be included when selecting
counters in order to provide greater loss measurement granularity. Separate tables
of counters are required for received and transmitted packets.

Direct vs. Inferred Loss Measurement

IETF RFC 6374 specifies two methods for loss measurement: direct and inferred.
The message formats for direct and inferred loss measurement are identical. The
difference between direct and inferred has to do with whether or not it is possible
to precisely count the number of non-OAM packets transmitted and received
between pairs of OAM loss measurement messages. Direct loss measurement
requires a hardware process that samples the counters in line with the data packets
and can thus ensure that the counts are accurate. For inferred loss measurement,
the loss measurement counters are sampled by a software process that then
transmits or receives the required OAM messages. The accuracy of inferred loss
measurement cannot be guaranteed because the highly variable delays of the soft-
ware process allows a variable number of non-OAM packets to be counted by the
counter between software sampling and OAM message reception or transmission.

 268 Hardware-Defined Networking

Packet Delay Measurement Method

RFC 6374 supports both one-way and two-way delay measurement. In one-way
delay measurement, a delay measurement query message is sent to a responder, but
no response is generated. The responder is able to determine the delay encountered
by the message simply by examining the single set of transmit and receive time-
stamp values in the one message. One-way delay measurement depends upon the
sender and receiver having synchronized time-of-day clocks. If the two nodes do
not have synchronized time-of-day clocks, then two-way delay measurement must
be used.

In a two-way exchange of delay measurement messages, a response message is
generated upon receipt of a query message. The timestamps of the query message
are copied to the response messages and the response message’s own transmit and
receive timestamps are added to the list of timestamp conveyed to the querying
node. Once the querying node has all four timestamps, the round trip time (exclu-
sive of the turnaround time at the responder) is easily computed:

(tresponseReceive - tqueryTransmit) - (tresponseTransmit - tqueryReceive)

Message Encapsulation and Formats

Like Ethernet OAM, MPLS OAM supports the concept of a hierarchy of main-
tenance associations that correspond to the various users, service providers and
network operators that operate and maintain MPLS-based networks. However,
unlike Ethernet OAM, MPLS OAM does not explicitly encode the hierarchical
level at which an OAM message is being transported. Instead, MPLS OAM relies
on the native hierarchical nature of MPLS that’s realized through its use of stacks
of MPLS headers. Specifically, the outermost header (i.e., the top of stack) is
always associated with the owner/operator of the links and equipment that any
MPLS packet is currently traversing.

A normal MPLS data packet’s outermost MPLS label controls the forwarding deci-
sion for the current level of network hierarchy. Similarly, an MPLS OAM packet
uses the same Mpls.label values as a data packet for forwarding from one point
in a particular level of hierarchy to another point. The difference is that the outer-
most MPLS header of an MPLS OAM packet is not followed by more forwarding
headers.

All RFC 6374 OAM messages are conveyed by an MPLS Generic Associated
Channel Header (G-ACh, RFC 5586). The bottom-of-stack label for an MPLS
OAM packet is a Generic Associated Channel label (GAL). An Associated Chan-
nel Header (ACH) follows the bottom-of-stack and is used to identify the type of
MPLS OAM message being conveyed. This header stack-up is shown Figure 125.

 OAM 269

Figure 125 MPLS OAM Header Stack-Up

Ethernet

Forwarding Label n

Forwarding Label A

Forwarding Label B

Forwarding Label C

Ethernet

Forwarding Label A

Eth, IP, etc.

payload

MPLS Data PacketMPLS OAM Packet

13 (GAL)

G-ACh

OAM Message
(RFC 6374)

Figure 125 presumes that Forwarding Label A for both the MPLS OAM packet
and the MPLS data packet have the same value—making them part of the same
flow. What distinguishes the two packets is the presence of a Generic Associated
Channel Header label versus a MPLS header that may be used to route the packet
once the preceding labels of the MPLS stack have been popped.

MPLS associated channels are discussed in "Generic Associated Channel Header
(G-ACh)" on page 108.

The generic associated channel header’s channelType field is enumerated for OAM
purposes as follows:

10 = direct loss measurement
11 = inferred loss measurement
12 = delay measurement
13 = direct loss and delay measurement
14 = inferred loss and delay measurement

The structure of RFC 6374 MPLS messages are shown in Figures 126, 127, and
128.

 270 Hardware-Defined Networking

Figure 126 MPLS OAM Loss Measurement Message Structure Diagram

0 version controlCode messageLength

trafficClasssessionId

originTimestamp[0...31]

originTimestamp[32...63]

counter1[0...31]

counter1[32...63]

counter2[0...31]

counter2[32...63]

counter3[0...31]

counter3[32...63]

counter4[0...31]

counter4[32...63]

<TLV Block>

4

8

12

16

20

24

28

32

36

40

44

48

52

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 127 MPLS OAM Delay Measurement Message Structure Diagram

0 version controlCode messageLength

trafficClasssessionId

timestamp1[0...31]

timestamp1[32...63]

timestamp2[0...31]

timestamp2[32...63]

timestamp3[0...31]

timestamp3[32...63]

timestamp4[0...31]

timestamp4[32...63]

<TLV Block>

4

8

12

16

20

24

28

32

36

40

44

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

 OAM 271

Figure 128 MPLS OAM Loss and Delay Measurement Message Structure Diagram

0 version controlCode messageLength

trafficClasssessionId

timestamp1[0...31]

timestamp1[32...63]

timestamp2[0...31]

timestamp2[32...63]

timestamp3[0...31]

timestamp3[32...63]

timestamp4[0...31]

timestamp4[32...63]

<TLV Block>

4

8

12

16

20

24

28

32

36

40

76

...

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

counter1[0...31]

counter1[32...63]

counter2[0...31]

counter2[32...63]

counter3[0...31]

counter3[32...63]

counter4[0...31]

counter4[32...63]

44

48

52

56

60

64

68

72

The various fields that make up the MPLS OAM loss and delay measurement mes-
sages are defined in Table 58.

Table 58 MPLS OAM Loss and Delay Measurement Message Field Definitions

Field Name (std. name) Width Offset
(B.b)

Definition

version
(Version)

4 bits 0.0 Protocol version.

Must be set to 0.

responseMessage
(R)

1 bit 0.4 Distinguishes between query and response messages.

This bit is set to a 1 to indicate that the current
message is a response message. Setting this bit to a 0
indicates that it is a query message.

trafficClassAware
(T)

1 bit 0.5 Distinguishes between traffic class-aware and
-unaware behavior.

If this bit is set to a 1, then the OAM message applies
just to the traffic class identified by trafficClass.
Otherwise, trafficClass is ignored and the
message is applied to all traffic classes.

 272 Hardware-Defined Networking

Field Name (std. name) Width Offset
(B.b)

Definition

controlCode
(Control Code)

8 bits 0.8 Indicates how the message should be handled.

For query messages, this field is enumerated as
follows:

0 = inBand Response is expected over the same
channel.
1 = outOfBand Response is expected via an
out-of-band channel.
2 = none No response is expected.

For response messages, this field is enumerated as
follows:

1 = success
2 = dataFormatInvalid
3 = initInProgess
4 = dataResetOccurred
5 = resourceTemporarilyUnavailable
≥16 = error (see RFC 6374 section 3.1 for details)

messageLength
(Message Length)

16 bits 0.16 The total length of the message in bytes.

extendedCounterFormat
(X)

1 bit 4.0 Indicates the counter width.

If this bit is set to 1, then the counter values are 64
bits wide. Otherwise the counters are 32 bits wide
(occupying the least significant 32 bits of the 64-bit
counter fields).

This field is only present in the loss measurement
message.

byteCounters
(B)

1 bit 4.1 Indicates byte versus packet counters.

If this bit is set to 1, then the counters count bytes.
Otherwise, they count packets.

This field is only present in the loss measurement
message.

querierTimestampFormat
(QTF)

4 bits 4.0 Indicates the timestamp format.

These values are used to indicate the format of either
the timestamps in the current message, or, in the case
of responderPreferredTimestampFormat, the
preferred format for a response.

These fields are enumerated as follows:

1 = sequenceNumber Not a timestamp.
2 = networkTimeProtocol 32 bits of seconds and
32 bits of fractions of a second.
3 = precisionTimeProtocol 32 bits of seconds
and 32 bits of nanoseconds (modulo 109)

responderTimestampFormat
(RTF)

4 bits 4.4

responderPreferredTimestamp
 Format
(RPTF)

4 bits 4.8

 OAM 273

Field Name (std. name) Width Offset
(B.b)

Definition

sessionId
(Session Identifier)

26 bits 8.0 Arbitrary session identifier.

The querying node fills this field with an arbitrary
value. The responding node copies it to its response
so that the querier can correlate the response with an
earlier query.

trafficClass
(DS)

6 bits 8.26 The message’s traffic class.

This field indicates to which traffic class the current
message applies. This field is ignore if
trafficClassAware is set to 0.

originTimestamp
(Origin Timestamp)

64 bits 12.0 The transmit time of the loss measurement message.

timestamp[1...4]
(Timestamp [1...4])

64 bits various The timestamps associated with delay measurement
operations. The timestamp fields are used as follows:

timestamp1 = current transmit time
timestamp2 = current receive time
timestamp3 = previous transmit time
timestamp4 = previous receive time

counter[1...4]
(Counter [1...4])

64 bits various The counters associated with loss measurement
operations. The counter fields are used as follows:

counter1 = current transmit count
counter2 = current receive count
counter3 = previous transmit count
counter4 = previous receive count

Bidirectional Forwarding Detection (BFD)
RFC 5880 defines a method for detecting faults in MPLS networks. Conceptually,
the method is quite similar to Ethernet OAM continuity check message messaging
as described in "Continuity Check" on page 248.

In a nutshell, control messages are sent periodically to a destination that is expect-
ing to receive these messages. If a certain number of transmission periods transpire
without the receipt of these messages, the receiver presumes that a link or a for-
warding system along the path between itself and the sender has failed.

The BFD control message is the basic unit of information transfer between pairs
of nodes that make up a continuity-check association. When the BFD protocol is
first started up, the node begins transmitting control messages at a leisurely pace,
advertising itself to another node with which it wishes to detect continuing con-
nectivity. The addressed node reacts to these messages by sending its own control
messages. Once the basic communication path has been established, the frequency

 274 Hardware-Defined Networking

of control message transmission is increased to a rate that provides the desired
error detection reaction time.

Because RFC 5880 messages are conveyed via MPLS LSPs that are dedicated to the
purpose, no special features are required to support their origination and termina-
tion. All MPLS packets addressed to a locally configured router whose outermost
MPLS label matches a value that is configured for the BFD function are generally
forwarded to the forwarding system’s management CPU. Similarly, all transmitted
BFD-related messages are generated by the forwarding system’s management CPU.

The format of a BFD control message is depicted in Figure 129.

Figure 129 BFD Control Message Structure Diagram

0 version diagnosticCode state detectionTimeMultiplier

myDiscriminator

yourDiscriminator

desiredMinimumTransmitInterval

requiredMinimumReceiveInterval

requiredMinimumEchoInterval

4

8

12

16

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
length

BFD control message fields are defined in Table 59.

Table 59 BFD Control Message Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version 3 bits 0.0 The version of the protocol.

RFC 5880 defines version 1.

diagnosticCode
(Diag)

5 bits 0.3 A diagnostic code that explains the reason for a
state change.

This field is enumerated as follows:

0 = noDiagnostic
1 = controlDetectionTimeExpired
2 = echoFunctionFailed
3 = neighborSignaledSessionDown
4 = forwardingPlaneReset
5 = pathDown
6 = concatenatedPathDown
7 = administrativelyDown
8 = reverseConcatenatedPathDown
9-31 = reserved

 OAM 275

Field Name (std. name) Width Offset (B.b) Definition

state
(Sta)

2 bits 0.8 Transmitting system state.

This field is enumerated as follows:

0 = administrativelyDown
1 = down
2 = initial
3 = up

poll
(P)

1 bit 0.10 If this bit is set to 1, the transmitting system is
requesting verification of connectivity, or of a
parameter change, and is expecting a packet with
the final bit set to 1 in reply. If this bit is set to 0, the
transmitting system is not requesting verification.

final
(F)

1 bit 0.11 If this bit is set to 1, the transmitting system is
responding to a received BFD control message
whose poll bit was set to 1. If this bit is set to 0, the
transmitting system is not responding to a Poll.

controlPlaneIndependent
(C)

1 bit 0.12 If this bit is set to 1, the transmitting system’s BFD
implementation does not share fate with the control
plane (in other words, BFD is implemented in the
forwarding plane and can continue to function
through disruptions in the control plane). If this bit
is set to 0, the transmitting system does share fate
with its control plane.

authenticationPresent
(A)

1 bit 0.13 If this bit is set to 1, the Authentication Section (an
optional header that follows this header) is present
and the session must be authenticated. Refer to RFC
5880 for details.

demand
(D)

1 bit 0.14 If this bit is set to 1, demand mode is active in the
transmitting system (i.e., the system wishes to
operate in demand mode, knows that the session is
up in both directions, and is directing the remote
system to cease the periodic transmission of BFD
control messages). If this bit is set to 0, demand
mode is not active in the transmitting system.

multipoint
(M)

1 bit 0.15 This bit is reserved for future multipoint extensions
to BFD. This bit must be set to 0 on transmit and
ignored on receipt.

detectionTimeMultiplier
(Detect Mult)

8 bits 0.16 The negotiated transmit interval, multiplied by this
value, provides the detection time for the receiving
system in asynchronous mode.

 276 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

length
(Length)

8 bits 0.24 The length of the BFD control message in bytes.

myDiscriminator
(My Discriminator)

32 bits 4.0 A unique, non-zero discriminator value generated
by the transmitting system, used to demultiplex
multiple BFD sessions between the same pair of
systems.

yourDiscriminator
(Your Discriminator)

32 bits 8.0 The myDiscriminator value received from the
corresponding remote system is copied to this field.
This field is set to 0 if myDiscriminator is
unknown.

desiredMinimumTransmitInterval
(Desired Min TX Interval)

32 bits 12.0 This is the minimum interval—in microseconds—
that the local system would like to use when
transmitting BFD control messages, less any jitter
applied. The value 0 is reserved.

requiredMinimumReceiveInterval
(Required Min TX Interval)

32 bits 16.0 This is the minimum interval—in microseconds—
between received BFD control messages that this
system is capable of supporting, less any jitter
applied by the sender. If this value is 0, the
transmitting system does not want the remote
system to send any periodic BFD control messages.

requiredMinimumEchoInterval
(Required Min Echo RX Interval)

32 bits 20.0 This is the minimum interval—in microseconds—
between received BFD echo messages that this
system is capable of supporting, less any jitter
applied by the sender. If this value is 0, the
transmitting system does not support the receipt of
BFD control messages.

16 Security

Network security is a huge topic; there’s more than enough material to fill an
entire book. Indeed, many books have been written on the topic. Fortunately,
the hardware-centric focus of this book greatly narrows the scope of the topic.
Though a lot of network security functions, features and protocols operate strictly
in the control plane as software modules, there’s still plenty for hardware to do.

Broadly speaking, network security has the following goals:

 � forbid unauthorized or malicious access (access control)

 � assure data authenticity and integrity (authentication)

 � protect data privacy (encryption)

 � protect the network itself (denial-of-service defenses)

Access Control

Generally, we associate access authorization with passwords used to gain access to
various servers attached to the Internet. There is also a level of access protection
that may be used at the forwarding systems themselves to prevent unauthorized
access to the network long before these packets arrive at a server. The further you
can keep those with malicious intent away from valuable resources, the better.

Port-Based Network Access Control (IEEE 802.1X)
The IEEE 802.1X standard defines a system of services, features and protocols
that enable port-based access control. The concept is fairly simple, though it gets
complicated when all of the options and the details of the authentication protocols
are considered. In a nutshell, a physical network interface (i.e., a port) that sup-
ports 802.1X comes up in a “unauthorized” state wherein only 802.1X packets
are permitted and all others are discarded.

There are three components involved in the authentication process as shown in
Figure 130:

 � supplicant (the host or user seeking access)

 � authenticator (the access point into the network)

 � authentication server (the shared arbiter of authentication credentials)

 278 Hardware-Defined Networking

Figure 130 IEEE 802.1X Components

Supplicant

Authentication
Server

Authenticator

When a physical interface is in the unauthorized state and a new host (supplicant)
is detected, the authenticator periodically transmits identity request messages to
it. These messages are addressed to well-known multicast addresses and provide
each supplicant with information regarding the requirements for authenticating
the supplicant. In response, the supplicant identifies itself to the authenticator
by offering up its credentials in an identity response packet. The authenticator,
in turn, communicates with an authentication server in order to validate the
authentication credentials supplied by the supplicant. Ultimately, the supplicant
is either granted or denied access. If access is granted, then the affected physical
interface transitions to an “authorized” state and the supplicant is permitted to
send and receive packets in a normal manner. An authenticator may also serve as
an authentication server.

IEEE 802.1X message packets are identified by their Mac.destinationAddress
values and their ethertype values. The destinationAddress values of interest are:

 � 01-80-c2-00-00-00 (bridge group address)

 � 01-80-c2-00-00-02 (port access entity (PAE) group address)

 � 01-80-c2-00-00-0e (link layer discovery protocol (LLDP) multicast address)

The ethertype value used for all 802.1X messages is: 0x888e.

A forwarding system that supports IEEE 802.1X must be able to assign an attri-
bute to each physical interface that indicates its authentication state. If an interface
has authenticated a host, then that host is permitted to send and receive packets
normally. Otherwise, that host is restricted to communicating with the authentica-
tor using 802.1X messages.

A forwarding system’s physical interface may be a shared medium interface or may
be attached to a further forwarding system such that multiple Ethernet endpoints
are accessible via a single physical interface. It is desirable in this case to be able to
authenticate on a per-endpoint basis rather than on a per physical interface basis.

To support this kind of packet filtering, a forwarding system may employ a
list of Mac.sourceAddress and interface ID values that represent the endpoints

 Security 279

(supplicants) that have been authenticated. If a packet is received whose interface
and sourceAddress values are found in this list, then the packet is forwarded nor-
mally. For transmit packets, only packets that are addressed to authenticated ad-
dress/interface combinations may be forwarded to the affected interfaces (in other
words, unknown-unicast packets must not be flooded to multi-host interfaces).

IP/MAC Binding
This rather weak form of security is intended to ensure that an IP packet is coming
from an expected or trusted source. This is done by “binding” an Ethernet MAC
address to an IP address. In other words, it is expected that the Mac.sourceAddress
value of a packet is that of an originating endpoint or an upstream IP router and
that there is a one-to-one or one-to-many relationship with an IP sourceAddress
value.

There are many ways to implement this check, but they all involve performing
a lookup on the IP source address. The result of that lookup may include in its
associated data the one and only Ethernet source address associated with that IP
source address or it may include a token or index that is used to compare against
a comparable index or token returned from an Ethernet MAC source address
lookup that is performed for MAC address learning and aging.

If a physical or logical receive interface is configured to require IP/MAC binding
checks and there is a mismatch between the IP source address and the expected
MAC source address, then the packet must be discarded.

Reverse Path Forwarding (RPF) Checks
Reverse path forwarding checks are another form of weak access control. Here,
the intent is to ensure that a packet was received via an expected interface in order
to prevent spoofing of an IP endpoint.

Looking up an IP source address is already required for common multicast
forwarding applications, so a forwarding system may already have the means
necessary to perform an RPF check. To facilitate an RPF check once an IP source
address lookup is available, some means for providing a list of authorized receive
interfaces via which the packet may be received must be provided. This list may
consist of physical interfaces, logical interfaces or VLANs. Lists—instead of single
source identifiers—are required in order to support ECMP. With ECMP, a packet
from a single origin may arrive at a forwarding system via a variety of paths and,
consequently, interfaces.

If an interface (or VLAN) is configured to require RPF checks and the packet’s
receive interface or VLAN is not listed among the approved interfaces (as deter-
mined by an IP sourceAddress lookup), then the packet must discarded.

 280 Hardware-Defined Networking

Access Control Lists (ACLs)
In their simplest form, access control lists return a binary permit/deny decision on
each submitted packet. Many more actions—priority changes, forwarding domain
changes, etc.—are possible and are common in modern forwarding systems.
Access control lists are discussed in detail in their own chapter ("Firewall Filters"
on page 315), and are discussed here simply to cover their security-related
applications.

Figure 131 TCAM-Based ACLs

IP Source Address IP Destination Address TCP/UDP Source Port TCP/UDP Destination PortIP Next Header

TCAM
permit/deny

ACLs were initially developed as a spin-off technology during the development of
experimental flow-based forwarding techniques using TCAMs (ternary content-
addressable memories). These memories contain ternary keys (0, 1 and x values per
bit) that can match against a concatenation of fields from a packet. A basic 5-tuple
is commonly used: IP sourceAddress, IP destinationAddress, IP nextHeader, TCP
or UDP sourcePort, and TCP or UDP destinationPort. With these values, it is
possible to determine at a very high level the kind of communication being carried
out between two IP endpoints. Network operators can configure access control
lists (i.e., lists of rules) to specifically prohibit certain types of communications.
For example: no FTP packets to or from certain IP prefixes.

Multiple, distinct keys in a TCAM may match any number of submitted search
arguments. Consider a TCAM with the following keys:

 � 01101110xxxx

 � 01101xxxxxxx

 � 011xxxxxxxxx

If a search argument equal to 011011101100 is submitted to the TCAM, it will
match all three keys. However, the TCAM can only return a single result. This is
accomplished by sorting the keys in priority order; ensuring that the highest prior-
ity match is returned. Generally, the most specific key (i.e., the one with the fewest
x’s) is made the highest priority key. Essentially, there is an implied “else” between
each key:

 Security 281

if searchArgument == 01101110xxxx {action}
else if searchArgument == 01101xxxxxxx {action}
else if searchArgument == 011xxxxxxxxx {action}
else {defaultAction}

If none of the keys match a search argument, a default result is returned. This
default may be either permit or deny—i.e., forward or discard.

Authentication and Encryption

Once an endpoint is authorized to have access to a network, it is important to
ensure that the information being conveyed is authentic and private.

Data authentication performs three fundamental services. First, it ensures that the
data is from whom the packets claim the data is from. Second, it ensures that the
data has not been altered in any way. Third, it ensures that packets are short-lived
(i.e., protection against replay attacks). Basically, authentication makes it possible
to trust the data that you receive.

The principle behind authentication is quite simple. A secure hash is computed
across the data to be authenticated (including the identity of the sender of the
data) and then included in the packet. A secure hash is an irreversible mathemati-
cal function, meaning it is possible to compute the hash from the data, but not
reconstruct the data from the hash. A secure key value is included in the hash
computation, but is not made available in the packet itself. This secure key is,
ostensibly, not known by or available to any attackers. Hence, if a packet’s data is
modified in any way, an attacker would not be able to compute a correct authen-
tication hash. A mismatch between the hash value included in the packet and the
hash value computed by the intended receiver makes it apparent to the intended
receiver that the data’s integrity has been compromised. A sequence number is also
included in an authenticated packet to make sure that the contents of the packet
can only be used once.

Data encryption, on the other hand, provides data privacy. Even if a packet is ob-
tained by an unintended recipient, that unintended recipient would not be able to
make use of the data. Encryption works by encoding messages using one of several
encryption algorithms (e.g., AES) and one or more key values. Without access
to these key values, it is, essentially, impossible to convert the encrypted message
back to plain text.

Of course, it is not actually impossible to decrypt a message without access to its
encryption keys. The key values are, after all, finite numbers. That means that
they are guessable. It may be computationally expensive and impractical (i.e., time
consuming) to guess key values, but not impossible.

 282 Hardware-Defined Networking

NOTE For an example of a truly unbreakable encryption method, consider
the one-time pad. This method is brilliant in its simplicity. Paired lists of truly
random numbers (using lottery ball techniques or similar methods) are
generated that are at least as long as the messages to be encrypted. The
random numbers are combined with a message’s characters in a reversible
fashion (modulo sums, exclusive ORs, etc.). The receiver, having access to an
identical copy of the list of random numbers used to encrypt the original
messages, is able to reverse the encryption. The “one-time” phrase in the
method’s name implies that each pad (i.e., list of random numbers) is used just
once and is then destroyed. As long as the pads are kept secure, the encrypted
messages cannot be cracked because no patterns can be detected in truly
random sequences that are ever only used once.

Two networking standards operating at two adjacent layers provide authentica-
tion and encryption services. For Ethernet, the IEEE 802.1AE MACsec standard
applies. For IPv4 and IPv6, the IETF RFCs 4301, 4302 and 4303 IPsec standards
apply. Each are described in the following two sections.

MACsec
MACsec provides authentication and encryption services for Ethernet networks.
MACsec is intended to operate on a hop-by-hop basis rather than end-to-end. This
means that each packet is decrypted as it is received by an Ethernet bridge and is
re-encrypted as it is transmitted.

Operating hop-by-hop offers some advantages over end-to-end. For example, by
decrypting each packet as it is received by a bridge (or by a bridge/router system)
the entire packet is made available as plain text and can, therefore, be used for
proper load balancing and other operations that require a deeper inspection of a
packet than just the forwarding header.

Other advantages of MACsec’s hop-by-hop security model include the fact that it
can be readily applied to certain MAC control protocols—e.g., link layer discovery
protocol (LLDP), link aggregation control protocol (LACP) —and other protocols
that have hop-by-hop behaviors such as the IEEE 1588 precision time protocol.
The use of MACsec does not preclude the use of other security protocols that oper-
ate at a higher layer (e.g., IPsec).

Figure 132 Hop-by-Hop MACsec Operation

End Station End StationBridge BridgeBridge/Router

MACsec coverage

 Security 283

MACsec operates within what are known as secure connectivity associations
(CAs). Each connectivity association may have two or more Ethernet endpoints
(end stations, bridges, routers, etc.) as members. For wired connections in modern,
non-shared-medium networks, the number of endpoints in a connectivity associa-
tion is two. For wireless networks where any number of wireless endpoints are
connecting to, say, a wireless access point, the number of endpoints in a connectiv-
ity association may be quite large.

IEEE 802.1X link access control protocol is used to grant access to a connectivity
association through a series of unidirectional secure channels (SCs). The secure
channels are typically long-lived (think, a login session). However, within a long-
lived secure channel, there may be a number of slightly overlapping, short-lived
security associations (SAs) that are used to ensure that encryption key values are
not used for dangerously long periods of time.

The identity of a packet’s secure channel is encoded within the packet. For point-
to-point links (e.g., full-duplex Ethernet), the leftmost six bytes (48 bits) of the
secure channel identifier (SCI) is set equal to the source endpoint’s Mac.sourceAd-
dress value. The next 14 bits of the secure channel identifier serve as a port
number. Shared medium networks such as EPON make use of this. The rightmost
two bits are occupied by the association number. The association number is used
to sequence through a series of short-lived secure associations. When a sender
switches from the current secure association to the next secure association, it
increments the two-bit association number by one. This informs the receiver that
the next secure association is now being used and an appropriate decryption key
must be used.

If the port number component of the secure channel identifier must be used,
then the 64-bit (8-byte) Macsec.secureChannelId value is present in the MACsec
header. Otherwise, just the two-bit association number is present in the header
(the sender’s Mac.sourceAddress value is, of course, always present in the encapsu-
lating Ethernet header).

MACsec imposes a MACsec header between an Ethernet header and its payload.
Like all well-designed protocols, MACsec is identified by the preceding header
(i.e., the Ethernet header) with an ethertype value (0x88e5 for MACsec). The
MACsec header itself includes an ethertype value that identifies the type of the
MACsec payload (e.g., IPv4, etc.). The IEEE, being particularly fussy about
staying within Layer 2 (i.e., Ethernet, et. al.), refers to MACsec’s header as a tag,
diagramming it with an ethertype field at the start of the tag structure and being
inserted between an Ethernet header’s sourceAddress field and its ethertype field.
In this book, the MACsec header, like a VLAN header, is treated like a proper
header rather than a lowly tag.

 284 Hardware-Defined Networking

Figure 133 MACsec Packet Structure

MAC Header MACsec Header

14 bytes 8 or 16 bytes

Secure Data

≥1 byte

Pad

≥0 bytes

CRC

4 bytes

Integrity Check Value

encryption coverage
(includes Macsec.ethertype)

8–16 bytes (optional)

integrity check value coverage

As shown in Figure 133, MACsec’s secure data region (i.e., the MACsec payload)
is subject to encryption—along with the last two bytes of the MACsec header
which encodes the ethertype value—to ensure that data’s privacy. The Ethernet
header and most of the MACsec header are not subject to encryption, which
makes sense. If those headers were encrypted there would be no way to interpret
the packet for decryption.

It is important to point out that, while the Ethernet header is in the clear, it’s not
really practical to forward MACsec packets without decrypting them first. This
is because IEEE 802.1AE specifies that any VLAN header must appear after the
MACsec header—i.e., in the secure data region. So, only very simple, VLAN-un-
aware forwarding is possible by Ethernet bridges that are not participating in the
key exchange operations and are unable to decrypt the MACsec Ethernet packets.

The optional integrity check value is used to ensure the authenticity of the packet.
The size of the integrity check value can range from eight to 16 bytes; its length
being a function of the integrity check algorithm in use. The integrity check value
is computed over all of the bytes that precede the integrity check value.

Data encryption is a functional superset of data integrity protection. If the packet’s
data is encrypted, then it is immune from useful (i.e., malicious) modification as
well as eavesdropping. MACsec either provides modified, encrypted secure data,
or integrity-checked data along with an inserted integrity check value.

The structure of a MACsec header is shown in Figure 134.

Figure 134 MACsec Header Structure Diagram

0 shortLength packetNumber[0...15]

packetNumber[16...31] secureChannelId[0...15]

secureChannelId[16...47]

secureChannelId[48...63] ethertype

4

8

12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The fields that make up the MACsec header are defined in Table 60.

 Security 285

Table 60 MACsec Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

version
(V)

1 bit 0.0 The version of the MACsec protocol.

Must be set to 0.

endStation
(ES)

1 bit 0.1 Indicates that packet’s Mac.sourceAddress
value is to be used as a secure channel identifier
(SCI).

If this bit is set to 1, then the packet is from an
end station and the leftmost six bytes of the
secure channel identifier are equal to Mac.
sourceAddress.

secureChannelIdPresent
(SC)

1 bit 0.2 Indicates that the 8-byte secureChannelId
field is present.

If this bit is set to 1, then the overall length of the
MACsec header is 16 bytes instead of 8 and that
the packet’s secure channel identifier is explicitly
specified in the secureChannelId field.
Otherwise, secureChannelId is not present
and the MACsec header is just 8 bytes long.

singleCopyBroadcast
(SCB)

1 bit 0.3 Indicates that the secure channel supports EPON
single copy broadcast.

If this bit is set to 1, the secure channel associated
with the packet supports EPON’s single copy
broadcast, making it possible to send a single
packet from an OLT that is received by all of the
attached ONUs without having to set up separate
secure connections.

dataEncrypted
(E)

1 bit 0.4 Indicates whether encryption or just integrity is
being provided.

If this bit is set to 1, then the user data portion of
the MACsec packet is encrypted. Otherwise,
MACsec is only providing integrity assurances
(i.e., authentication).

changedText
(C)

1 bit 0.5 Indicates that the user data (i.e., text) has been
changed.

If this bit is set, then the user data has been
modified due to encryption and
integrityCheckValue is present.

 286 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

associationNumber
(AN)

2 bits 0.6 The packet’s association number.

This value is used to sequence among secure
associations.

shortLength
(SL)

6 bits 0.10 Identifies the location of
integrityCheckValue for short packets.

integrityCheckValue is alway immediately
after the packet’s user data. This means that, for
particularly short packets, there may be some
pad bytes between integrityCheckValue and
the packet’s CRC field. Hence, a length field is
required to indicate where to find
integrityCheckValue. This field indicates the
number of bytes of secure data (which includes
macsecNextHeader) as long as that number is
less than 48. If shortLength is set to 0, then a
secure data length of 48 or greater is presumed
(i.e., no pad bytes present).

packetNumber
(PN)

32 bits 0.16 Packet sequence number.

This sequence number is maintained on a
per-connectivity association basis and is
incremented by 1 with each transmitted packet.
It is used to detect replay attacks. To
accommodate a certain amount of packet
mis-ordering by the network, a packetNumber
that is less than the expected value is tolerated up
to some configurable threshold.

secureChannelId
(SCI)

64 bits 4.16 Identifies the secure channel.

A secure channel may be identified either by
sourceAddress or this value. This field is only
present in the MACsec header if
secureChannelIdPresent bit is set to 1.

ethertype 16 bits 12.16 Identifies the next header’s type.

This field is, essentially, an ethertype and is used
to identify the type of the MACsec header’s
payload. This field is included in and protected
by user data encryption.

The dataEncrypted and changedText bits are used to convey information about
the state of the packet and how it’s intended to be used. Table 61 defines all of the
possible combinations of state of these two bits.

 Security 287

Table 61 Encrypted and Changed Text State Interpretation

dataEncrypted changedText Meaning

0 0 Integrity protection only, integrityCheckValue is
present.

0 1 Integrity check only, but the data has been modified.

1 0 The packet is not processed by the security entity, but is
reserved for the key agreement entity instead.

1 1 Data confidentiality (i.e., encryption) is being provided.

IPsec
One of the fundamental differences between MACsec and IPsec is their scope of
coverage. MACsec is limited to covering individual links. IPsec, on the other hand,
is capable of covering an end-to-end connection.

Figure 135 IPsec Coverage

End Station End StationRouter RouterRouter

IPsec coverage

As shown in Figure 135, IPsec can cover end station to end station (i.e., host-to-
host or endpoint-to-endpoint) connections as well as connections between pairs
of IP routers (known as security gateways) or between a security gateway and an
end station. This range of scopes means that an end station (e.g., computer, server,
etc.) need not implement IPsec in order to take advantage of the services afforded
by IPsec for at least some portion of the path followed by the end station’s packets.
Ideally, however, IPsec is used end to end.

IPsec consists of two over-the-network protocols: the authentication header
(AH) and the encapsulating security payload (ESP) protocol. The authentication
header provides a means for conveying an integrity check value and it guards
against data tampering, source spoofing and replay attacks. It does not offer data
confidentiality through encryption. The encapsulating security payload protocol
offers all of the services of the authentication header plus confidentiality through
data encryption. Thus, the encapsulation security payload protocol is a superset
of the authentication header. Though it is possible to do so, applying both an

 288 Hardware-Defined Networking

authentication header and using the encapsulation security payload protocol on
the same packet is not practical or necessary. And, since the encapsulation security
payload protocol can do everything that an authentication header can do, there’s
no strong motivation for supporting the authentication header. However, the
authentication header is in use for the time being, so it’s prudent to cover it.

Both the authentication header and the encapsulating security payload protocol
support both a transport mode of operation and a tunnel mode. In the transport
mode, the packet’s original IP header is used to forward the packet from its origin
to its destination. This means, of course, that the header must be transmitted in the
clear so that intervening IP routers can interpret its contents and that certain fields
in the header may be modified by the forwarding process (e.g., time-to-live values,
checksums, etc.). In tunnel mode, the original IP packet is treated as the secure
payload of an authentication header or the encapsulating security payload pro-
tocol—providing 100% security coverage of the original IP header—while a new
IP header is prepended to the packet to actually forward it to either its ultimate
destination or to the exit of the secure tunnel.

There is no opcode, flag or other explicit indication in either an authentication
header or the encapsulating security payload protocol that specifies if the transport
or tunnel mode is in use. It is simply a matter of decoding the next-header values
in the relevant headers. If, for example, Ah.nextHeader holds a value that identifies
a typical IP payload such as TCP as the authentication header’s payload, then
transport mode is in use (i.e., the authentication header is a payload of the original
forwarding IP header). On the other hand, if Ah.nextHeader is set to a value that
indicates that IPv4 or IPv6 is the next header, then tunnel mode is in use. The exact
same rules apply to the encapsulating security payload protocol. In other words,
transport mode is just simple, fundamental IP packet forwarding and tunnel mode
is just simple, fundamental tunneling. There’s nothing about either behavior that is
security specific.

The use of transport mode by a security gateway—i.e., a router on the path be-
tween two IP endpoints—is allowed only when the IP source address (for packets
originating at the security gateway) or the IP destination address (for packets
terminating at the security gateway) belong to the security gateway system itself.
In other words, the secure connection must originate or terminate at the security
gateway router.

Generally, transport mode is associated with end-to-end secure communications
between IP endpoints while tunnel mode is employed to offer secure communica-
tions between two security gateways.

 Security 289

Security Associations

IPsec makes use of security associations (SAs) to establish a series of one-way
connections between participants in secure communications. For two endpoints to
communicate with one another while taking advantage of the security features and
services of IPsec, two reciprocal one-way connections must be established.

Security associations are identified by what’s know as a security parameters
index (SPI) in conjunction with the IPsec protocol type (authentication header or
encapsulated security payload, each explained further below). Security associa-
tions are maintained in a database by an IP forwarding entity. This database uses
the security parameters index, the IP destination address and (optionally) the IP
source address as key to identify entries in the database.

A longest-prefix lookup is used to search against keys that are a concatenation of
the following values from left to right: security parameters index, IP next-header
field, IP destination address, IP source address. The longest and, hence, most
restrictive or specific match is the one that is returned from the lookup operation.
If no match is found, then the packet is discarded.

A successful lookup returns the various parameters required to validate or decrypt
the associated packet. Among those parameters are: encryption algorithm selec-
tion, shared secret keys, etc.

Only those forwarding systems (e.g., IP routers) that are originating or termi-
nating a secure connection need to perform security association lookups. For
forwarding systems in the middle of a secure connection, it is sufficient to forward
the packet in the normal manner using whatever headers and fields that are not
encrypted.

Authentication Header (AH)

The authentication header serves a single purpose: deliver a cryptographically se-
cure integrity check value along with the packet being protected. This check value
ensures that the source of the packet has not been tampered with or obfuscated,
that the contents of the packet’s payload have not been modified, and that the
packet is not part of a replay attack.

Described simply, the authentication header is inserted between an IP header and
the IP header’s payload. This is summarized in Figure 136.

 290 Hardware-Defined Networking

Figure 136 Authentication Header Placement

Ethernet

IPv4 + options

authentication header

IPv4

Transport Mode

IPv6

original IPv4 payload (e.g., TCP, etc.)

Ethernet

IPv6 + mutable extension headers

authentication header

immutable IPv6 extension headers

original IPv6 payload (e.g., TCP, etc.)

Ethernet

new IPv4 + options

original IPv4 + options

authentication header

IPv4

Tunnel Mode

IPv6

original IPv4 payload (e.g., TCP, etc.)

Ethernet

new IPv6 + extension headers

authentication header

original IPv6 + extension headers

original IPv6 payload (e.g., TCP, etc.)

The header stack-up for IPv4 is pretty straightforward. The IPv4 header (and
all of its options) are followed immediately by the authentication header which
is, in turn, followed by the original IPv4 payload. For IPv4 tunnel mode, simply
place the authentication header and a new IPv4 header ahead of the original IPv4
header.

The header stack-up for IPv6 has to deal with IPv6 extension headers. These are
considered headers in their own right instead of inseparable parts of the IPv6
header. The authentication header is, for all intents and purposes, yet another
extension header (with some important differences that are described in the field
definitions table). What makes IPv6 a bit tricky is that, in transport mode, the
extension headers that are mutable (i.e., subject to being modified during forward-
ing) must precede the authentication header whereas the immutable headers are
expected to follow the authentication header. The integrity check value in the au-
thentication header (described in detail later) is expected to cover both the mutable
and immutable IPv6 extension headers, while omitting the mutable fields from the
mutable extension headers.

The structure of the authentication header is diagrammed in Figure 137.

 Security 291

Figure 137 Authentication Header Structure Diagram

0

4

8

12

...

last

0 1 2 3
nextHeader

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

securityParametersIndex

sequenceNumber

integrityCheckValue

headerLength

The fields of the authentication header are defined in Table 62.

Table 62 Authentication Header Field Definitions

Field Name (std. name) Width Offset (B.b) Definition

nextHeader
(Next Header)

8 bits 0.0 Identifies the authentication header’s payload type.

If this value indicates that typical IP header payload is
present (e.g., TCP), then transport mode is in use. If this
value indicates that IPv4 or IPv6 is present, then tunnel
mode is in use.

headerLength
(Payload Length)

8 bits 0.8 Indicates the length of the authentication header.

In the standard, this field is somewhat misleadingly
named “payload length.” In fact, this field indicates the
length of the authentication header itself. The length of
the authentication header is variable because the
integrityCheckValue field is of variable length. The
length of the header is expressed in 32-bit word units,
minus 2. If, for example, integrityCheckValue is 96
bits wide (12 bytes) then headerLength is set to 4
(three 32-bit words for the fixed portion of the header
plus three 32-bit words for the variable-length integrity
check value, minus 2 yields 4).

For IPv6, the length of the authentication header must
be a multiple of 8 bytes in order to be consistent with
IPv6 extension header requirements. This has two
implications. First, integrityCheckValue may be
followed by some number of pad bytes in order to fill
out the header to a multiple of 8 bytes in length. Second,
though IPv6 extension headers are supposed to indicate
their length in units of 8 bytes (minus 2), this header
indicates its length in units of 4 bytes. This means that
any IPv6 forwarding entity that needs to parse beyond
an authentication header must at least be aware that this
type of header counts its size differently from all other
IPv6 extension headers.

 292 Hardware-Defined Networking

Field Name (std. name) Width Offset (B.b) Definition

sequenceNumber
(Sequence Number)

32 bits 8.0 A packet sequence number to detect replay attacks.

This sequence number initialized to 0 when a secure
association is established and is then incremented by 1
for each packet transmitted within a secure association.
(The first packet transmitted in a newly-established
secure association has an sequenceNumber value of 1.)

With high-speed interfaces, a 32-bit number is entirely
too narrow. For example, a 100 Gbps interface sending
minimum-length Ethernet packets will roll over this
counter in less than 30 seconds. (28.86, to be pedantic.)
Hence, an extended, 64-bit sequence number is
supported. However, the upper 32 bits of that sequence
number is not conveyed by the authentication header.
Instead, the upper 32 bits are agreed to and conveyed by
the secure association management protocol. Though
not included in the authentication header, the upper 32
bits of sequenceNumber are included in the
integrityCheckValue computation. With the 64-bit
extended sequence number in use, the counter rolls over
using the parameters from the head of this paragraph.

integrityCheckValue
(ICV)

varies 12.0 Authenticates a packet’s contents and addressing.

This value is derived by computing a secure hash value
over the protected data. The protected data includes the
outer IP header used for forwarding the packet (less
fields that are normally subject to change), the
authentication header itself (less
integrityCheckValue) and the entire payload of the
authentication header.

The length of the integrity check value is dependent
upon the algorithm used to check the value. The length
of this field must be a multiple of 4 bytes (IPv4) or 8
bytes (IPv6). The length of the integrity check value is
not a multiple of four or eight for all secure hash
algorithms. Pad bytes are used to fill out this field to the
required minimum length. Pad bytes always come after
the integrity check value within the
integrityCheckValue field. Pad bytes are included in
the computation and checking of the integrity check
value.

Further padding may be necessary at the end of the
packet in order to satisfy block size requirements of the
secure hash algorithm that is in use. These pad bytes
must always be zero-valued bytes. These pad bytes are
not, however, included in the packet itself. They are only
included in integrity check value computation and
checking.

 Security 293

Field Name (std. name) Width Offset (B.b) Definition

securityParametersIndex
(SPI)

32 bits 4.0 An arbitrary value used to fetch security parameters.

This value may be used by itself or in conjunction with
the IP next-header value (i.e., authentication header or
security encapsulation payload) to distinguish between
the two protocols. This individual or combined value
may then be further combined with IP destination and
source address values and used in a longest-prefix match
type lookup to retrieve the security parameters.

The following series of figures (Figures 138 –141) show the coverage of the authen-
tication header. All of the blue-shaded fields (including reserved fields) are in-
cluded in the computation and validation of Ah.integrityCheckValue.
Ah.integrityCheckValue itself (and any necessary padding) is set to zero during
these computations.

Figure 138 Authentication Header Coverage: IPv4 Transport Mode

0 1 2
version headerLength trafficClass ecn totalLength

fragmentOffsetid

ttl nextHeader headerChecksum

 sourceAddress

 destinationAddress

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nextHeader

securityParametersIndex

sequenceNumber

integrityCheckValue

payloadLength

IPv4
T

C
P

authentication header

sourcePort destinationPort

sequenceNumber

ackNumber

windowSizedataOffset

urgentPointer

<TCP payload>

checksum

 294 Hardware-Defined Networking

Figure 139 Authentication Header Coverage: IPv4 Tunnel Mode

0 1 2
version headerLength trafficClass ecn totalLength

fragmentOffset id

ttl nextHeader headerChecksum

sourceAddress

destinationAddress

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nextHeader

securityParametersIndex

sequenceNumber

integrityCheckValue

payloadLength

IPv4
T

C
P

authentication header

version headerLength trafficClass ecn totalLength

fragmentOffsetid

ttl nextHeader headerChecksum

sourceAddress

destinationAddress

IPv4

sourcePort destinationPort

sequenceNumber

ackNumber

windowSizedataOffset

urgentPointer

<TCP payload>

checksum

 Security 295

Figure 140 Authentication Header Coverage: IPv6 Transport Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nextHeader

securityParametersIndex

sequenceNumber

integrityCheckValue

payloadLength

IPv6
T

C
P

authentication header

sourcePort destinationPort

sequenceNumber

ackNumber

windowSizedataOffset

urgentPointer

<TCP payload>

checksum

version trafficClass ecn flowLabel

ttlnextHeaderpayloadLength

sourceAddress[0:31]

sourceAddress[32:63]

sourceAddress[64:95]

sourceAddress[96:127]

destinationAddress[0:31]

destinationAddress[32:63]

destinationAddress[64:95]

destinationAddress[96:127]

 296 Hardware-Defined Networking

Figure 141 Authentication Header Coverage: IPv6 Tunnel Mode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

nextHeader

securityParametersIndex

sequenceNumber

integrityCheckValue

payloadLength

IPv6
T

C
P

authentication header
IPv6

sourcePort destinationPort

sequenceNumber

ackNumber

windowSizedataOffset

urgentPointer

<TCP payload>

checksum

version trafficClass ecn flowLabel

ttlnextHeaderpayloadLength

sourceAddress[0:31]

sourceAddress[32:63]

sourceAddress[64:95]

sourceAddress[96:127]

destinationAddress[0:31]

destinationAddress[32:63]

destinationAddress[64:95]

destinationAddress[96:127]

version trafficClass ecn flowLabel

ttlnextHeaderpayloadLength

sourceAddress[0:31]

sourceAddress[32:63]

sourceAddress[64:95]

sourceAddress[96:127]

destinationAddress[0:31]

destinationAddress[32:63]

destinationAddress[64:95]

destinationAddress[96:127]

 Security 297

Encapsulating Security Payload (ESP) Protocol

IPsec’s encapsulating security payload (ESP, described in IETF RFC 4303) provides
both authentication services and encryption services. ESP is far more complex
than IPsec’s authentication header (AH). This is so because ESP requires both a
header component and a trailer component. In other words, the encrypted pay-
load is surrounded by ESP components as shown in Figure 142.

Figure 142 IPsec Encapsulating Security Payload Packet Structure Diagram

Ethernet

IPv4 or IPv6

ESP Header

encrypted
authenticated

ESP Trailer

Payload
(encrypted)

The ESP header provides the security parameters index (SPI) and sequence number
information in the same manner as AH. The ESP trailer, on the other hand,
provides padding, a next-header field and authentication data. The details of these
headers are provided in Figure 143 and Table 63.

Figure 143 IPsec Encapsulating Security Payload Header and Trailer Structure Diagram

0

4

0

4

0 1 2 3 4
securityParametersIndex

sequenceNumber

(header)

(trailer)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

integrityCheckValue (optional)

padding (0–255 bytes)

padLength nextHeader

 298 Hardware-Defined Networking

Table 63 IPsec Encapsulating Security Payload Header and Trailer Field Definitions

Field Name (std. name) Width Offset
(B.b)

Definition

securityParametersIndex
(SPI)

32 bits 0.0 An arbitrary value used to fetch security parameters.

This value may be used by itself or in conjunction with
the IP nextHeader value (i.e., authentication header or
security encapsulation payload) to distinguish between
the two protocols. This individual or combined value
may then be further combined with IP destination and
source address values and used in a longest-prefix match
type lookup to retrieve the security parameters.

sequenceNumber
(Sequence Number)

32 bits 4.0 A packet sequence number to detect replay attacks.

This sequence number initialized to 0 when a secure
association is established and is then incremented by 1
for each packet transmitted within a secure association.
(The first packet transmitted in a newly-established
secure association has a sequenceNumber value of 1.)

With high-speed interfaces, a 32-bit number is entirely
too narrow. For example, a 100 Gbps interface sending
minimum-length Ethernet packets will roll over this
counter in less than 30 seconds. (28.86, to be pedantic.)
Hence, an extended, 64-bit sequence number is
supported. However, the upper 32 bits of that sequence
number is not conveyed by the encapsulating security
header. Instead, the upper 32 bits are agreed to and
conveyed by the secure association management
protocol. Though not included in the authentication
header, the upper 32 bits of sequenceNumber are
included in the integrityCheckValue computation.
With the 64-bit extended sequence number in use, the
counter rolls over using the parameters from the head of
this paragraph.

padding variable variable Pads payload data to a minimum multiple required by
the encryption algorithm in use.

Encryption algorithms often work on integral blocks of
data. If the data to be encrypted is not a multiple of the
algorithm’s block size, then it must be padded out to fill
in the gap.

 Security 299

Field Name (std. name) Width Offset
(B.b)

Definition

padLength
(Pad Length)

8 bits 0.16 Indicates the number of pad bytes.

The length of the pad bytes must be sufficient to satisfy
the encryption algorithm’s requirements and to ensure
that the overall length of the encrypted payload,
including the padLength and nextHeader fields, is a
multiple of 4 bytes. This is necessary because the
optional integrity check value that follows Esp.
nextHeader must align on a multiple of four bytes.

nextHeader
(Next Header)

8 bits 0.24 Identifies the outermost header in the encrypted
payload.

This next-header value actually points back towards the
head of the packet to identify the type of the encrypted
payload that precedes the ESP trailer. For example, this
value may be set to 6 to indicate TCP (transport mode),
or to 4 or 41 to indicate IPv4 or IPv6, respectively
(tunnel mode).

integrityCheckValue
(ICV)

variable 4.0 Authenticates a packet’s contents and addressing.

This value is derived by computing a secure hash value
over the protected data. The protected data includes the
entire payload of the encapsulating security header.

The length of the integrity check value is dependent
upon the algorithm used to check the value. The length
of this field must be a multiple of 4 bytes (IPv4) or 8
bytes (IPv6). The length of the integrity check value is
not a multiple of 4 or 8 for all secure hash algorithms.
Pad bytes are used to fill out this field to the required
minimum length. Pad bytes always come after the
integrity check value within the
integrityCheckValue field. Pad bytes are included in
the computation and checking of the integrity check
value.

Further padding may be necessary at the end of the
packet in order to satisfy block size requirements of the
secure hash algorithm that is in use. These pad bytes
must always be zero-valued bytes. These pad bytes are
not, however, included in the packet itself. They are only
included in integrity check value computation and
checking.

Since ESP supports both encryption and authentication, it is a strict superset of
AH. Therefore, in common practice, ESP is generally favored over AH.

 300 Hardware-Defined Networking

Denial of Service Defenses

The security methods and protocols described previously in this chapter have all
focused on preventing unauthorized access to protected information or resources,
or have ensured the privacy and/or integrity of data transmissions. However, these
methods and protocols do very little to protect the network itself. A frequent cause
of disruptions of services made available via the Internet are so-called “denial of
service” (or DoS) attacks. The concept is absolutely simple: overwhelm a forward-
ing system or an endpoint with service request messages and that resource will
be so busy trying to deal with all of these phony requests that legitimate requests
face a very high probability of being dropped due to resource congestion. Often,
attackers build huge armies of compromised zombie machines that unwittingly
participate in simultaneous attacks. This is known as distributed denial of service
(DDoS), where the total bandwidth of the attacking packets can easily exceed
1 Tbps. DDoS is particularly difficult to defend against because the rouge packets
don’t all originate from a single IP address or even a single geographic region,
making it pointless to try to filter these packets with a simple pattern match.

Access Control Lists
A common defense technique is to configure one or more rules in an access control
list to detect and deny attacking packets. Finding patterns that are shared by the
attacking packets—especially in a DDoS scenario—may be exceedingly difficult
and is usually a painstaking manual process. Once an effective set of rules is in
place, the forwarding system hardware should be effective at discarding attacking
packets.

It is often necessary to examine the contents of the attacking packets well into their
data payload to find some useful distinguishing characteristic since, when only
the encapsulating and forwarding headers are examined, they may appear to be
perfectly normal. Generally, forwarding systems and endpoints (i.e., servers) are
ill-equipped for this kind of so-called deep packet inspection. Specialty firewall
systems are generally required for such work.

Access control lists are discussed in further detail in Chapter 18: Firewall Filters.

Storm Controls
Sometimes, a network can be its own source of a denial of service attack. Ethernet
bridging is particularly notorious in this regard. IEEE 802.1D transparent bridging
(or its variants) relies on the rapid spanning tree protocol (RSTP, or its variants) to
prune an arbitrary physical topology to a simple tree structure by selectively dis-
abling links. The details of spanning tree are covered in "Ethernet" on page 40.

 Security 301

Figure 144 Spanning Tree Created by Disabling Links

physical topology spanning tree

root

However, all it takes is for a single Ethernet bridge that does not support the span-
ning tree protocol to be carelessly installed in the network, and a loop is formed
that the spanning tree protocol can neither detect nor disable.

Figure 145 Loop Created by Adding a Non-Spanning Tree Bridge

root

Once a BUM packet (broadcast, unknown-unicast or multicast) is received by the
non-spanning tree bridge, that packet will circulate around the loop and be flooded
throughout the rest of the network until the loop is somehow broken. This is known
as a broadcast storm. Broadcast storms force legitimate packets to compete for finite
bandwidth and buffering resources, resulting is vast amounts of dropped packets.

Most forwarding systems that support Ethernet bridging include some form of
broadcast storm detection and mitigation capability in the hardware. The operating
principle of a broadcast storm control mechanism is quite simple. First, BUM pack-
ets are detected by examining Mac.destinationAddress directly and by checking
for unsuccessful unicast destination address lookups. Any packet that falls into the
BUM category is submitted to a dedicated rate meter. If the rate of BUM packets on
a particular receive interface exceeds some threshold, then some fraction of those
BUM packets are discarded. This will reduce the load on the network from the BUM
packets so that non-BUM packets face less congestion. Of course, legitimate BUM
packets will also get caught up by the storm control mechanism, but this is not easily
avoided.

17 Searching

Searching for keys in a database is essential for many required behaviors of for-
warding systems. Most obvious is the forwarding database, into which forwarding
searches are performed. A typical forwarding search (or lookup) involves as-
sembling a search argument using packet header data such as destination address
or label values, metadata such as forwarding domains and receive interfaces, or,
frequently, a combination of these elements. The assembled search argument is
then used to find a matching key in the targeted database. There are two possible
outcomes of a search: a hit or a miss. In the case of a hit, the so-called associated
data that is stored along with the key in the database entry (or is at least pointed
to by the matching entry) is returned as a byproduct of the search operation and is
used to direct or influence the subsequent forwarding of a packet or other behavior
of the forwarding system. In the case of a search miss, default associated data may
be returned that is lookup-type or database specific, or the forwarding system may
have automatic behaviors that are performed in the event of a database search
miss.

There are a number of characteristics of the various search algorithms that make
certain algorithms better suited for a particular application than others. The char-
acteristics include:

 � performance

 � latency

 � silicon or board area efficiency

 � population density

 � power efficiency

 � algorithmic suitability

When considering performance and latency, it may seem as if one measure is
simply the reciprocal of the other. In other words, if an algorithm can process one
million lookups per second, then each lookup takes one millionth of a second.
This, however, ignores the effects of pipelining. A number of common lookup
algorithms require several steps to complete, and these steps may lend themselves
to a practical pipeline design. A typical pipeline has some number of stages where
each stage requires a fixed amount of time to complete its work and that time is
the same for each of the stages. The performance of the pipeline is dictated by the

 Searching 303

number of operations that can be introduced into the pipeline per second. The
latency is dictated by the duration of each stage’s work and the number of stages.
A pipeline is closely analogous to an assembly line in a factory; items being as-
sembled move from station to station and specialized work is performed at each
station.

The area of a search solution is dictated by two factors: the size of the required
database (i.e., the number of database entries), and the efficiency with which each
entry in the database may be accommodated in the database’s storage elements.
The size of the database is often dictated by the application (for example, forward-
ing protocol, network architecture, etc.). The area efficiency on a per-entry basis
is a function of the search algorithm—certain algorithms require some degree of
data redundancy or per-entry metadata—and the storage technology in use.

Population density doesn’t refer to how full a table is. Rather, it refers to the
ratio of the table size (i.e., its maximum number of entries) to the number space
represented by the keys. For example, if a table has a total capacity of 1,024
entries and the key is 12-bits wide (4,096 possible values), then the table has a
population density of 25% (25% of the possible values may fit into the table). Or,
if a 1,024-entry table holds 32-bit keys (4 billion possible values), then the table
has a population density of 1/4,000,000. Population densities greater than 100%
indicate that the table is too large.

Power efficiency is becoming increasingly important. Consider a typical large-scale
data center application. The silicon devices in the forwarding systems generate
heat as they operate. This heat is a direct byproduct of the power that they con-
sume. Silicon devices that consume more power require bigger power supplies.
Power supplies are not 100% efficient, so they dissipate heat as well. The heat
must be removed from the forwarding system’s enclosure so that the components
within don’t overheat. This is typically done by using fans to force air through the
system and out exhaust ports. The fans themselves require power, and generate
heat of their own. Thus, a lot of hot air is expelled into the data center environ-
ment. This heat must be removed from the building. This is typically done using
refrigeration-cycle cooling systems. These systems consume considerable amounts
of power. The upshot of all of this is that the amount of power that is consumed
by the components that actually do useful work—i.e., the silicon devices inside
the forwarding systems—each have a substantial power multiplier penalty just to
keep them within safe operating temperatures. Each watt saved within a piece of
networking equipment may save one or more additional watts elsewhere. Differ-
ent search technologies and algorithms have different power characteristics.

Finally, there’s algorithmic suitability. For Ethernet bridging, an exact match
search function is all that is required. However, for IPv4 or IPv6 routing, a longest-
prefix match search function is required. Exact matches are generally quite simple,
while longest-prefix matches are more complex. An algorithm that can perform a

 304 Hardware-Defined Networking

longest-prefix match can generally also perform exact matches, but not at the same
levels of efficiency as an algorithm that only performs exact matches.

Table searching is vast field and worthy of a book all to itself. What follows is a
brief survey of some fundamental search methods.

Indexed Reads

Calling an indexed read a search method is a bit of a stretch, but it deserves to be
described since tables of this type are perhaps the most frequently encountered in
forwarding system design. An indexed read is, essentially, a memory where the
search argument is used directly as that memory’s address input. In other words,
the search argument points directly to the appropriate entry in the table without
any manipulation of the search argument as in Figure 146.

Figure 146 Indexed Read Table

search argument

associated data

This is, of course, the simplest possible table design. There’s no need to store the
key value in the database entries and there’s no need for any kind of comparison
logic because the search argument points directly to the desired entry.

In addition to being very simple, an indexed read table also has excellent perfor-
mance and latency characteristics. It is only suitable for exact-match applications
and it is ideally used where the population density is between, say, 50% and
100%.

CAMs and TCAMs

CAMs (content-addressable memories) and TCAMs (ternary content-addressable
memories) are specialized memories where every stored key in the table is com-
pared with the submitted search argument in parallel.

In its most basic form, a CAM performs an exact match using binary keys. When a
search argument is submitted, every row of the CAM’s memory is read simultane-
ously and submitted to a comparison bus. The matching entry’s location in the

 Searching 305

CAM is produced as the CAM’s output (i.e., data in, address out). Typically, the
rows are prioritized such that matching rows with lower index numbers have
higher priority than rows with higher index numbers. Therefore, if there are
multiple keys that share the same value, the index of the key whose index value is
lowest is returned as the match result. A binary CAM is only suitable for exact-
match applications.

A TCAM extends the behavior of a CAM by encoding the keys with three-state
logic: 0, 1 and X. This greatly extends the utility of the CAM concept by enabling
arbitrarily-masked matches. If there are bits in a search argument that are relevant
for some key values and not relevant for others, the value X may be used in those
bit positions in those keys where the match criteria is don’t-care. Through careful
key definition and sorting within the TCAM, longest-prefix matches may be easily
performed. Consider Figure 147.

Figure 147 TCAM-Based Longest-Prefix Match

search argument

TCAM

1110_XXXX

1XXX_XXXX

11XX_XXXX
110X_XXXX

1100_011X

10XX_XXXX

1100_XXXX

1100_01XX
1101_0XXX

1100_0100

1100_0101

0:
1:
2:
3:
4:
5:
6:
7:
8:
9:

In Figure 147, the search argument matches all of the entries highlighted by the
green check marks. The lowest-indexed match has the highest priority, and, since
the keys are sorted such that those keys with the fewest masked bits (i.e., the
longest prefixes) appear before those with more masked bits, the lowest-indexed
match also corresponds with the longest-prefix match. In this example, that is the
entry at index 2.

While TCAMs are well-suited for longest-prefix match operations and arbitrarily-
masked matches, they struggle a bit with arbitrary range matches, such as are
commonly used with access control lists (ACLs) that include TCP or UDP port
numbers in their rules. TCP and UDP port numbers are often expressed in ACL
rules as numerical ranges such as 100 through 200, inclusive. Now, if the desired
range was something like 96 through 127, a TCAM would be perfectly well suited
since 96 (0110_00002) and 127 (0111_11112) exactly share a prefix. While, on the
other hand, 100 (0110_01002) and 200 (1100_10002) do not share a simple prefix.
To cover the range of 100 through 200 with a TCAM, a series of keys are required.

 306 Hardware-Defined Networking

These keys are prefixes that fill in the range from 100 through 200 as follows:

 � 100–103 (0110_01XX2)

 � 104–111 (0110_1XXX2)

 � 112–127 (0111_XXXX2)

 � 128–191 (10XX_XXXX2)

 � 192–199 (1100_0XXX2)

 � 200 (1100_10002)

Therefore, a single range requires six entries in a TCAM.

CAMs and TCAMs typically have excellent performance and latency character-
istics owing to their parallel internal operation. They also have only moderately
good storage density, which is hurt by the large storage cell sizes, but is helped by
the simplicity of the storage structure (i.e., no unnecessary metadata).

The biggest challenge for TCAMs is their area and power costs, especially the
more flexible TCAM. To store three-stage logic, two bits are required per key bit.
And, the match logic in the TCAM must compare the search argument against
thousands of keys simultaneously; this not only requires extensive logic and wir-
ing area, it also requires a lot of power to activate all of those storage cells and
comparison gates.

Because CAMs and TCAMs are so expensive on a per-bit basis, a database rarely
stores each key’s associated data within the CAM or TCAM elements. Instead, the
search result from the CAM or TCAM is the index of the matching entry which is
then used to perform an indexed read of an associated data memory. This increases
the latency slightly, but does not affect performance.

Finally, a characteristic that CAMs and TCAMs share with most other search
methods and technologies, is that they’re suitable for very low population densi-
ties. It is not unreasonable to use TCAMs for 64-bit IPv6 longest-prefix match
searches in tables of modest size.

Hashing

A hash is a one-way mathematical function that maps numbers from a large space
to numbers in a small space. For an extremely simple example of a hash function,
think of the remainder of an integer division operation. If, for example, numbers
that range in value from 0 through 1,000,000 are divided by, say 23, the remainder
of those division operations always fall into the range 0...22. A vital characteristic
of a hash function is that it is repeatable. The same input value must always yield
the same output value. This means that random or time-variant components must
be excluded from a useful hash function. Ideally, a hash function provides an even

 Searching 307

distribution of results for a wide variety of input data sets. In other words, a histo-
gram of the hash results is as close to flat as possible.

For the purposes of table searching, hashes are very powerful because it is very
simple to map numbers from a potentially huge space (e.g., the 48-bit IEEE MAC
address) to a much smaller space (e.g., a 14-bit hash result). The hash result may
be used directly as an address to index into a memory that stores the database
entries.

One of the characteristics of a hash that can be problematic is that hashes are
imperfect. If a set of 1,024 randomly chosen 48-bit numbers is hashed to a set
of 10-bit results, the odds of each input value mapping to a unique output value
is vanishingly small. This is due to the birthday paradox. The birthday paradox
states that, even though there are 365 possible birthdays within a year, the odds
of two people in a group sharing a common birthday is 50% when the size of the
group reaches just 23 people. Similarly, the odds of so-called hash collisions—the
condition where two or more input values hash to the same output value—is ex-
tremely high even with fairly small data sets. This means that if keys are added to a
forwarding database whose capacity is 365 entries, that the odds of encountering
a hash collision is about 50–50 when adding the 23rd entry.

Figure 148 Hash Collisions

Mustang

Hash Function

Camaro

Trans Am

Duster

Challenger

0

2

1

3

4

5’Cuda

In Figure 148, a hash collision exists between the Mustang and Challenger inputs.
An effective method to mitigate the effect of hash collisions is to store multiple
keys per possible hash result, or “bucket” as they are commonly known. The
idea is simple, if the example in Figure 148 allowed two entries per hash bucket,
then the hash collision between the Mustang and Challenger inputs is easily
handled. As the number of entries per bucket is increased, the number of buckets
is decreased in order to maintain a constant overall table capacity. The benefits
of multiple entries per bucket can be fairly intuitively visualized. Imagine taking
a hash-based table that has a 16-entry capacity and morphing its aspect ratio so
that, rather than 16 buckets of one entry per bucket, there’s a single bucket with

 308 Hardware-Defined Networking

16 entries. By doing so, we’ve effectively transformed the hash table into a CAM.
And CAMs don’t suffer from the effects of hash collisions. So, as the number of
possible entries per bucket increases, the odds of unresolvable hash collisions
decreases.

Another effective means for mitigating the effects of hash collisions is to use mul-
tiple hash tables with cuckoo14 moves.

The idea is fairly straightforward. Two or more hash tables are maintained. Each
uses a separate hash function (usually just a different hash coefficient). When
performing a search, all of the tables are searched; a matching key being present
in exactly zero or one of the tables. New keys are added to whichever table is less
populated at the moment. If an attempt to add a key results in a hash collision (i.e.,
the intended bucket already holds a valid entry), then the existing entry is kicked
out of its bucket and the new key takes its place. The key that was kicked out of
its bucket is then moved to another table after being hashed by the new table’s
hash function. Here, of course, a new collision may occur that must be resolved
in the same manner. Thus, a single attempt to add a new entry may result in a list
of cuckoo moves. If each hash bucket can store more than one entry, then a list of
cuckoo moves becomes a tree of cuckoo moves. As the population of the various
hash tables continues to increase, the size of the cuckoo move lists or trees contin-
ues to increase, eventually becoming either impractically long or becoming circular
(i.e., a subsequent move attempts to kick out the new entry that started the cuckoo
move process). At that point, the hash table is declared full.

And that is, perhaps, the most significant downside of hash-based tables is that
their capacity is non-deterministic. Achieving entry densities above, say, 85%
can be challenging. So, when an equipment vendor claims that their hash-based
forwarding database accommodates up to one million entries, the odds are that its
capacity is actually closer to 850,000 (or less).

In summary, hashing has excellent performance and latency characteristics and
good storage density, giving it good power and area characteristics. Hashing is
suitable for exact-match searches where the population density is low.

Algorithmic Searching

All of the search methods described so far have had latency characteristics that are,
essentially O(1), meaning that they have a constant time to completion regardless
of the number of entries in the database or the width of the keys. In this section
we’ll explore more complex sequential algorithms.

14 The cuckoo is species of bird with a most unusual child rearing method. The female cuckoo
lays its eggs in the nest of a different species of bird whose eggs are very similar in appearance
to that of the cuckoo’s. A newly hatched cuckoo immediately sets about emptying the nest of
its nest-mates—eggs and hatchlings alike. Thus, the non-cuckoo parent birds unwittingly raise
the invasive cuckoo as if it were their own offspring; despite the vastly different appearance of
a cuckoo chick compared to its own.

 Searching 309

Figure 149 Cuckoo Moves

left table

new entry

right tableoccupied entry
available entry

move
 1

move 2

move 3

move 4

Trees
One of the first search algorithms most people learn is the binary search. The con-
cept is exceedingly simple:

1. Start with a numerically-sorted table of keys; declare the list of keys to be the
range of keys under consideration.

2. Identify the midpoint of the range.

3. Compare the search argument against the key found at that midpoint.

4. If the search argument matches the key value, the index of the matching loca-
tion is the search result; terminate the search.

5. If the search argument is greater, consider only the range of keys that are
numerically greater than the search argument and less than endpoint of the
current range; continue with step 2.

6. Otherwise, consider only the range of keys that are less than the search argu-
ment and greater than the start point of the current range; continue with step 2.

As a binary search progresses, the range of keys under consideration is halved with
each iteration. Thus, the search latency is approximately O(log2n), where n is the
number of keys in the table. Meaning, of course, that the search latency is a func-
tion of the size of the table, or, more correctly, the number of valid keys in the table.

 310 Hardware-Defined Networking

Figure 150 Binary Search

42
37
30
29

61
step 1 step 2 step 3 step 4 step 5

15:

42?

42?

42?
42? 42?

14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

60
56
55

15
11
8
2

28
23
21
16

42
37
30
29

6115:
14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

60
56
55

15
11
8
2

28
23
21
16

42
37
30
29

6115:
14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

60
56
55

15
11
8
2

28
23
21
16

42
37
30
29

6115:
14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

60
56
55

15
11
8
2

28
23
21
16

42
37
30
29

6115:
14:
13:
12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

60
56
55

15
11
8
2

28
23
21
16

A concrete example of a binary search is shown in Figure 150. In this example,
we have a numerically sorted list of keys and we’re submitting a search argument
of 42. The first table has a key count of 16. Dividing that by 2 yields an initial
key pointer value of 8. We test our search argument (42) against the key stored at
index 8 (29). Since 42 is greater than or equal to 29, we restrict the next phase of
the search to the upper half of the list of keys. There are 8 keys in this portion of
the table. Dividing 8 by 2 gives us 4. Thus, 4 is used as the offset from the base of
the active region, pointing us at entry 12. The 55 at 12 is compared to 42. The less-
than result means that we now consider only the lower half of the current region:
just 4 keys. Thus, we apply an offset of 2 to our base of 8 to point at the key at
index 10. The comparisons and halvings of the number of keys continues until we
eventually arrive at our matching key. Of course, if our search argument had been
29, we would have found an exact match at the first step. Conversely, if our search
argument had been 31, we would have reduced the size of the search region to just
one key without finding a match; returning a “not found” search result.

If a binary search is performed entirely within a single physical table, then its per-
formance scales in the same manner as its latency: as roughly the log of the table’s
size. However, a binary search actually lends itself to a pipelined implementation
where the performance is O(1). The trick is to spread the keys across a series of
tables where the first table holds just one key and each subsequent table holds twice
as many keys as the one before. In each table, each entry represents the midpoint
of the range of keys that corresponds to the stage of processing. For the first table,
there’s just one midpoint since its the midpoint of the total set of keys. For the
second table, there are two midpoint keys: one for the upper keys from the total set
of keys and one for the lower keys.

In the concrete example shown in Figure 151, we are once again using 42 as our
search argument. Starting at the leftmost table, we compare 42 to the key at index
0: 29. The result is “greater than or equal,” so we mark that first result as a 1 (it
would be 0 if the comparison yielded “less than”).

 Searching 311

Figure 151 Pipelined Binary Search

29
step 1

step 2

step 3

step 4

0:42?
42?

42?

42?

1:
0:

55
16

37
3:
2:
1:
0:

60

11
23

42
30

617:
6:
5:
4:
3:
2:
1:
0:

56

15
8

28
21

Proceeding to the next table, we use the result from the previous test (the 1) as our
index to fetch the 55 key. Here, the comparison with 55 yields a 0 result. The 0 is
concatenated with the 1 from the previous step to gives us an index of 102 (2) for
the next stage. Here, we compare our 42 with the key at index 2 (37), giving us a
1 result (for “greater than or equal”). Appending the new 1 result to the previous
102 result, gives us 1012 (5) as the index for the next stage. Here, we compare our
search argument (42) with the key at index 5 (42) and find an exact match; termi-
nating the search with a successful result.

Sharp-eyed readers will note that the preceding pipeline binary search example
had just 15 keys instead of 16 as in the prior example. For simple implementa-
tions, the total key capacity of a pipelined binary search is 2n-1, where n is the
number of stages.

Another instructive exercise is to improve upon a binary search’s O(log2n) latency.
This is easily done by increasing the radix of the tree from binary to, say, 4-ary.
With a 4-ary search, a four-way decision is made at each stage of processing;
meaning that each stage divides the size of the set of keys under consideration by
4 instead of 2. To make a four-way branch decision, three keys must be tested at
each stage instead of one. A search argument may be in one of four states relative
to a set of three numerically-sorted keys:

1. less than the first key;

2. greater than or equal to the first key and less than the second key;

3. greater than or equal to the second key and less than the third key;

4. greater than or equal to the third key.

By making a four-way decision at each stage instead of a two-way, the search
latency improves from O(log2n) to O(log4n). Of course, higher radix values are
possible. The limitation becomes the total width of the keys that must be fetched
and compared with each stage of processing.

Though the binary search algorithm requires a fairly small amount of work to
execute a search operation, adding new keys to the table can require a lot of
work. This is so because the algorithm depends on the keys remaining numerically

 312 Hardware-Defined Networking

sorted. If a key with a low numerical value must be added to the table, it may be
necessary to, in the worst case, shift every key to an adjacent location in order to
open up a gap in the table to accommodate the new key. That is a fundamental
challenge faced by all balanced-tree data structures.

One of the more remarkable characteristics of this form of tree-based search
(binary or other) is that it is suitable not just for exact match searches, but also ar-
bitrary range matches. To perform a range match, it is simply a matter of inserting
two keys in the database for each range: a key that corresponds to the start of the
range and a key that corresponds to the end of the range.

And, of course, a prefix is simply a special case of a range. For example, the IPv4
prefix 192.168.0.0/16 is the range 192.168.0.0 through 192.168.255.255. When
searching for the longest prefix, what is really being searched for is the shortest
range. Any set of keys that all share common prefix values of various lengths must
be nested and not overlapped. This makes it unambiguous which length prefix is
being matched when testing a search argument against a number of nested ranges.

Figure 152 Prefix Ranges

0.0.0.0

A
≥192.0.0.0

B
≥192.168.0.0

C

≥192.168.1.0

D
≥192.169.0.0

E

≥193.0.0.0

255.255.255.255

192.0.0.0/8
192.168.0.0/16192.168.0.0/24

Consider the example in Figure 152. Here, three nested ranges are shown (not
to scale). If a search argument of 192.100.1.2 is submitted, it will match key A,
indicating that the matching prefix is 192.0.0.0/8. Meanwhile, a search argument
equal to 192.168.0.200 matches key B, indicating that the search argument falls
into all three prefix ranges. However, since key B represents the shortest range (i.e.,
the longest prefix), then the matching prefix is 192.168.0.0/24. A search argument
of 192.168.37.37 matches key C. Finally, a search argument equal to 192.200.0.1
matches key D. This is noteworthy because key A and key D both represent the
exact same prefix: 192.0.0.0/8. Thus, a match with either A or D must return the
same resulting associated data.

While much more complex than the simple hash-based algorithms previously
described, tree-based searches have the benefits of being suitable for a variety of
match types (exact, longest-prefix, arbitrary-range) and of offering deterministic
key storage capacity. The search latency does increase with the number of keys and
full-width keys must be stored and compared at every stage. In the next section,
we’ll explore a class of search algorithms that only examines a portion of the
search argument at each stage.

 Searching 313

Tries
Trie15 structures originated in the dictionary search problem space. It was rec-
ognized that a lot of words share common prefixes in their spelling. Rather than
storing (and testing) every letter of the sequence M-U-L-T-I-P-L several times when
storing keys and testing search arguments against “multiple,” “multiplication,”
and “multiply,” simply store that common prefix just once and then branch to dif-
ferent key suffixes once reaching a point of divergence in spelling.

Figure 153 Trie Structure

M

macchiato
A

mollusk
O

mundane
N

mulberry

multicast

multi

multiple multiplication multiply

B

U

L

T

I

P

L

E I Y

C

In Figure 153, a handful of dictionary words are arranged in a typical trie struc-
ture. Letters from a search argument are considered one at a time, from left to
right across the search word. The first letter (M) has three branch options based
on the search word’s second letter. If the second letter is A, then the only key in the
dictionary that’s a possible match is “macchiato.” Following the U branch leads
to a number of further keys. One characteristic of a trie is that each node along a
path shares a common prefix, that prefix being longer and longer the further along
the path that the key is located. For example, “mulberry” and “multicast” both
share the “mul” prefix.

Another characteristic of a trie structure is the relative efficiency with which keys
are stored. In the example above, nine words totaling 74 characters are stored us-
ing 15 single-character nodes. For longest-prefix matches, that’s all the key storage
that is required. For exact matches, the completions of each string must be stored.

15 One of the most confounding aspects of a trie is its pronunciation. The name originated as
the “trie” from the middle of “retrieval,” implying it is pronounced like tree. Unfortunately, a
number of authors have taken to pronouncing it like try in order to distinguish it in conversa-
tion from tree-based searches, contributing nothing but confusion.

 314 Hardware-Defined Networking

For example, the C node above “multicast” must store the letters “ast” in order to
exactly match a search argument against the key “multicast.”

Now, the key storage efficiency is offset to some extent by the need to explicitly
point to next-nodes. With the binary search described previously, it is possible to
algorithmically determine the location of the next node to test. With a trie, each
node must encode the locations of the next nodes. When implementing a trie to
search for a longest-prefix match of, say, an IP destination address, each node may
hold just a single bit of the key. Thus, a simple two-way branch is possible for
navigating to the next node. This, of course, means that two multi-bit node loca-
tion values must be associated with each node.

Notice in the example above how certain nodes have just a single child node.
For example, the T node’s only child is the I node. This means that the only valid
sequence of letters in that part of the key is “TI.” This represents an opportunity to
compress the structure to some extent by storing T and I together in a single node.
This is known as a radix trie; the PATRICIA trie (Practical Algorithm to Retrieve
Information Coded in Alphanumeric) being the canonical example of the form.

Tries have latency characteristics that are approximately O(m) where m is the
number of bits in the keys. As for performance, tries do not lend themselves to
pipelined implementations as neatly as do trees. A tree generally supports 2x or
4x table scales with each successive stage of processing. Tries generally store all
of their nodes in a common, fungible memory system, mandating multiple read
accesses of that memory system for each search.

Tries lend themselves beautifully to longest-prefix matches. In fact, the longest
search process need not last any longer than the longest prefix in the structure,
which may be far shorter than the search arguments. Tries can also perform exact
matches. A trie can be applied to an arbitrary range match by replacing the equal-
ity comparison at each node with a magnitude comparison.

Others
There are, of course, many more search algorithms that have been described
and I am confident that new ones will be developed for some time to come. Each
algorithm has its own particular strengths and weaknesses. There is no such thing
as an ideal, universal search algorithm. There are simply algorithms that are better
suited for certain applications than other algorithms.

18 Firewall Filters

Sometimes, source and forwarding contexts, and destination information just isn’t
sufficient to adequately determine how (or whether) to forward a packet. This is
where firewall filters—otherwise known as access control lists—come in.

Access Control Lists

Access control lists (ACLs) are an outgrowth of early work with ternary
content-addressable memories (TCAMs). TCAMs were originally applied to the
longest-prefix match problem for IPv4 forwarding. Later, multi-tuple lookups
were used to try to reduce all of the forwarding processing to just a single step. In
other words, if we care about packet attributes X and Y and Z when we forward
packets of a particular type, let’s just concatenate X and Y and Z into a single,
multi-tuple search argument and submit that to a search within a TCAM, relying
on the TCAM to return associated data that provides the required parameters
for forwarding the packet. Unfortunately, for all but the smallest of networks,
forwarding packets in this manner suffers from severe cross-product problems.
Not only do you have to have an entry in your TCAM for each value of X that you
are concerned with (let’s presume that X stands in for a destination address value),
you also have to have an entry for each value of Y in combination with each value
of X that is of interest (that’s X times Y) and every value of Z that’s of interest
(that’s X times Y times Z). It doesn’t take too many of those multiplications to
reach database sizes that are wildly impractical.

While using ordinary TCAMs for so-called flow-based forwarding proved to be
rather impractical, the method of performing multi-tuple lookups within a TCAM
is very effective when applied to ACLs. ACLs may have thousands or tens of thou-
sands of interesting combinations of values of fields rather than the tens or hun-
dreds of millions of entries required for comprehensive flow-based forwarding.

An access control list, in its most fundamental form, is exactly what it says in the
tin: a list that controls access. Think of it as the guy with the clipboard at the velvet
rope outside of an exclusive nightclub: if you’re not on the list, you’ll be denied
access.

 316 Hardware-Defined Networking

In networking, an access control list is a sorted list of rules. The rules are tested
in order, one after the other. Once a rule is found that matches the packet being
tested, the processing of the list is stopped. This gives highest priority to those rules
that are closer to the start of the list. Each rule is associated with one or more ac-
tions. The most fundamental action is: permit vs. deny. Other actions can include
making changes to a packet’s priority, forwarding domain, receive interface, and
other metadata values. A matching rule’s actions may also specify exactly how to
forward a packet (e.g., transmit interface, required encapsulations, etc.). If you’ll
forgive a bit of a pun, there are no rules when it comes to designing rules or their
associated actions.

Typically, the purpose of an ACL is to identify the kind of networking application
associated with a packet. Examples of applications include viewing web pages,
transferring files, watching streaming videos, etc. Network operators may want
to apply rate limits to certain applications, shunt other applications to specific
paths through a network, or simply prohibit (i.e., deny) other types of applications
entirely.

Applications are typically identified by examining a packet’s addressing, receive
interface, forwarding domain and TCP or UDP (or similar) port numbers. For ex-
ample, certain untrustworthy websites may all share a common IP address prefix
and rely on HTTP (TCP port 80) to do their dirty work. By crafting an ACL rule
that denies such traffic, a modicum of network security is realized.

The prioritizing behavior of a TCAM expresses itself in the design of a typical set
of ACL rules in that the rules are expected to be evaluated in order, with the most
narrowly-defined rules appearing first in the list and more loosely-defined rules
appearing later. For example, a rule near the start of a list may permit packets that
originate within an organization’s network (i.e., locally-scoped IP source address)
to access FTP servers from a particular public IP address. Meanwhile a later rule
may deny packets that originate within an organization’s network from accessing
FTP servers, regardless of their IP address. Clearly, these two rules are inconsistent
with one another: one permitting FTP while the other denies it. However, since
the rules are prioritized and appear in a particular order, the resulting behavior is:
“deny FTP packets unless they’re addressed to this particular IP address.”

Multi-Tuple Lookups

TCAMs represent just one possible means for implementing an ACL function in
hardware. There are many others. What all of the methods have in common is that
they must solve a multi-dimensional space intersection problem.

Consider a conventional range, longest-prefix or exact match. The solution space
can be arranged along a number line as shown in Figure 154.

 Firewall Filters 317

Figure 154 Single-Dimension Match

match no match

It is impossible to draw a single-dimension space, so rectangles are used in Figure
154 just for the sake of convenience. The heights of the rectangles convey no infor-
mation. The behavior is easy to understand. Any particular search argument that
consists of a single tuple (e.g., a single field from a header) must fall somewhere
along the number line. The position where it falls either corresponds with the
range or exact value specified by a key, or it doesn’t. Hence, there’s either a match,
or there isn’t.

Extending the problem to two dimensions yields Figure 155.

Figure 155 Two-Dimension Match

match no match

With the two-dimension match, two fields from either the same or different head-
ers (or metadata) are used to build a multi-tuple search argument. If each of the
two-tuples are submitted to separate searches along their respective number lines,
the rectangles shown in Figure 155 correspond to mutual-match areas. The two
intersecting dash-dash lines represent the two values associated with one two-tuple
search argument whereas the dash-dot lines represent the two values associated
with different values from the same two fields. The intersection of the dash-dash
lines falls within a blue rectangle, meaning that both tuples of the search argument
have matched relevant keys. Meanwhile, the dash-dot lines intersect away from all
of the rectangles, meaning that the search failed to find a mutual match.

 318 Hardware-Defined Networking

Graphical depictions beyond two dimensions exceed my skills as an illustrator, so
you’ll have to use your imagination. That being said, there is no real limit to the
number of dimensions that may be considered when performing the multi-tuple
matches associated with ACLs.

One way to solve the ACL matching problem without using TCAMs is to perform
a series of individual lookups: one for each tuple. Each lookup returns a list of
the descriptions or identifiers of the multi-dimensional space through which the
single-dimensional search argument passes. This is repeated for all of the tuples.
It is then a matter of finding the intersection of those lists to find the one (or more)
multi-dimensional space which encapsulates all of the tuples. That space is associ-
ated with the highest-priority rule that uses that space in its specification.

Yet another method is to invert the problem and have each of the separate single-
tuple lookups return a list of all of the ACL rules that have terms that match that
specific tuple. It is then a matter of finding the intersection of the lists of rules to
find those rules that match all of the tuples.

Actions

ACL actions are simply behaviors that are associated with a rule whose terms
match the packet under consideration. The most fundamental action is: deny. The
deny action simply means, “discard this packet.” The deny action is used when
a packet is determined to be associated with a connection or application that is
deemed to be in violation of usage guidelines or may represent some kind of mali-
cious behavior.

Other actions may permit a packet to be forwarded, but may update some aspect
of the packet’s metadata or actual header field values. For example, a matching
ACL rule may raise or lower a packet’s priority. The effects of that priority change
may be purely local (meaning that it is just the packet’s metadata and the system’s
queuing behavior that are affected), or may be long-lived (meaning that the pack-
et’s priority-encoding fields are updated so that all subsequent forwarding systems
will grant the packet the same priority treatment). Other actions may specify that
a packet be copied and forwarded to a specialized traffic monitoring function for
statistical or forensic analysis.

ACLs Relative to Other Packet Processing

A forwarding system may have thousands of ACLs configured. Only a small
number of those ACLs may be associated with any particular packet. ACLs may
be associated with a packet’s receive interface, transmit interface or with any of the
forwarding domains or logical interfaces that a packet adopts as it exits and enters
various tunnels. Receive interfaces and tunnel terminations (i.e., tunnel exits) are

 Firewall Filters 319

encountered during ingress processing whereas transmit interfaces and tunnel
originations (i.e., tunnel entrances) are encountered during egress processing. If
ACLs may be associated with aspects of both ingress and egress processing, where,
exactly, should ACLs be processed?

Strong arguments can be made for three points along a typical packet forwarding
series of events:

1. Between tunnel termination and destination determination;

2. Between destination determination and tunnel origination;

3. Between tunnel origination and the transmit interface.

Figure 156 ACL Processing Placement

Receive
Interface

Tunnel
Termination

Destination
Determination

Tunnel
Origination

Transmit
Interface

ACL
processing

ACL
processing

ACL
processing

In the first position, the receive interface and all of the various forwarding do-
mains that have been associated with the packet are known, so it is a simple matter
of using those pieces of receive context information to determine which (if any)
ACLs apply to the current packet. This position is also beneficial because any of
the actions performed by the ACL function that update the packet’s metadata will
be reflected in the outcome of destination determination. For example, if an ACL
action modifies a packet’s forwarding domain, that new forwarding domain value
may be used by the destination determination process to affect the outcome.

The one major shortcoming of the first ACL processing position is that the
packet’s transmit interface is not yet known, so it is impossible to check the packet
against any ACL associated with transmit interfaces. That’s where the second
ACL processing position becomes interesting. It is positioned after destination
determination, so any actions that affect a packet’s forwarding behavior have no
value, but ACLs that are associated with transmit interfaces may be applied to the
packets.

In large forwarding systems that may have multiple packet processing functions
interconnected by some form of fabric, a cross-product scaling problem occurs
when egress-context processing is performed during ingress processing. Access
control lists whose rules specify things such as, “packets matching these criteria
must not be transmitted via interface X,” are, of course, transmit context specific.
Each transmit interface may have its own set of ACLs. If an ACL function in the
second position (which is on the ingress side of a forwarding system’s fabric),

 320 Hardware-Defined Networking

must implement ACL behaviors that are associated with transmit interfaces, then
it must have a set of ACLs for each transmit interface. In large systems, this can
be prohibitively expensive. Hence, the benefits of ACL processing at the third
position.

Of course, the same cross-product scaling issues exist at the third ACL processing
position if those ACL functions are expected to implement ACLs that are associ-
ated with receive interfaces. In practice, it is common for forwarding systems to
have the ability to execute ACL behaviors at all three of the points shown in Figure
156 on page 319.

19 Routing Protocols

With the exception of the discussion on transparent bridging’s source address
learning behavior, little has been said about out how forwarding databases get
their contents. How exactly does a group of largely independent forwarding
systems cooperate to determine the structure of the network to which they are at-
tached and how are optimal paths through that network computed? This is where
routing protocols come in.

While the so-call forwarding plane of a forwarding system is responsible for the
packet-by-packet operation of a network, the routing protocols running in a
forwarding system’s control plane are responsible for the moment-to-moment
operation of a network: determining a network’s topology and reacting to changes
as links or systems fail, are removed from a network or are added to a network,
and building and maintaining the contents of the forwarding databases to reflect a
network’s current topology and best forwarding choice for each destination.

The discussions that follow are arranged in an order that show the progression
from the early days of the Internet, where simple and effective was good enough,
to today’s Internet where scale and stability are vital.

Routing Information Protocol (RIP)

The routing information protocol is the original routing protocol for the Internet.
RIP is known as a distance-vector routing protocol. What this means is that it
attempts to minimize the number of hops when forwarding packets from a source
endpoint to a destination endpoint. RIP supports a maximum of 15 hops. If a
route to a destination is advertised as requiring 16 hops, it is interpreted as being
infinite and, hence, unreachable via the path that is advertising that distance.

RIP operates in a distributed fashion, therefore there is no centralized intelligence
or controller that coordinates the behavior of the protocol or the network. Each
node in a network running RIP advertises the distance from it to all of the other
nodes in the network. The distance is measured in units of hops. Each router along
a path from the current node to the advertised destination node counts as a hop.

In virtually all networks of any significant scale and complexity, there are multiple
possible paths from any node to any other node. It is the job of the distance-vector
algorithm to find the shortest path from among all of the possible paths.

 322 Hardware-Defined Networking

Distance-Vector Algorithm
The following series of figures (Figures 157 –162) and their accompanying de-
scription walk through a simple example that illustrates the fundamentals of the
distance-vector algorithm.

Figure 157 Distance-Vector Algorithm Example, Step 1

A

a a

b

b

c

c

0 2,b 3,c
A B C

2 3

20

cost to

as
reported

by
- - -
-

A
B
C - -

B C

- - -
A B C

cost to

as
reported

by
2,a 0 20,c
-

A
B
C - -

- - -
A B C

cost to

as
reported

by
- - -

3,a

A
B
C 20,b 0

In the first step of processing, each router determines the distance to each of its
directly-accessible neighbor nodes. For example, router A’s table shows that,
according to its own determination, it has a distance of 2 to router B via interface
b and 3 to router C via interface c. Of course, the cost to itself is zero. Similar
determinations are made by routers B and C.

Once all of the routers have made these simple determinations, they share their
distance-vector information with all of the routers that they’re aware of. This is
shown in Figure 158.

Figure 158 Distance-Vector Algorithm Example, Step 2

A

a a

b

b

c

c

0 2,b 3,c
A B C

2 3

20

cost to

as
reported

by
2 0 20
3

A
B
C 20 0

B C

0 2 3
A B C

cost to

as
reported

by
2,a 0 20,c
3

A
B
C 20 0

0 2 3
A B C

cost to

as
reported

by
2 0 20

3,a

A
B
C 20,b 0

 Routing Protocols 323

At this point, all of the routers have received distance vector information from
all of the other routers. Each router now goes through and optimizes its distance
computations. Router B, for example, initially assumes that its best route to C is
via interface c at distance of 20. However, A is reporting that it is just 3 hops from
C, and B knows that it can get to A in 2 hops. The total distance to router C via
router A is 5, which is less than its current working value of 20. Hence, router B
updates its forwarding database to favor interface a (with a distance of 5) when
forwarding packets to C. The updates to the distance-vector tables are shown in
Figure 159.

Figure 159 Distance-Vector Algorithm Example, Step 3

A

a a

b

b

c

c

0 2,b 3,c
A B C

2 3

20

cost to

as
reported

by
2 0 20
3

A
B
C 20 0

B C

0 2 3
A B C

cost to

as
reported

by
2,a 0 20,c

5,a

5,a
3

A
B
C 20 0

0 2 3
A B C

cost to

as
reported

by
2 0 20

3,a

A
B
C 20,b 0

Notice that router A did not need to make any changes to its distance-vector table
because it already had the shortest paths in its forwarding database. Finally, the
newly computed cost values are distributed to all of the other nodes so that all of
the routers have a consistent view of the network. This is shown in Figure 160.

Figure 160 Distance-Vector Algorithm Example, Step 4

A

a a

b

b

c

c

0 2,b 3,c
A B C

2 3

20

cost to

as
reported

by
2 0 20
3

A
B
C 20 0

B C

0 2 3
A B C

cost to

as
reported

by
2,a 0 5,a

5
3

A
B
C 20 0

0 2 3
A B C

cost to

as
reported

by
2 0 20

3,a

A
B
C 5,a 0

5

5

 324 Hardware-Defined Networking

One of the weaknesses of the distance-vector algorithm upon which RIP is based
is its slow convergence times when changes to the network topology occur. Let’s
consider what happens when the hop count from router A to router B increases
from 2 to 40, as shown in Figure 161.

Figure 161 Distance-Vector Algorithm Example, Step 5

A

a

40

a

b

b

c

c

0 2,b 3,c
A B C

2 3

20

cost to

as
reported

by
2 0 5
3

A
B
C 5 0

B C

0 2 3
A B C

cost to

as
reported

by
2,a 0 5,a
3

A
B
C 5 0

0 2 3
A B C

cost to

as
reported

by
2 0 5

3,a

A
B
C 5,a 0

With the increase in the distance from A to B from 2 to 40, router A must update
its cost table to reflect this change.

Figure 162 Distance-Vector Algorithm Example, Step 6

A

a

8,c

8

a

b

b

c

c

0 2,b 3,c
A B C

40 3

20

cost to

as
reported

by
2 0 5
3

A
B
C 5 0

B C

0 2 3
A B C

cost to

as
reported

by
2,a 0 5,a
3

A
B
C 5 0

0 2 3
A B C

cost to

as
reported

by
2 0 5

3,a

A
B
C 5,a 0

(To keep the example simple, let’s just concentrate on the interactions between
routers A and C.)

In Figure 162, router A is shown updating its cost from itself to B from 2 to 8
instead of from 2 to 40. Why doesn’t A adopt the new direct distance cost from A
to B of 40? The reason for this is, according to the information in router A’s table,
A can get to C with a cost of 3 and that C can get to B with a cost of 5. Hence, the
total cost from A to B is 8 via c. This value is also propagated to router C.

 Routing Protocols 325

Router C reacts to this update by computing new lowest-cost paths. It determines
that it can get to router A with a cost of 3 and that router A can get to B with a cost
of 8. Therefore, router C’s new cost for getting to B is 11. Of course, this new cost
is propagated to router A, and the cycle continues until, eventually, the computed
cost from C to B via A exceeds 20 and router C realizes that its direct connection
to B is the shortest path and router A realizes that its shortest path to B is via C
with a cost of 23.

This slow, incremental convergence is known as the “count to infinity” problem.
The solution to the count to infinity problem is called “poison reverse.” If a
router—router A in our example—must advertise an indirect route to a destina-
tion (e.g., reaching directly-attached B via the route: C-to-B), then A advertises its
distance to B as infinity, instead of 8. This causes C to immediately adopt the direct
route to B with a cost of 20, and the count to infinity cycle is avoided.

Perhaps the most attractive aspect of RIP is its simplicity. It requires no configura-
tion since all of the costs are simply the directly-measured hop counts from one
router to the next. RIP will always come up with short, efficient routes between
any accessible pair of routers.

Unfortunately, RIP can be very slow to converge and it doesn’t scale well to large
networks—it is limited to a maximum of 15 hops. Hence, as the Internet grew, re-
placements for RIP were sought and, now, RIP is largely obsolete. One of the first
new routing protocols that was developed to replace RIP was the open shortest
path first (OSPF) protocol.

Open Shortest Path First (OSPF)

In networking, one of the most effective and most commonly-used techniques for
increasing the scale of a network is to introduce hierarchy. As the Internet grew,
this is exactly what was done. This hierarchy was introduced in the form of Au-
tonomous Systems (ASs). An autonomous system is defined by IETF RFC 1930 as
“a connected group of one or more IP prefixes run by one or more network opera-
tors which has a single and clearly defined routing policy.” An autonomous system
may (and usually does) span multiple IP routers. A single IP router may support
multiple autonomous systems. The important criterion is that the collection of IP
prefixes are administered under a single routing policy; meaning that the routers
within an autonomous system exchange reachability and routing information with
one another in accordance with the relevant routing policy. Autonomous systems
are identified by their autonomous system number (ASN): a globally unique num-
ber assigned by the Internet Assigned Numbers Authority (IANA).

The OSPF protocol operates exclusively within an autonomous system. OSPF is
designated as an interior gateway protocol (IGP) owing to its domain residing
entirely within an autonomous system. Exterior gateway protocols, by contrast,
serve to establish routes and operate between autonomous systems.

 326 Hardware-Defined Networking

OSPF is a link-state protocol as compared to the distance-vector behavior of RIP.
In a nutshell, link-state routing relies on every node maintaining its own complete
map of the network (i.e., the autonomous system) and independently determining
the best paths to every other node in the network. The only routing information
that is shared between routers pertains to reachability and costs to neighbor nodes.
Reachability information (i.e., the identity of the node providing the information
and a list of all of its directly attached nodes) is shared with all of those directly-
attached nodes. Those nodes, in turn, forward the information to all of their
directly-attached neighbors (except, of course, to the neighbor that supplied the
information so as to avoid loops). Eventually, every node in the network has re-
ceived neighbor connectivity information from all of the other nodes. When build-
ing its complete map of the network, a node only considers a link between two
nodes to be valid if both ends of the link have reported each other to be neighbors.
Once a node has assembled its network map from all of the individual reports, it’s
then just a matter of determining the best paths through the network so that when
any node needs to forward a packet to any particular other node, it can choose the
packet’s best next hop while being confident that the chosen next hop router will,
in turn, choose its best next hop.

Each node operates independently in using its network map information to deter-
mine the best paths through the network. Each must compute what is known as a
shortest-path tree. Meaning, a node doesn’t need to compute the best paths from
every node to every other node, it must only compute the paths from itself to every
other node; a tree, in other words. This independence of action also means that
each node may use a different algorithm to find the shortest paths without com-
promising interoperability. Generally, some variant of Dijkstra’s algorithm is used.

Dijkstra’s Algorithm
Figure 163 shows a simplified map of the freeways of the San Francisco Bay Area.
This map will serve as a useful example for how Dijkstra’s algorithm quickly finds
the best route from a starting point to an ending point.

The lettered black dots represent freeway interchanges and are analogous to
network routers. The gray lines between the black dots are, of course the freeways,
and the numbers represent the travel time from interchange to interchange. The
travel times are a function of distance and speed. Some of the paths that appear
physically shorter than others may have longer travel times due to congestion. For
this example, we’ll summarize travel distances and times simply as costs.

 Routing Protocols 327

Figure 163 Dijkstra’s Algorithm Example Map

Start

A
2

8

3

4

37

4

5

5

5 2

2
5

9
9

8

5

12

C

B

D

F

E

G H

J

K
End

The first thing that is done according to Dijkstra’s algorithm is to build a priority
list of all of the nodes, sorted by the known total cost of the best path to each
node. The Start node has a map of all of the nodes and their node-to-node costs,
but it hasn’t yet determined the costs of the best paths. Hence, those costs are
initially set to infinity; except the cost to Start, which is known in advance to be
zero. Each entry in the list of nodes holds the name of the node, its best-path cost,
and the immediate upstream node in the best path to the current node. The initial
list, or first step, is shown in Figure 164.

Figure 164 Dijkstra’s Algorithm Example, Step 1

Start 0 -
C ∞ -
F ∞ -
A ∞ -
G ∞ -

End ∞ -

K ∞ -
J ∞ -
B ∞ -
D ∞ -
E ∞ -
H ∞ -

 328 Hardware-Defined Networking

In the initial state, all of the costs are set to infinity and there are no route records.
The Start node is at the top of the priority queue because it has the lowest cost:
zero. The remaining nodes are sorted arbitrarily in the queue.

Figure 165 Dijkstra’s Algorithm Example, Step 2

Start 0 -

C ∞ -
F ∞ -

A 2 Start

G ∞ -
End ∞ -

K ∞ -
J ∞ -
B ∞ -

D 8 Start

E ∞ -
H ∞ -

In Step 2, the costs to the nodes that are directly attached to Start are checked.
They are A and D and they have costs of 2 and 8, respectively. This determination
accomplishes two things. First, it completes our work with Start, so it is moved to
a “completed” list. Second, now that we have costs to A and D, we can re-sort the
priority queue. Notice also that A and D are marked with Start as the node that
immediately preceded them. This is their route record. Since A is now at the top
of the queue, we look at the nodes to which it is directly attached (excepting Start,
because it is in the completed list).

Figure 166 Dijkstra’s Algorithm Example, Step 3

Start 0 -

C 14 A
F ∞ -

A 2 Start

G ∞ -
End ∞ -

K ∞ -
J ∞ -B 10 A

D 8 Start

E ∞ -
H ∞ -

In Step 3, we examine the exit routes from A and determine the total costs to
nodes B and C—A’s directly attached nodes. Since we’re looking for the total cost,
the costs to B and C through A must include the cost from Start to A. These new
costs allow us to re-sort the queue and to move A to the completed list since we’ve
examined all of the paths that lead out of A. Notice that D is now at the top of the
queue. Thus, that is the next node to be examined. Remember, we want to open
the shortest (i.e., lowest cost) paths first.

 Routing Protocols 329

Figure 167 Dijkstra’s Algorithm Example, Step 4

Start 0 -

C 13 D
F 11 D

A 2 Start

G ∞ -
End ∞ -
K ∞ -

J ∞ -B 10 A
D 8 Start

E ∞ -
H ∞ -

An interesting thing happened in Step 4. A lower-cost route to C was found
through D (total cost 13) compared to the original measurement of 14 through
A, hence its backward-facing pointer is changed from A to D. The entries for F
and C are updated accordingly and the queue is re-sorted. Also, D is moved to the
completed list. Next, we examine the routes leaving B, the node at the top of the
priority queue.

Figure 168 Dijkstra’s Algorithm Example, Step 5

Start 0 -
C 13 D
F 11 DA 2 Start

G 17 B
End ∞ -
K ∞ -
J ∞ -

D 8 Start
E ∞ -
H ∞ -B 10 A

In Step 5, we’ve completed work on B and determined the total cost to G. Though
C is also directly connected to B, its entry wasn’t updated because its existing total
cost is lower than the total cost through B.

Figure 169 Dijkstra’s Algorithm Example, Step 6

Start 0 - C 13 DA 2 Start

G 17 B

End ∞ -
K 20 F

J ∞ -

D 8 Start
E 15 F

H ∞ -
B 10 AF 11 D

In processing F in Step 6, we determine the total costs to E and K. C has the lowest
total cost, so that’s up next.

 330 Hardware-Defined Networking

Figure 170 Dijkstra’s Algorithm Example, Step 7

Start 0 -A 2 Start
G 17 B

End ∞ -
K 20 F

J ∞ -

D 8 Start
E 15 F

H ∞ -

B 10 AF 11 DC 13 D

C is directly connect to A, B, D and E. A, B and D are on the completed list, so only
E is of interest. However, the total cost to E through C is higher than the E’s current
cost measurement, so no changes are made except that C is moved to the completed
list. Next up: E.

Figure 171 Dijkstra’s Algorithm Example, Step 8

Start 0 -A 2 Start G 17 B
End 18 E
K 20 F
J ∞ -

D 8 Start

H ∞ -

B 10 AF 11 DC 13 DE 15 F

In Step 8, we’ve measured the cost to the End node for the first time since E is con-
nected to End. However, its total cost doesn’t bring End to the top of the priority
queue, so we’re not quite done since it is possible that a lower-cost route still exists.

Figure 172 Dijkstra’s Algorithm Example, Step 9

Start 0 -A 2 Start End 18 E
K 20 F

J ∞ -

D 8 Start

H 22 G

B 10 AF 11 DC 13 DE 15 FG 17 B

In Step 9, the End node has percolated to the top of the priority queue. Once that
happens, there is no point in examining any of the other nodes or routes since they
are all guaranteed to have a higher cost. The final step is to simply work backwards
from the End node to determine the path of the shortest route. That is illustrated in
the final step, Figure 173. Notice how End points to E, E points to F, and so on.

Figure 173 Dijkstra’s Algorithm Example, Step 10

Start 0 -

End 18 E

D 8 Start
F 11 D
E 15 F

 Routing Protocols 331

The path list shown in Figure 173 is the route shown in the map in Figure 174.

Figure 174 Dijkstra’s Algorithm Example Map Best Route

Start

A
2

8

3

4

37

4

5

5

5 2

2
5

9
9

8

5

12

C

B

D

F

E

G H

J

K
End

Now, even though the Start node knows the entire path for the shortest route
to the End node, it only uses the path to D (i.e., the next hop) in its forwarding
database instead of storing the entire list of nodes. It is possible to forward the
packet only by its immediate next hop because all of the other nodes (i.e., routers)
in the network have come to the same answers and have set up their forwarding
database to forward to what is, from their perspective, the next hop on the best
path to the End node.

OSPF’s Forwarding Protocol Dependency
OSPF was invented before the advent of IPv6 and was, therefore, intimately tied to
IPv4. The OSPF messages are carried directly on top of IPv4 headers without using
an intermediate layer such as UDP. Also, the OSPF messages are IPv4-specific (e.g.,
32-bit addressing, etc.). Thus, when IPv6 was developed, a new version of OSPF
had to also be developed. As a consequence, there are two separate IETF RFCs for
OSPF: RFC 2328 for IPv4 and RFC 5340 for IPv6.

Given the close ties between OSPF and the version of IP upon which it runs, updat-
ing the protocol to support a new forwarding protocol was a major undertaking.
IS-IS, on the other hand is a Layer 2 protocol and is agnostic of the kind of for-
warding protocol to which it is applied.

 332 Hardware-Defined Networking

Intermediate System to Intermediate System (IS-IS)

At first glance, IS-IS (pronounced “eye ess, eye ess”) is largely the same as OSPF.
Both are link-state protocols that use Dijkstra’s algorithm (or a variant thereof).
Both operate within Autonomous Systems. And both are classified as interior
gateway protocols. However, the differences are certainly noteworthy.

IS-IS was standardized by ISO/IEC (as 10589:2002) as opposed to being standard-
ized by the IETF as most Internet-related protocols are. Because it was standard-
ized outside of the primary Internet standards organization, it takes great pains to
be protocol agnostic. Through type-length-value (TLV) structures it can perform
routing for virtually any routable forwarding protocol. It can also convey its mes-
sages by virtually any Layer 2, connectionless forwarding protocol.

IS-IS operates at Layer 2; meaning, the IS-IS messages are carried directly on top of
an Ethernet packet. These are the old-school 802.3 Ethernet packets rather than
the more common Ethernet v2 packets. IS-IS is identified as an Ethernet packet’s
payload by the LSAP value 0xfefe. Because IS-IS operates over Ethernet (or any
other Layer 2 protocol such as ATM), it cannot be routed and an IP router will not
forward IS-IS messages. This helps to enforce the hop-by-hop nature of its behav-
ior and protects it from certain kinds of route spoofing.

IS-IS introduces some hierarchy within an Autonomous System through the defini-
tion of “areas.” An IS-IS router can be designated to operate at one of three levels:

 � Level 1: intra-area;

 � Level 2: inter-area;

 � Level 1-2: both intra-area and inter-area.

Level 1 routers can exchange information with other Level 1 routers that operate
within the same area. Level 2 routers can exchange information with all Level 2
routers within the same Autonomous System. The Level 1-2 routers act as gate-
ways between the various areas (i.e., Level 1 domains) and Level 2. Hence, level
1-2 routers operate at both Level 1 and Level 2. This strict delineation of relation-
ships between routers makes IS-IS simpler in comparison with OSPF.

IS-IS is “less chatty” than OSPF. Meaning, it requires fewer messages be
exchanged between routers. This makes it more suitable for particularly large
networks.

And a final little tidbit: IS-IS is also used for IEEE 802.1aq Shortest Path Bridging
(SPB).

 Routing Protocols 333

Border Gateway Protocol (BGP)

BGP is what’s known as an exterior gateway protocol. What that means is that it
is intended to perform the routing between Autonomous Systems. In other words,
it is the protocol that glues together the worldwide Internet. The current version of
BGP (version 4) is specified by IETF RFC 4271 and has been in use on the Internet
since 1994. While BGP is strongly associated with routing between autonomous
systems, it is not limited to that role; BGP can also be used within an autonomous
system as an interior gateway protocol. In this role, it is often referred to as iBGP.
To avoid confusion, BGP operating as an exterior gateway protocol is referred to
as eBGP.

BGP is a path-vector protocol as opposed to a link-state protocol. A path-vector
protocol reports the complete path taken from an advertising BGP router to the
current BGP router. How this is done is quite simple. When a BGP router adver-
tises the IP address prefixes (i.e., subnets) that are reachable within it, it sends
that advertisement message to all of the other BGP routers to which it is directly
connected. These directly-connected BGP routers append their Autonomous
System Numbers (ASNs) to the message and then forward the advertisement on
to their directly attached BGP routers. Eventually, the current router—the one
whose perspective of the network that we are considering—receives a copy of the
advertisement from that original BGP router that had something to report from all
possible paths through the network. Hence, the current router has information on
all possible paths from itself to a particular IP subnet. The best path is the one with
the fewest hops.

A distance-vector protocol (as used by RIP) bears some similarity to a path-vector
protocol in that the number of hops is used to rank all of the possible paths. The
key difference is that a distance-vector protocol reports each node’s neighbors and
the cost to reach them whereas a path-vector protocol reports all of the paths to
each possible BGP router.

Another unique characteristic of BGP is that TCP connections (port 179) are used
to exchange information between BGP routers. Since each TCP connection is a
point-to-point connection, a full mesh of TCP connections is required. In other
words, a network of 500 BGP routers requires each router to maintain 499 TCP
connections. These connections, plus the very large and detailed route database
means that BGP routers must have significant compute and storage capacities.

BGP supports dual-homed attachments. If a customer’s BGP edge router is at-
tached to two service providers’ networks, it will not advertise routes that connect
those two service providers networks together. Therefore, both service providers
can communicate with that customer’s network, but the service providers cannot
communicate with one another via that customer; they must find a different route
to do so.

 334 Hardware-Defined Networking

One of the side effects of the large route databases and manually configured TCP
connections between BGP routers is that there are lot of opportunities for fine tun-
ing the behavior of the network through administratively-assigned policies. These
policies may be related to peering agreements between service providers, to the
reliability and availability along certain paths, or whatever strikes the fancy and
captures the imagination of the network administrators.

20 Forwarding System Architecture

Modern forwarding system architectures generally follow a common pattern
where the system is neatly divided into three mostly-independent subsystems that
are often referred to as planes: the control plane, the data plane, and the forward-
ing plane. The control plane is generally implemented entirely in software and is
responsible for running the routing protocols and managing the contents of the
forwarding databases and other system processes. The data plane is responsible
for communicating with the Layer 2 media access controllers (Ethernet, usually),
buffering and queuing packets, and delivering packets from device to device in
multi-device systems. Forwarding planes come in many forms. A purely software-
based forwarding system may implement both the data plane and forwarding
plane in software or it may have specialized hardware for managing buffering
and queuing while relying on software for algorithm-intensive packet processing.
The next step up in performance and efficiency is a sea of specialized micro-coded
engines. These engines have instruction sets that are optimized for the kinds of bit
vector extractions and manipulations that are typical in packet processing applica-
tions. For the ultimate in packet processing performance and efficiency, a pipeline
is typically used. However, before delving into the details of these various options,
it is helpful to take a look at how a forwarding system can be broken down into
its most essential elements. Figure 175 shows these elements and illustrates their
relationships.

Figure 175 Forwarding System Architecture Building Blocks

Ingress QueuingEthernet MACs Ethernet MACs
(fabric)

packet

ingress

packet packetpacket packet

headers headers

(receive) (transmit)(optional)

Egress Queuing

Ingress Processing Egress Processing

headers headers

egress

From left to right in Figure 175, a packet is received from an Ethernet MAC and
is split to follow two distinct paths. The packet’s headers are delivered to ingress
packet processing while the remainder of the packet (the payload bytes) are

 336 Hardware-Defined Networking

delivered to the ingress queuing system. Once ingress packet processing is done
with the headers, those headers (which may be modified) along with some perti-
nent metadata are delivered to the ingress queuing system where they rejoin the
packet’s payload bytes and are enqueued to await an opportunity to be transferred
to egress processing.

The fabric connection between the ingress and egress can either be an actual chip-
to-chip packet- or cell-based fabric system, or it may simply be a convenient way
to delineate the ingress and egress realms of a single-chip forwarding system. In a
single-chip system, ingress and egress queuing may be combined.

Once across the fabric, the packet enters the egress queuing system. This system
is optional for certain data path architectures. As in the ingress side of things, the
packet’s header and payload take separate paths to the Ethernet MACs, with the
headers making a detour through egress packet processing.

There are, of course many variations of the theme described above, but Figure
175 serves as a useful template and as a basis for discussion. The remainder of this
chapter is broken down into two main sections: Forwarding Plane and Data Plane.

Forwarding Plane

Regardless of the protocols involved or the details of the architecture of a forward-
ing system, the operations of the forwarding plane (i.e., packet processing) can be
broken down into three main phases:

 � Tunnel decapsulation

 � Forwarding

 � Tunnel encapsulation

Most packet forwarding scenarios involve the termination of tunnels. The tunnels
that must be terminated are addressed to the current forwarding system by the
header that corresponds to the to-be-terminated tunnel. The information in each
terminated tunnel is used to update a packet’s forwarding domain and receive
interface metadata: updates that can influence the further work that must be done.
All of the encapsulating headers that precede the packet’s forwarding header must
be processed before the forwarding header may be processed.

The forwarding phase examines the first header (from the start of the packet) that
does not correspond to a terminating tunnel (i.e., it isn’t addressed to the current
forwarding system). It is the forwarding phase that determines how, and to where,
a packet must be forwarded. In a multi-chip forwarding system, that determina-
tion also yields the identity of the chip that is associated with the packet’s intended
transmit port. Thus, the packet must be addressed to that chip when it crosses the
chip-to-chip fabric.

 Forwarding System Architecture 337

Since tunnel decapsulation must be completed prior to forwarding, and forward-
ing must be completed prior to reaching the fabric, it makes sense to group tunnel
decapsulation and forwarding together on the ingress side of the forwarding
system. This leaves tunnel encapsulation to reside in egress processing.

Placing tunnel encapsulation in the egress side of a forwarding system isn’t just a
default or arbitrary choice. It is actually quite beneficial to perform egress process-
ing close to the transmit interfaces. Consider ECMP (equal-cost, multi-path).
With ECMP, the same destination is reachable via multiple paths. This means that
a series of packets addressed to, say, the same IPv6 destination address may be
transmitted by a number of different physical ports residing on multiple chips in a
multi-chips system. Each path and transmit port may have its own particular tun-
nel encapsulation requirements. In other words, a packet being transmitted by one
port may just require a simple Ethernet + VLAN encapsulation whereas another
may required Ethernet + VLAN + MPLS. By placing the tunnel encapsulation
processing and its associated databases close to the transmit ports, those databases
may be optimized to only hold entries that pertain to the transmit interfaces as-
sociated with the egress chip. This, of course, requires that tunnel encapsulation
operations be located in the egress side of a forwarding system.

With that brief introduction out of the way, let’s dive into some of the details.

Code vs. Pipelines
The trade-off between code (i.e., microprocessors or micro-coded engines) and
pipelines is that of flexibility vs. efficiency. With sufficient code storage resources,
a code-based packet processing function is infinitely flexible. Pretty much any
packet handling algorithm that can be imagined can be implemented. Unfortu-
nately, that flexibility comes at a price.

The efficiency of a piece of silicon is a function of the number of data movements
that are required to accomplish a net amount of work. With a code-based packet
processing implementation, every operation involves the movement of instructions
from some kind of instruction storage to the execution unit, and most instructions
require the movement of data to or from storage, or to or from (or to and from)
some kind of arithmetic logic unit. All of this data movement requires a lot of ac-
tive logic gates and wires, which increases the area and power penalties relative to
a pipeline architecture.

A pipeline, on the other hand, does not need to fetch instructions since the expect-
ed behavior is hardwired (in the most extreme cases) into each stage of the pipeline
itself. A pipeline can be thought of as being like an assembly line. An assembly line
has a number of stations along some form of conveyor. The item being worked on
(i.e., a packet’s set of headers) is moved from station to station, and each station
performs work that is specific to that station; each has easy and ready access to
whatever tools or resources that are required. A code-based implementation is

 338 Hardware-Defined Networking

more akin to a solitary craftsman toiling away and performing every operation
required to get the job done. Performance can be scaled by having a lot of crafts-
men working in parallel on separate instances of the job at hand, but that model
can never achieve the efficiency of an assembly line.

Of course, an assembly line that is designed to build cars may not be well suited to
building, say, mobile phones. Therein lies the principle shortcoming of pipelines:
inflexibility. However, pipelines can be designed with a high degree of configu-
rability (within certain limits).

Another interesting characteristic of the relative efficiencies of pipelines versus
processors is how their performance varies with the amount of work that must be
performed per packet. This is illustrated in Figure 176.

Figure 176 Incremental Performance of Pipelines vs. Processors

workload per packet

pipeline

processor

performance

What’s happening in Figure 176 is that the processor’s performance is degrading
continuously as more and more features and options are enabled on a per-packet
basis. This should be intuitive since a processor must execute more instructions
to get more work done, and there’s some unit of time consumed for each of
those instructions. A pipeline, on the other hand, can tend to have a certain time
to completion for the simplest possible packet forwarding scenario that can be
maintained as more and more features and options are enabled. However, at some
point an additional feature is going to require that a packet perform two opera-
tions for which the pipeline is designed to handle just one. This will require some
kind of looping or recirculation (i.e., sending the packet through some or all of
the pipeline a second time). Hence the step function of decreasing performance as
more and more features and options are enabled. Despite the quantum changes in
pipeline behavior, it achieves higher performance and is more efficient than a code-
based implementation for any particular workload.

 Forwarding System Architecture 339

Tunnel Decapsulation
Packets are best processed layer by layer. Some shortcuts may be possible here
and there, but a methodical approach is at least a good conceptual starting point.
Generally, each header—as encountered in sequence from the start of the packet—
identifies the subsequent header. Thus, if the outermost header type is known, that
header can identify the next header and so on. This is the basis of header parsing.
Once a header’s type is known, its contents (i.e., its fields) may be extracted and
examined.

Headers fall into two broad categories: forwarding and non-forwarding. Exam-
ples of forwarding headers include Ethernet, IPv6, and MPLS. Examples of non-
forwarding headers include VXLAN and GRE. Tunnels must be associated with a
forwarding header and may be supplemented by a non-forwarding header. For a
forwarding system to terminate a tunnel, that tunnel’s header must be addressed
to the forwarding system. In other words, the header’s destination addressing
information must match the address of one of the forwarding entity instances of
the corresponding type. For example, to terminate an Ethernet tunnel, an Ethernet
header’s destinationAddress value must match the MAC address of one of the
instances of an Ethernet forwarding entity.

When a successful address match is made, information from the tunnel’s header is
used to update certain metadata attributes of the packet. For example, the header’s
destination address value in combination with the packet’s current forwarding
domain serves to identify a specific forwarding entity. In concrete terms, what that
means is that the tunnel header’s destination address and forwarding domain serve
to define the packet’s new forwarding domain for use with the next header in se-
quence. Similarly, the tunnel header’s source address information serves to update
the packet’s receive interface identity. This is particularly useful when terminating
a tunnel that exposes an Ethernet header as the packet’s forwarding header since
Ethernet bridging demands that a receive interface be associated with each learned
MAC sourceAddress value.

Once a tunnel’s header has been terminated, it may be safely removed from the
packet. This process is known as decapsulation. One important caveat here,
though: the tunnel headers may provide useful search argument material for access
control list (ACL) processing.

Forwarding
At some point in the header processing sequence, a header will have a destination
address value that does not correspond with any addresses configured for any of
a forwarding system’s forwarding entities. In other words, the destination address
does not indicate that a tunnel must be terminated within the current forwarding
system. This header is the packet’s forwarding header and it informs the current
forwarding system of the packet’s destination. The destination encoded in the

 340 Hardware-Defined Networking

forwarding header may not be the packet’s ultimate destination; it may just be the
remote exit point of some tunnel. But, as far as the current forwarding system is
concerned, the forwarding header is to be used as the basis for making a forward-
ing decision.

A forwarding decision usually entails two distinct operations. The first is to resolve
the addressing information to a destination identifier that is meaningful within the
context of the forwarding entity that is forwarding the packet. The second opera-
tion is to use that destination identity to determine what the packet’s next hop is
and how to get there.

Destination Resolution

A packet’s forwarding destination is typically resolved by combining the forward-
ing header’s destination address value with the packet’s current forwarding
domain to form a contextually-unique search argument. This search argument
is submitted for a search into the forwarding system’s forwarding database. A
search that is successful (i.e., a matching key is found) returns a mix of destination-
specific information and, optionally, next-hop-specific information.

Destination-specific information may include any number of instructions or at-
tributes associated with the matching forwarding database key that can be used to
update aspects of the packet. These aspects may include quality-of-service values,
time-to-live handling and more. At a minimum, a successful search simply returns
an index value that corresponds to the matching key.

Failed searches (i.e., no matching key found) are also interesting. Different for-
warding protocols have different expectations for how to handle a failed destina-
tion resolution search. Ethernet bridging, for example, stipulates that the packet
must be flooded to all available transmit interfaces within the current forwarding
domain, while IP generally allows for a default route. A failed search may also
return next-hop-specific information.

Next Hop Determination

Any forwarding entity that is forwarding a packet that is a payload of some kind
of tunnel-encapsulation packet isn’t necessarily forwarding the packet to its
ultimate destination (i.e., the endpoint or tunnel exit identified by the forwarding
header’s destination address value). Instead, that forwarding system is simply
striving to get the packet to the next hop on the packet’s path to its ultimate
destination.

The number of possible ultimate destinations may number in the billions. Mean-
while, the number of next hops to which a packet may be forwarded may number
in the dozens or hundreds. Thus, there is a lot of sharing going on; a lot of separate
destinations may share a common next hop.

 Forwarding System Architecture 341

The next-hop-specific information returned from a successful search operation
may specify such things as the kinds of tunnel encapsulations that are required
and, at a minimum, the transmit interface to use to transmit the packet toward its
next hop.

Next hop determination must account for equal-cost, multi-path (ECMP)
requirements. ECMP inverts the observation that a lot of destinations may share
a common next hop. ECMP implies that a single destination may have multiple,
equally-suitable next hops, only one of which is chosen for each packet.

Link aggregate group (LAG) behavior must also be considered during next hop
computations. Since LAGs operate at the link layer and it is expected that all of the
links in a LAG terminate at the same next hop, the actual next-hop determination
is the same regardless of the link choice made within the LAG. However, since a
LAG’s links may be spread across multiple chips in a large forwarding system, it is
incumbent upon ingress processing to resolve the LAG selection before the packet
is forwarded to the egress chip. Thus, ECMP and LAG path selections are, ideally,
both resolved by actions within the same general processing function.

Once a packet’s next hop has been identified and the packet’s transmit interface
has been chosen, tunnel encapsulation processing must follow a series of inevitable
steps to prepare the packet for transmission.

Tunnel Encapsulation
Tunnel encapsulation is, essentially, the reciprocal of tunnel decapsulation.
Specifically, new headers are added to the packet for each tunnel that the packet
must enter at the current forwarding system. Unlike tunnel decapsulation, tunnel
encapsulation does not depend upon querying large databases using the address-
ing information contained within headers. Instead, the next-hop determination
made according the description above provides the encapsulation process with the
starting point that tunnel encapsulation requires.

In the egress part of the packet processing process, what is encountered is a series
of converging tree structures. Meaning, while there is a sequencing that is required
to lead from one encapsulating header to the next, the sequencing is generally
unconditional. A number of initial starting points may share a common next node
in the tree. Several sibling nodes at the same level of hierarchy may, in turn, share a
common next node. And so on. For the tunnel encapsulation process, it is a simple
matter of following this converging path through a tree structure.

Each new encapsulating header must be populated with addressing and other
information. The destination address information is directly related to the identity
of the next hop determined during ingress processing. So, as the converging tree
structure is followed, each node’s identity is related in a many-to-one fashion (i.e.,
many nodes sharing a common address value) with a destination address value
that is appropriate for the header type and its place in the sequence of headers.

 342 Hardware-Defined Networking

Source address values for each header must generally point to the current forward-
ing entity. Again, the current node in the tree structure is related in a many-to-one
fashion with a source address value.

Of course, other aspects of each new encapsulating header must be managed cor-
rectly. Quality of service markings and time-to-live values must be set according to
rules that are appropriate for each tunnel being entered. Each packet has a traffic
class value as part of its metadata that indicates the priority level of the packet.
However, each tunnel instance may have its own encoding requirement for map-
ping an abstract traffic class value to a concrete priority code point in a header.
Similarly, tunnels may manage their time-to-live values in either a transparent or
opaque manner. This means that the identity of each tunnel (as inferred from the
converging tree node that corresponds with the tunnel) is associated with the rules
for time-to-live value management. Generally, for opaque tunnels, the time-to-live
value of the payload is ignored and the new tunnel header’s time-to-live value is
set to its maximum allowed value, and, for transparent tunnels, the time-to-live
value of the new tunnel header is set equal to the time-to-live value of the tunnel’s
payload header. (It is presumed that the forwarding header’s time-to-live value is
decremented prior to the start of the tunnel encapsulation process.)

Data Plane

The data plane of a forwarding system connects the outside world (i.e., the
system’s network interfaces) to the forwarding and control planes, and it intercon-
nects the various separate chips that are used to build a forwarding system.

Packets vs. Cells
The packet forwarding chips (often referred to as PFEs, for packet forwarding en-
gines) typically fall into one of two broad data plane categories. These categories
describe the means by which PFEs within a single multi-chip forwarding system
communicate with one another across an interconnection fabric. There are packet-
based PFEs and cell-based PFEs.

With a packet-based PFE, all of its external interfaces are packet interfaces such as
Ethernet. Thus, when building a multi-chip system, these packet-based interfaces
are used to interconnect the chips. The benefit of this approach is that a standards-
based interface is used, so there’s one less thing to invent and make work. Packet-
based fabrics also have generally good latency characteristics because the transfer
of a packet from one chip to another across the fabric is not negotiated in advance;
the packet is simply transmitted from an ingress PFE to a egress PFE in a best-
effort manner.

Perhaps the single greatest benefit of the all-packet chips is that they are perfectly
suited to building forwarding systems whose total bandwidth and port capacity
exactly matches that of the chip being used: the so-called single-chip system. If,

 Forwarding System Architecture 343

for example, you have a 3.2 Tbps chip, it is a simple matter to build a 3.2 Tbps
system. Just take that chip and wrap some sheet metal around it and, give or take a
little bit, you’re done.

Figure 177 Single-Chip System

However, 3.2 Tbps is not a terribly ambitious goal. What if you want to make a
6.4 Tbps system? Well you can’t simply take two 3.2 Tbps devices and place them
in an enclosure; you’d end up with two sets of ports that can’t exchange packets
with one another.

Figure 178 System With Two Isolated Chips

If you were to naïvely use half of each chip’s ports to provide a non-blocking inter-
connect between the two devices, you’d end up exactly where you started: with a
total of 3.2 Tbps of bandwidth on the front panel of your system.

Figure 179 System With Two Naïvely-Interconnected Chips

Indeed, what’s required is to use six 3.2 Tbps chips to achieve 6.4 Tbps of fully
connected, non-blocking interconnection.

Figure 180 Proper Multi-Chip System

 344 Hardware-Defined Networking

The style of interconnecting the devices shown in Figure 179 is known as a Clos
fabric. Clos fabrics are extremely common and are used in a wide variety of
applications. Clos fabrics have the remarkable characteristic that they provide
completely non-blocking, any-to-any interconnect with the fewest number of
wires. However, for a Clos fabric to fully deliver this behavior, all of the available
interconnection paths must be fully and equally utilized. And this is where systems
built with packet-based chips begin to suffer.

The reason packet-based chips are less than ideal when building multi-chip
systems is that packets come in a huge range of sizes: from 64 bytes to over 9,000
bytes. When a packet-based ingress PFE attempts to make full use of its Clos fabric
by transmitting packets onto whichever interface is the next-available interface (to
ensure that each interface was always busy), packets will arrive at the egress PFE
wildly out of order. This mis-ordering of the packets is caused by the skew between
the packets due to their following various paths across the fabric. That skew is the
byproduct of the high dynamic range of packet lengths.

According to the Forwarding Entity Axiom (see page 12), packets within a
flow must be delivered in order. Hence, if the packets arrive at an egress PFE out
of order, they must be placed back in order by the egress PFE. The greater the
skew between the shortest forwarding time and the longest dictates the scale of
the re-ordering function. Greater scale implies more storage resources for packet
data and more state storage for the partially re-ordered flows. Because of this scale
problem, packet re-ordering is generally not done. Instead, ingress PFEs strive to
ensure that packets that belong to a common flow all follow the same path across
the Clos fabric, ensuring that per-flow packet order is maintained.

ECMP-like behavior is used by packet-based ingress PFEs to distribute packets
across the available fabric paths in a flow-aware manner. There are, of course, a
couple of shortcomings with this approach. First, hash functions are not perfect.
They cannot guarantee even distribution of outputs for any particular set of
inputs. A histogram of hash function outputs is never a straight line. These hash
collisions (i.e., multiple inputs yielding the same output) cause multiple flows to
map to the same path. And, because this is done unevenly, some paths are assigned
more flows than others. Second, not all flows are created equal; some flows are
busy while others are quiet. These two shortcomings combine to yield fairly
uneven bandwidth distribution across the available paths. And, once a single path
is oversubscribed, congestion can build up that affects the entire network. So, it
is not uncommon to design packet-based Clos interconnect fabric networks such
that they are overbuilt to avoid congestion or to presume that, overall, the system’s
bandwidth demand will never be that high.

Breaking packets up into cells solves the problems just described. Because the cells
are generally small and of fixed length, the dynamic range of forwarding latencies
between PFEs is also small. This makes it practical to “spray” the cells across all

 Forwarding System Architecture 345

available paths through the fabric and then re-order and reassemble the cells into
packets in the egress PFE. With a cell-based Clos fabric, all of the paths are always
equally utilized (or nearly so). This means that a cell-based Clos fabric operates at
very high efficiency, regardless of the characteristics of the flows being forwarded.
This, in turn, yields deterministic performance.

Output Queues
In an idealized model of a multi-chip forwarding system, all of the ingress PFEs
could forward the entirety of their received bandwidth to a single egress PFE
where it is safely buffered and queued to await transmission without experiencing
any congestion due to oversubscription of the fabric. In other words, the fabric is
scaled to handle b(n - 1) in total bandwidth where b is the bandwidth per PFE and
n is the number of PFEs (it’s n - 1 because it is presumed that packets addressed to
a port on their own receive PFE do not need to cross the fabric).

Figure 181 Ideal Output Queue Model

Output Queue Transmit PortReceive Ports

drops(fabric)

1
2
3

In this model, packets are shuttled across the fabric as quickly as they are received
and are then buffered and queued for each transmit port (ignoring, here, multiple
priorities per port) in the order in which they were received. This provides com-
pletely fair treatment of all of the received packets regardless of which port or PFE
received the packets.

Such a system is, of course, wildly impractical. Instead, systems are built using
either combined input-output queues or virtual output queues.

Combined Input-Output Queues
In a combined input-output queue (CIOQ) system, both the ingress PFE and egress
PFE have substantial buffering capacity for packets while they await transmis-
sion onto a network by the egress PFE. This means that the packet is stored and
retrieved twice: once in the ingress PFE and once in the egress PFE. The ingress
PFE may have, say, one fabric-facing queue for each egress PFE. Thus, all of the
packets that must be transmitted by the several ports of a particular egress PFE
are enqueued into the same ingress queue, even though they may, ultimately, be
transmitted by any of the egress PFE’s physical transmit ports, each of which may
be operating at its own bit rate.

 346 Hardware-Defined Networking

Figure 182 Combined Input-Output Queue Model

Output Queue Transmit PortReceive Ports

(fabric)
drops

Input Queue

drops

1
2
3

Though the egress PFE’s packet buffering resources may be substantial, they are
not infinite. It is possible for an egress PFE’s packet buffering resources to become
congested when the number of packets arriving from a number of ingress PFEs
exceeds the rate at which those packets can be transmitted by some of the egress
PFE’s slower transmit ports. When congestion occurs in the egress PFE, it signals
the congestion to the various ingress PFEs to prevent them from overrunning the
egress PFE’s buffer space and, consequently, suffering packet loss. Unfortunately,
just a few slow transmit ports (or even one) can cause enough congestion in an
egress PFE to prevent all new packets from arriving at that PFE, even those packets
that are not addressed to the slow, congestion-causing ports. In other words,
congestion on one path leads to the interference of another path. This is known as
head of line blocking. For a discussion of head of line blocking, see "Head of Line
Blocking" on page 201.

Generally, head of line blocking is mitigated (but not entirely avoided) in CIOQ
systems by building a certain amount of speed-up in the fabric that interconnects
the PFEs. With speed-up available, it is possible to move the packets from multiple
ingress PFEs to a single egress PFE simultaneously without having to slow down
those ingress PFEs. Of course, if this scaling up of the fabric is taken to its limit in
order to achieve ideal behavior, then you’ve arrived at the output queuing model
described in the previous section. Which, as has been stated, is wildly impractical.

One of the tremendous benefits of the CIOQ architecture is that the egress PFEs
have substantial buffering. This means that the packets received from the fabric
by an egress PFE may be subjected to sufficient packet processing to classify them
by flows in some richly detailed fashion and to enqueue each of those flows into
separate queues. Once the packets are thusly enqueued, it becomes practical to ap-
ply complex transmission scheduling policies that respect flows on a per-customer,
per-priority or per-whatever basis.

Of course, that second, egress-only packet buffer is not free. It requires memory
resources and every storage and retrieval operation consumes power. Ideally, a
packet is buffered just once and the fabric does not have to have generous speed-
up built into it. This is where virtual output queues come in.

 Forwarding System Architecture 347

Virtual Output Queues

In a virtual output queue (VOQ) system, all of the buffering and queuing is per-
formed on the ingress PFEs where there is one physical queue in each ingress PFE
for every port and priority on all of the egress PFEs. For example, a system with 16
PFEs where each PFE had 32 ports and 8 priorities per port, each ingress PFE must
have 16 × 32 × 8 = 4,096 queues. To simplify the remainder of this discussion, only
PFEs and ports will be considered and not priorities.

Figure 183 Virtual Output Queue Model (Common Understanding)

Transmit Port

Receive Port

Ingress PFE

(fabric)

Egress PFEs

Transmit Port

Transmit Port

Transmit Port

The benefit of having all of those queues in each ingress PFE is that it completely
eliminates the head of line blocking problem. If a particular transmit port becomes
overwhelmed with pending packets and must exert some kind of flow control on
the ingress virtual output queues that are feeding into it, all of the other queues on
every ingress PFE may continue to forward packets to the unaffected ports. Also,
unrelated packets are only buffered once in a large memory system. This returns
significant cost, complexity and power savings dividends.

Figure 184 Virtual Output Queue Model (Single Transmit Port View)

Virtual Output Queue Members
Scheduler

Transmit Port

Receive Ports
Ingress PFEs Egress PFE

(fabric)

drops

drops

1

2

3

Unfortunately, VOQs can behave unfairly in the face of congestion. To understand
the nature of the problem, it is important to understand that each of the ingress

 348 Hardware-Defined Networking

PFEs maintains a physical queue that is associated with a common transmit port
(see preceeding Figure 184). So, if there are 16 ingress PFEs, there are 16 queues
associated with a single transmit port. Each of these independent queues is a
member of the same virtual output queue. They are, collectively, the output queue
for that port. But, these VOQ members are operating independently, and that
independence can lead to unfairness.

Consider a scenario where there is standing queue in one of the VOQ members
due to some previous, temporary congestion. The queue is in a “standing” state
because the receive and enqueue rate into the VOQ member (from port 2 in Figure
184) exactly matches the dequeue and transmission rate, so the prior congestion
can never drain out. Now, at some point, a packet is received by a PFE whose
VOQ member for the same VOQ is empty (port 1 in Figure 184). This newly-
received packet immediately appears at the head of its previously-empty queue
and is allowed to compete with the nearly full VOQ member of the other ingress
PFE. If a simple round robin scheduling is used by the egress PFE, then that newly-
received packet is allowed to cross the fabric almost immediately, and certainly
far ahead of the bulk of the packets in the standing queue. In a true output-queue
system, that newly-received packet is enqueued at the back of the standing queue
and forced to wait its turn in line, as packets received via port 3 must do. The
consequence of this is that two receive ports—1 and 3—may exhibit very different
forwarding delay characteristics. With ideal output queue behavior, packets re-
ceived via port 1 have identical delay characteristics as packets received via port 3.

There are a number of other such unfairness issues, but the one described above
illustrates the point. The egress PFE that is granting access to the fabric for the
various VOQ members must take the relative depths of the queues into account so
that packets enqueued into shallow queues are forced to wait some amount of time
before they are granted permission to cross the fabric, thus restoring ideal output
queue behavior.

21 Conclusion

A reasonable argument can be made that a book like this is an impossible or point-
less undertaking. After all, the topic is vast, the details innumerable and the rules
ever-changing. Even just drawing a rough circle around the constellation of topics
to include in the book presents a significant challenge. The raw data—the various
protocols, headers, behaviors and the like—are all readily available via numerous
standards documents; bolstering the case that there’s not a lot of room for original
writing in this space. Further, this book doesn’t provide any ready-to-go solutions
in the form of concrete algorithms, data structures or even detailed block diagrams
of the internals of packet processing silicon. You certainly can’t use this book as a
sole reference when sitting down to design a network forwarding system simply
because no single book could possibly anticipate and present every last detail of
every consideration and aspect of a fully functioning hardware design.

However, I believe—and I hope you agree—that collecting, organizing and pre-
senting the fundamentals of networking hardware’s considerations and concepts
in a consistent, cogent manner is a valuable and useful exercise. Yes, you could
read hundreds of standards documents and research papers, and interview dozens
of grizzled senior engineers and architects for their perspectives and wisdom and
come to the same conclusions that I have presented in this book; and I encourage
you to do those things. But it is my fervent hope that the chapters of this book
accelerate that process and bring the complex and sometimes murky details of
network structures and behaviors into sharp focus.

Ultimately, this book is about revealing and highlighting the patterns in network-
ing. These patterns are rarely explicitly stated or described by the standards
documents that incorporate them into their designs. These patterns have emerged
and have been clarified over time as various experimental networking algorithms,
protocols and methods have been tried and tested; with those that align with the
natural patterns of networking enjoying success and those that stray from those
patterns fading away. Chief among these patterns are:

 � The Forwarding Entity Axiom

A simple forwarding entity axiom applies to all forwarding protocols. This
forwarding entity axiom states that: A forwarding entity always forwards
packets in per-flow order to zero, one or more of a forwarding entity’s own
transmit interfaces and never forwards a packet to the packet’s own receive
interface. This simple description applies not only to the forwarding entities

 350 Hardware-Defined Networking

that we readily recognize as a discrete networking component such as a small,
5-port Ethernet bridge but also applies to vast EVPN networks that are built
from hundreds or thousands of sophisticated chassis-scale routers. Viewing
such complex networks through the lens of this axiom brings a significant clar-
ity to understanding the functional and operational requirements of the
systems used to build them.

 � Tunneling

It is a fundamental truth of engineering that abstraction, reduction, and
simplification lead to powerful insights and results. As a youthful and curious
engineer, my realization that tunnels are the building blocks of even the
simplest of networks led to a clarity of thinking about network architectures
and packet processing hardware architectures; facilitating the development of
sophisticated and powerful silicon devices. Finding common patterns of
behavior from one protocol to the next enables the sharing of resources and
structures within a hardware-based forwarding system, leading to significant
improvements in efficiency, performance and capabilities.

 � Virtualization

Virtualization complements tunneling by allowing multiple peer virtual
networks to occupy a single tunnel without risk of accidental crossover from
one virtual network to another, thus enabling such modern networking
architectures as massively-scaled, multi-tenant data centers. This separation of
one tenant from another also facilitates the easy remapping of a tenant from
one set of physical resources to another, a vital capability as virtual machines
are moved from server to server in a never ending process of performance and
cost optimization.

Variations and combinations of these patterns underlie the vast majority of the
concepts presented in this book. As new protocols and network architectures are
developed, they will undoubtedly also make use of these patterns. If you, dear
reader, make these patterns a part of your thinking and vocabulary you will be
well equipped to make use of these patterns to quickly and easily adapt to future
developments or, indeed, invent the future yourself.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright & About the Author
	Preface
	Introduction
	Foundation Principles
	Tunnels
	Network Virtualization
	Terminology
	Forwarding Protocols
	Load Balancing
	Overlay Protocols
	Virtual Private Networks
	Multicast
	Connections
	Quality of Service
	Time Synchronization
	OAM
	Security
	Searching
	Firewall Filters
	Routing Protocols
	Forwarding System Architecture
	Conclusion

