
The Juniper Ambassadors take on

today’s top networking issues in

this cookbook full of high perfor-

mance recipes that will save you

time, money, and late night

cutovers that can go awry.

By Martin Brown, Matt Dinham, Stefan Fouant, Clay Haynes, Nupur Kanoi,

Peter Klimai, Said Klundert, Steve Puluka, David Roy, and Nick Ryce

DAy ONE: JUNIPEr AMBASSADOrS’
COOkBOOk FOr 2017

http://www.juniper.net

Juniper Networks Books are singularly focused on network productivity and efficiency. Peruse the
complete library at www.juniper.net/books.

Published by Juniper Networks Books

DAY ONE: JUNIPER AMBASSADORS’
 COOKBOOK FOR 2017

The Juniper Ambassador program recognizes and supports its top community members
and the generous contributions they make through sharing their knowledge, passion, and
expertise on J-Net, Facebook, Twitter, and other social networks. In their new Day One
cookbook, the Juniper Ambassadors take on some of the top support issues and provide
clear-cut solutions and frank discussions on how to keep things running. The recipes in
this cookbook are meant to provide quick and tested solutions to everyday networking
administration issues.

IT’S DAY ONE AND YOU HAVE A JOB TO DO, SO LEARN HOW TO:

n Configure basic QoS on Junos-enabled devices.

n Migrate from a Cisco LNS to vLNS on a Juniper vMX Series.

n Configure BGP to advertise multiple paths to destinations.

n Utilize VXLAN technologies with EVPN signaling.

n Use OSPF as a PE-CE routing protocol in MPLS VPNs.

n Script network regression testing with Junos PyEZ.

n Selectively leak resources (or subnets) between different VPNs.

n Integrate MX Series routers into Arbor Networks SP.

n Migrate your core to centralized route reflecting and segment routing.

“Day One: Juniper Ambassadors Cookbook 2017 covers several complex networking prob-

lems and solutions, working with technologies such as EVPN, VXLAN, OSPF sham links,

centralized route reflectors, scripted automation with Python, segment routing, and BGP

flowspec. Using Junos OS configuration stanzas and command line output analysis, each

recipe is demonstrated in detail. The format is perfect for network engineers, explaining

each problem and then diving deeply into the solutions.”

Ethan Banks, Co-Founder of Packet Pushers Interactive, http://packetpushers.net

http://www.juniper.net

Day One: Juniper Ambassadors’

 Cookbook for 2017

By Martin Brown, Matt Dinham, Stefan Fouant, Clay Haynes, Nupur Kanoi,
Peter Klimai, Said Klundert, Steve Puluka, David Roy, and Nick Ryce

Recipe 1: Basic QoS in the Junos OS . 9

Recipe 2: Migration from a Cisco LNS to vLNS Using the
Subscriber Management Features on vMX . 23

Recipe 3: Achieving Multi-Path in Route Reflection
Using BGP Add Path . 41

Recipe 4: EVPN and Virtual Machine Mobility . 57

Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 65

Recipe 6: Network Regression Testing with Junos PyEZ . 79

Recipe 7: Selective Resource Sharing Across VPNs .95

Recipe 8: Integrate MX Series Routers into Arbor Networks 103

Recipe 9: BGP Flow Spec Between Arbor Networks and MX Series 109

Recipe 10: Integrate MX Series With Arbor Networks TMS Off Ramp 117

Recipe 11: Migrate Your Core to Centralized Route Reflection
and Segment Routing . 123

© 2017 by Juniper Networks, Inc. All rights reserved.
Juniper Networks and Junos are registered trademarks of
Juniper Networks, Inc. in the United States and other
countries. The Juniper Networks Logo and the Junos
logo, are trademarks of Juniper Networks, Inc. All other
trademarks, service marks, registered trademarks, or
registered service marks are the property of their
respective owners. Juniper Networks assumes no
responsibility for any inaccuracies in this document.
Juniper Networks reserves the right to change, modify,
transfer, or otherwise revise this publication without
notice.

Published by Juniper Networks Books
Technical Reviewer: Nick Ryce
Editor in Chief: Patrick Ames
Copyeditor and Proofer: Nancy Koerbel
Ambassador Program Manager: Julie Wider
Illustrator: Karen Joice

ISBN: 978-1-941441-47-3 (print)
Printed in the USA by Vervante Corporation.

ISBN: 978-1-941441-48-0 (ebook)

Version History: v1, March 2017
 2 3 4 5 6 7 8 9 10

This book is available in a variety of formats at: http://
www.juniper.net/dayone. Send your suggestions,
comments, and critiques by email to dayone@juniper.net.

 iv

http://www.juniper.net/dayone
http://www.juniper.net/dayone

About the Juniper Ambassadors

The Juniper Ambassadors are global technical/brand advocates that
actively participate across Juniper community and social programs.
They are a diverse set of network engineers, consultants, and architects
who work in the field with Juniper technologies on a daily basis. The
Juniper Ambassadors’ mission is spreading the word about the power of
Juniper Networks to the world’s networking and security engineers.
Welcome back, Ambassadors.

About the Authors

Martin Brown (Recipe 1) is a Network Security Engineer for a tier 1
service provider based in the UK and is a Juniper Ambassador. Martin
started his career in IT over 20 years ago supporting Macintosh comput-
ers and in 1999 earned his first certification by becoming an MCP then
an MCSE. In the past six years he has progressed to networking,
implementing, and supporting network devices in a number of different
environments including airports, retail, warehouses and service pro-
vider. His knowledge covers a broad range of network device types and
network equipment from most of the major vendors including Cisco, F5,
Checkpoint, and of course, Juniper.

Matt Dinham (Recipe 2) is an independent consulting Network Engi-
neer/Architect based in the UK, and is a Juniper Ambassador. Matt has
over 15 years experience working within Enterprise and Service Provider
environments (both public & private sector). He holds several Juniper
Certifications and is certified CCIE#16387 (R&S, SP). Matt can be
reached on Twitter - @mattdinham.

Stefan Fouant (Recipe 3) is a Sales Engineer with Copper River Informa-
tion Technology with over 18 years of experience in the Service Provider
and network security industries. He holds several patents in the area of
DDoS detection and mitigation and is also a co-author of drafts within
the IETF DOTS working group relating to standardized signaling of
coordinated DDoS attack filtering and mitigation mechanisms. He was
the first person globally to achieve all three expert-level Juniper certifica-
tions, and was a technical editor of the book Juniper MX Series by
O’Reilly (2012).

Clay Haynes (Recipe 4) is an IT professional with over 10 years of
experience working on servers, firewalls, and networking. He currently
works at Twitter as a Senior Network Security Engineer and is a Juniper
Ambassador. Clay currently holds the JNCIE-SEC #69 and JNCIE-ENT
#492 certifications.

 v

 vi Day One: Juniper Ambassadors’ Cookbook for 2017

Nupur Kanoi (Recipe 5) Nupur Kanoi is a senior network engineer for a
global service provider where she has gained experience in service
provider backbone architecture and design. She also holds JNCIE-ENT
(#520), JNCIP-SP, and JNCDS-DC certifications. Nupur can be reached
on LinkedIn (linkedin.com/in/nupur-kanoi-520) and on Twitter (@
nupur_kanoi). She is currently working towards her JNCIP-DC.

Peter Klimai (Recipe 6) is a Juniper Ambassador and a Juniper Net-
works certified instructor working at Poplar Systems, a Juniper-Autho-
rized Education Partner in Russia. He is certified JNCIE-SEC #98,
JNCIE-ENT #393, and JNCIE-SP #2253 and has several years of experi-
ence supporting Juniper equipment for many small and large companies.
He teaches a variety of Juniper classes on a regular basis, beginning with
introductory level (such as IJOS) and including advanced (such as
AJSEC, JAUT and NACC). Peter is enthusiastic about network automa-
tion using various tools, as well as network function virtualization.

Said van de Klundert (Recipe 7) is a Dutch networking enthusiast,
Juniper Networks Ambassador, network engineer at Interconnect, and
content developer at iNET ZERO. Said has spent most of his career on
the service-provider side of things and is known to lab-up and write
about whatever sparked his interest. He is a father to his son, husband to
his wife, and he enjoys long dinners with friends. JNCIE-SP #2573.

Steve Puluka (Recipes 8, 9, & 10) is a Senior Network Engineer with
DQE Communications in Pittsburgh, PA. He is part of a service provider
team that manages a fiber optic Metro Ethernet, Wavelength, and
Internet Services network spanning 3k route miles throughout western
PA. He holds a BSEET along with a dozen Juniper Certifications in
Service Provider, Security, and Design. He also has certification and
extensive experience in Microsoft Windows server, along with strong
VMware skills starting with Version 2. He has enjoyed supporting
networks for more than 20 years.

David Roy (Recipe 11) is a Senior Support Engineer for Orange. He is
involved in many projects based on IP and MPLS technologies. He loves
troubleshooting complex routing and switching issues. He is the author
of the The MX Series, 2nd Edition (2016, O'Reilly) and Juniper Books’
This Week: An Expert Packet Walkthrough on the MX Series 3D. David
is triple JNCIE.

Nick Ryce (Technical Editor) is a Senior Network Architect for a major
ISP based in Scotland, and a Juniper Ambassador. Nick has over a
decade of experience working within the Service Provider industry and
has worked with a variety of vendors including Cisco, Nortel, HP, and
Juniper. Nick is currently certified as JNCIE-ENT #232.

 Preface vii

After Reading This Book, You’ll Be Able To:

 � Configure basic QoS on Junos-enabled devices.

 � Migrate from a Cisco LNS to vLNS on a Juniper vMX Series.

 � Configure BGP to advertise multiple paths to destinations.

 � Utilize VXLAN technologies with EVPN signaling.

 � Use OSPF as a PE-CE routing protocol in MPLS VPNs.

 � Script network regression testing with Junos PyEZ.

 � Selectively leak resources (or subnets) between different VPNs.

 � Integrate MX Series routers into Arbor Networks SP.

 � Migrate your core to centralized route reflecting and segment
routing.

Preface

Someone asked me the other day: What’s It Like Being a Juniper
Ambassador? Most people think of the program as some super secret
squirrel group made up of sycophantic Juniper lovers who are blind to
any other vendors. This is simply not the case. The Ambassador
program is made up of lots of individuals who have a great love of all
things geek and a deep knowledge of Juniper tech as well as other
vendors. Juniper allows us access to product managers and developers
to help us get a better understanding of their products, not only to help
others in the community, but also to help us make informed decisions
about the products we use and recommend.

All of the Juniper Ambassadors are either active on multiple social
media outlets or participating/lurking on the J-Net forums to help
users with any issues they may have. We are always bouncing ideas off
of each other, not only on social media but at the yearly gathering we
attend. It’s been fun, and how many corporate programs can you claim
as fun?

Of course one of the reasons for the networking frolic is our champion
and program manager, Julie Wider at Juniper Networks. She supports
us when we need it and ignores us when the workplace humor kicks in.
Thank you Julie, from all of us.

 viii Day One: Juniper Ambassadors’ Cookbook for 2017

Which brings me to the following Ambassadorian fine print: Not all of
the Ambassadors contributed to this book. There are almost two dozen
Ambassadors in all, and some of us have busy day jobs. What you
don’t see is all of the support and comradery (and cheering) that goes
on for those who temporarily have some free time and are willing to
spend that time helping other network engineers. So although you see
some great names as authors of this cookbook, there are even more
network engineers supporting them, reviewing their writing, and
testing recipes. Thank you to all Juniper Ambassadors.

You have to be nominated to be a Juniper Ambassador, and during
your tenure you are expected to contribute to books, blogs, tweets, and
posts. Ambassadors give feedback to Juniper management and to
product line managers, and it’s real feedback, because they can, and
because they work with the product all day long. If you tend to
networks, you know how chaotic the job is getting – well part of being
an Ambassador is to relay that message to Juniper and to Juniper’s
customers. That’s why this is the third Ambassador Day One book.
Nobody knows it better than a Juniper Ambassador: It’s Day One and
You’ve Got A Job To Do.

Enjoy this year’s Ambassador Cookbook. It’s a good one.

Nick Ryce, March 2017
Technical Reviewer and Cat Herder Extraordinaire,
Day One: Juniper Ambassadors’ Cookbook 2017

The enterprise networks of today tend to be large networks carrying
many different types of traffic such as email, customer data, web pages,
videos, and voice data for telephone calls. This means there is all kinds
of data vying for as much bandwidth as possible, not to mention that
different types of traffic have different characteristics.

As an example, streaming video can be a continuous stream of high
bandwidth data or it can be ‘bursty’ – sending a lot of data, then
stopping for a bit, then sending another lot of high volume data.
Alternatively, data traffic such as the type containing plain text emails
can be relatively small in size and it doesn’t really matter whether it
takes 500ms or 10 seconds to reach its destination just as long as it gets
there; that’s all that matters.

Voice over IP, or VoIP, are telephone calls made via the network and
their data stream is relatively small, being around 64Kbps, but the
stream is constant, without interruption. Just as important, however, is
that the delay between the sending phone sending a packet of data and
the recipient phone receiving the packet of data needs to be the same
throughout the entire conversation. This is called delay variation, more
commonly known as jitter.

Recipe 1:
Basic QoS in the Junos OS

 10 Day One: Juniper Ambassadors’ Cookbook for 2017

Problem

The problem is, how do you ensure that all the high bandwidth or
bursty data doesn’t consume your network and prevent other data,
like emails, from reaching the email server, while simultaneously
making sure that voice data is treated as a priority with very little delay
variation? How do you provide some level of control to the data that
is traversing your network?

Unsurprisingly, the title of this recipe is a bit of a spoiler –QoS allows
us to control how much bandwidth a stream of data is using, deter-
mine whether that traffic is becoming more than the network can
handle, and also decide how it treats traffic that grows above the
bandwidth limit.

At first glance this can seem like a bit of an oxymoron; you are dealing
with excessive bandwidth by limiting the bandwidth available to
certain traffic streams, and dropping traffic once the limit is reached,
however, QoS also allows you to tell your network devices that some
traffic is more important than other traffic, and as such should be
treated as a priority.

When you put these two main features together you get something
interesting. Imagine for a moment that a network link is 10Mb and
that the streaming video is 4k high bandwidth and wants to take up
100% of the bandwidth, but in bursts. You can tell your Junos
OS-based devices that the video stream is only allowed to take up 50%
of the bandwidth and that any data above the limit that has been set
would be dropped. In addition, when there is voice traffic waiting to
be sent onto the wire, the voice traffic must be sent ahead of the video
traffic.

This leads to another question: How does the Junos OS allow a certain
type of traffic to ‘overtake’ another type of traffic? Junos OS-based
devices don’t have multi-lane freeways going through them to the
cables, so how do they hold some types of traffic while sending others?
The solution is quite brilliant.

When traffic is about to be sent down the wire, the traffic is first placed
into a buffer, which temporarily stores the traffic until the wire is free
to send the data. For the purposes of QoS, the buffer is divided into up
to eight segments. These eight segments are known as queues; Junos
can monitor these queues and if it sees traffic in one of the queues with
a higher priority it will send this traffic first, then send traffic from
queues with a lower priority.

In addition, Junos doesn’t just keep sending traffic from a high priority
queue and forget about the lower priority queues. The Junos OS will
send several packets from a high priority queue, then send one or more

 Recipe 1: Basic QoS in the Junos OS 11

from the lower priority queues, so that other types of traffic don’t feel
left out or so that other traffic isn’t starved of bandwidth while a phone
call takes place.

When it comes to controlling how much bandwidth a type of traffic is
allowed to use, there are two options: policing or shaping. Policing is
harsh in that traffic over the limit set is dropped. Shaping, on the other
hand, treats data slightly differently from policing in that when data of
a bursty nature is being sent there is a period when a lot of data is being
sent and then a period when no data is sent. In this instance, instead of
dropping excess data, shaping holds onto the data and sends it between
data bursts. Figure 1.1 shows an example of policing that drops data
exceeding 50%. The data in this graph is dark in color, and, as you can
clearly see, any data in the shaded area will be dropped.

Figure 1.1 Policing Data at 50%

Figure 1.2 shows a different story. In this case, there is no data above
the red line, which means no data has been dropped. Instead, what has
happened is that Junos OS has held onto the data and sent it between
gaps in the bursts of data. This is indicated by shaded gaps between the
data bursts that were previously white.

Figure 1.2 Shaping Data at 50%

 12 Day One: Juniper Ambassadors’ Cookbook for 2017

NOTE While this recipe is meant to be as informative as possible, QoS is a topic
worthy its own book, therefore this chapter will cover only the very
basics of QoS and readers wishing to study it in more depth may find the
Day One book Day One: Deploying Basic QoS by Guy Davies, a useful
addition to their digital library: http://www.juniper.net/us/en/training/
jnbooks/day-one/fundamentals-series/deploying-basic-qos/ .

Having given the basics of how QoS works, let’s look at a real-world
scenario and how to implement QoS on an enterprise network. In this
instance, ACME Company is looking to add VoIP telephones to their
network and will need QoS implementing in order to provide the best
possible service.

The first thing you need to bear in mind is that while ACME has a large
enterprise network, attempting to describe and configure the entire
network in this chapter would probably end up doubling the size of this
book. So instead of describing the entire network, let’s focus on a small
area. Figure 1.3 illustrates the topology of the ACME network.

Figure 1.3 ACME’s Enterprise Network

In the scenario you will configure a switch in the access layer, SW-17, to
allow for implementing a new VoIP service. SW-17 is a Juniper EX Series
switch configured as a virtual chassis with two members. This switch is
connected to the aggregation layer via ports ge-0/1/0.0 and ge-1/1/0.0

The first thing you need to do is configure the switch ports so you can give
your new VoIP phones connectivity. Originally, this was a fairly straight-
forward task, as the port would be configured as an access port and was
made a member of whatever VLAN was used to carry voice data, so you
ended up with a topology similar to what we see in Figure 1.4.

http://www.juniper.net/us/en/training/jnbooks/day-one/fundamentals-series/deploying-basic-qos/
http://www.juniper.net/us/en/training/jnbooks/day-one/fundamentals-series/deploying-basic-qos/

 Recipe 1: Basic QoS in the Junos OS 13

Figure 1.4 Adding VoIP Telephones to a LAN

There was, however, one small issue with this design. Imagine a place like
a call center or a contact center where every agent has their own phone
and workstation. If the call center was using one of the older style PABX
(Private Automatic Branch Exchange) systems, each phone was plugged
into a socket, which in turn had a cable run to an internal exchange. This
cable could have been standard telephone cable; however, I recall install-
ing a new CAT5 network back in 1993, and rather than running separate
telephone cables, I connected the PABX internal exchange to the tele-
phones via the same CAT5 cable.

But what if the call center’s PABX telephones were replaced with VoIP
telephones? The number of switch ports required would effectively
double and a call center with 100 agents would need 100 ports for the
workstations and a further 100 ports for the new VoIP telephones. This
means you need to purchase another pair of 48 port switches.

Thankfully, manufacturers of VoIP telephones came up with a brilliant
solution – add a port to the back of the telephone so you can connect the
workstation. So, in a call center with 100 agents, only 100 ports are
required, as the phones and workstations are effectively sharing ports and
you end up with a design similar that shown in Figure 1.5.

 14 Day One: Juniper Ambassadors’ Cookbook for 2017

Figure 1.5 Adding Connecting Clients Through VoIP Telephones

Now the ports are receiving data from two different VLANs: the data
VLAN for the workstation, and the voice VLAN for the telephone.
Therefore, the switch needs some way of differentiating between the
two different data streams. The solution to this is to have the phone
send frames that are tagged with the voice VLAN, while the worksta-
tion continues to send untagged frames.

The phone, of course, needs to be told which VLAN the frame needs to
be tagged with, and there are two methods to achieve this: either
configure the phone to send frames tagged as the voice VLAN, or use a
technology called “LLDP-MED” where the phone communicates with
the switch using the Link Layer Discovery Protocol (LLPD) and the
switch tells the phone which VLAN is used for the Voice VLAN.

When the switch receives a frame, it checks for the VLAN tag. If the
tag is present the switch sends the frame to voice VLAN, and if there is
no tag the switch forwards the frame to the data VLAN. This solution,
however, means that the switch needs to be configured to deal with
tagged frames. Let’s do that, otherwise the switch will discard them.

 Recipe 1: Basic QoS in the Junos OS 15

Solution

Let’s start by making sure that the relevant VLANs have been created
on the switch. If these have not been created, running the following
commands creates the VLANs FINANCE and VOICE:

set vlans FINANCE vlan-id 100
set vlans VOICE vlan-id 300

Once the VLANs have been created, the next step is adding the switch
port to the correct VLAN. In this case, interface ge-0/0/10.0 is made a
member of the VLAN FINANCE:

set interfaces ge-0/0/10.0 family ethernet-switching vlan members FINANCE

Another option is setting the port as a trunk link and setting the native
VLAN as the data VLAN, so when the client sends an untagged frame
the switch knows that this frame is for the data VLAN. Let’s use a port
set as an access port; now all you need to do is tell the EX Series that if
any frames tagged as belonging to the VOICE VLAN are received on
port ge-0/0/10.0 they are carrying VoIP traffic:

set ethernet-switching-options voip interface ge-0/0/10.0 vlan VOICE

Once the interface and ethernet-switching-options configuration has
been committed to the EX’s running configuration it is ready for a VoIP
phone to be connected, except now the traffic from the phones is
treated as ordinary traffic.

As a result, you need to tell the switch to treat the VoIP traffic differ-
ently from data traffic and that is done using something called Class of
Service or CoS. CoS differs from QoS in that CoS operates on EX
Series switches and combines the Layer 2 or VLAN level with Layer 3.
While QoS operates exclusively at Layer 3, it can identify traffic
marked as a priority by CoS and treat it as such.

First you need to help the switch identify how important a traffic
stream is. This is done by marking the frames in a special field within
the frame header or IP header. In a frame, this field is known as the
802.1Q or Tag field, and is commonly used for VLAN tagging, but
three bits of it are reserved specifically for CoS markings.

There are in fact two ways a frame can be marked: the phone can send
the frame with the marking already applied, or the EX Series can be
configured to mark the frame as it’s received and to remove the
marking if one has already been applied. In this case, let’s mark the
frame with the importance of assured-forwarding and, again, this can
be achieved by utilizing two methods. The first is to use the forward-
ing-class keyword as follows:

set ethernet-switching-options voip interface ge-0/0/10.0 forwarding-class assured-
forwarding

 16 Day One: Juniper Ambassadors’ Cookbook for 2017

What exactly does assured forwarding mean? You may recall that QoS
uses queues in order to allow some traffic to overtake other traffic.
Assured forwarding is just a name for a queue and this queue is used by
CoS to allow traffic to overtake other traffic when the EX Series is
sending it across a trunk link to another switch, or if the traffic is about
to be routed to another subnet. QoS can translate this queue name to a
QoS queue name.

The Junos OS refers to the queues as forwarding classes and allows for
up to eight forwarding classes to be created. By default, however, four
CoS forwarding classes are created: best effort, expedited forwarding,
assured forwarding, and network control. Table 1.1 lists the queue
types and describes how Junos OS treats traffic assigned to these
queues.

Table 1.1 Junos OS Default CoS Forwarding Classes

Forwarding Class Abbreviation How Traffic Is Treated

Best Effort be If the bits in the field are left as all 0’s, the frame is classed as best
effort. This means that the Junos OS does not apply any special
CoS handling to packets and that these packets are usually the
first to be dropped under congested network conditions.

Expedited Forwarding ef The Junos OS guarantees a certain amount of bandwidth for
packets marked as ef, in addition to assuring low loss, low delay,
and low delay variation end-to-end. Junos also allows traffic to
exceed the bandwidth but packets exceeding the allowed
bandwidth may be forwarded out of sequence or dropped.

Assured Forwarding af Junos OS will do its absolute best to assure that traffic marked as
af will reach its destination with the minimum of delay and
without any discards, as long as the traffic stays within the
bandwidth limit. Excess traffic is permitted but a tail drop may
apply to excess bandwidth in times of congestion.

Network Control nc Frames marked as nc are typically used to send traffic from
dynamic routing protocols, and as such, failure to receive them
could have an adverse effect on network connectivity. Therefore,
it is highly likely that these packets will never be dropped but nc
packets could be delayed.

If one wanted to see which forwarding classes were added to the switch
then the show class-of-service forwarding-class command can be
used. The following output shows the default forwarding classes
configuration:

admin@SW-17> show class-of-service forwarding-class
Forwarding class ID Queue Policing priority SPU priority
Best-effort 0 0 normal low
expedited-forwarding 1 5 normal low
assured-forwarding 2 1 normal low
network-control 3 7 normal low

 Recipe 1: Basic QoS in the Junos OS 17

In this recipe, the default forwarding classes will be used, but should you
wish to create a new forwarding class it’s simply a matter of using a set
command, for example, if an administrator wanted to create a queue
called cute-cat-videos, the command would be:

set class-of-service forwarding-classes class cute-cat-videos queue-num 4

At the end of this command is the number 4. This is an ID number and
each forwarding class should have its own unique ID. It is also a good
idea to set the IDs in order of priority, so assuming traffic identified as
containing cute cat videos is considered more important than say, VoIP,
you could give this forwarding class the ID of 3 and move network-con-
trol to ID 4.

As mentioned earlier, there is a second method that can also be utilized
for the EX Series to mark traffic with its appropriate forwarding class.
The second method is to use a firewall filter. Firewall filters are typically
used for allowing and denying traffic streams, however in this case the
filter is used to identify traffic streams and mark them appropriately with
different terms used to classify different streams of traffic. Identifying
traffic streams using a firewall filter is called a multifield classifier as the
firewall filter can match against source and destination addresses,
protocols and applications.

In this recipe, a firewall filter will be created with the name COS-FIL-
TER, and the first term, which will be given the name VIDEO, will
identify the streaming video traffic that is using the time streaming
protocol RSTP on TCP and UDP port 554, after which, the filter will
mark the traffic as belonging to the forwarding class expedited-forward-
ing and set the loss-priority, which tells Junos OS whether it can drop
packets from the stream during periods of high congestion. In this case,
the loss-priority will be set to low, meaning there is a low probability of
packets in this stream being dropped during periods of high congestion:

edit firewall family ethernet-switching filter COS-FILTER
set term VIDEO from protocol tcp
set term VIDEO from protocol udp
set term VIDEO from source-port 554
set term VIDEO then forwarding-class expedited-forwarding
set term VIDEO then loss-priority low
top

The next term, in theory, wouldn’t be necessary on a port connected to a
client, however let’s add it just to show how it’s done. This term will be
used to identify traffic from routing protocols and other important
network protocols and to add it to the forwarding class network-control.

In the previous term, the port and protocol were used to identify the
traffic. When identifying routing protocols, you can use what is known
as the IP precedence, which is another form of QoS marking in the IP

 18 Day One: Juniper Ambassadors’ Cookbook for 2017

header. Routing protocols mark the packet with the IP precedence as it
is transmitted. You can identify traffic marked with the appropriate IP
precedence using a firewall filter, and assign it to the correct forward-
ing class.

The IP precedence markings that apply here are net-control and
internet-control. A term will be created with the name NETWORK-
PROTOCOLS and this assigns traffic identified as a routing or
network protocol to the forwarding class network-control:

edit firewall family ethernet-switching filter COS-FILTER
set term NETWORK-PROTOCOLS from precedence net-control
set term NETWORK-PROTOCOLS from precedence internet-control
set term NETWORK-PROTOCOLS then forwarding-class network-control
set term NETWORK-PROTOCOLS then loss-priority low
top

Finally, a term must be created to assign all other traffic to the forward-
ing class best-effort. This term will not match against any protocol,
port, or IP precedence, and will not include any from statement. By
leaving out a from statement, the filter matches all traffic that hasn’t
been otherwise matched by a previous term. The term in this case is
given the name OTHER-TRAFFIC:

edit firewall family ethernet-switching filter COS-FILTER
set term OTHER-TRAFFIC then forwarding-class best-effort
set term OTHER-TRAFFIC then loss-priority high
top

This firewall filter is now ready to be assigned to the port to which our
new VoIP phone was connected, which was port ge-0/0/10.0. This
filter needs to identify traffic coming in on that port, therefore the
direction is set as input:

set interfaces ge-0/0/10.0 family ethernet-switching filter input COS-FILTER

Once the forwarding classes are created, the next step is to tell the
Junos OS what to do with the traffic within those forwarding classes.
To achieve this you use something called a scheduler to tell Junos how
much bandwidth to allocate, and then use a scheduler map to link the
scheduler to the forwarding class. In this instance, there are four
forwarding classes, and although the Junos OS does create some by
default, you will create your own. The first scheduler is the one used
for traffic in the best-effort forwarding class.

One tends to find that most network traffic, such as emails with large
attachments or large databases being uploaded to the server, falls into
this category. This traffic might be important to an employee or the
company, but it is not time sensitive and can be treated with a lower
priority, while the bandwidth allocated to this forwarding class should
be reasonable.

 Recipe 1: Basic QoS in the Junos OS 19

The scheduler is configured to allocate 60% of the buffer to traffic
within this class and the amount of bandwidth the traffic is allowed to
use is set to 60%. Finally, the priority is set as low, which means if
traffic with a priority set as high enters the buffer, it will probably be
sent ahead of traffic within this forwarding class. The scheduler will be
given a name of NOT-IMPORTANT:

set class-of-service schedulers NOT-IMPORTANT buffer-size percent 60
set class-of-service schedulers NOT-IMPORTANT priority low
set class-of-service schedulers NOT-IMPORTANT transmit-rate percent 60

The priority can be set with five different levels; low, medium-low,
medium-high, high, and strict-high with the probability of the traffic
being dropped decreasing as the priority increases. The priority of
strict-high may only be assigned to one scheduler in a map. Attempting
to assign it to two schedulers will result in the following error:

admin@sw-17# commit check
[edit]
 ‘class-of-service scheduler-maps OUR-COS-MAP’
 More than one scheduler with the priority strict-high for scheduler-map OUR-COS-MAP
error: configuration check-out failed

NOTE Traffic labelled as strict-high will always be sent ahead of traffic
marked as low, therefore it is important to assign this priority only to
low bandwidth traffic in order to prevent queue starvation.

In this recipe’s example, the transmit rate has been set as a percentage,
however there is an option to set the transmission rate as bits per
second. The Junos OS also allows the use of the exact option, which
means that is there is a lot of congestion on a link because traffic in a
forwarding class linked to a scheduler with the exact option set will be
guaranteed that transmission rate. As long as the amount of traffic
doesn’t exceed the transmission rate, traffic in that forwarding class
will never be dropped.

The next forwarding class is expedited-forwarding. Traffic in this
queue is more important than email but not as important as VoIP
traffic. An example of this traffic is streaming video. If traffic is
delayed, it could break the stream leading to drop outs or the video
going pixelated. In this case, the buffer queue and transmit rate is set
to 20% and the priority is set as medium-low meaning this traffic is
less likely to be dropped ahead of the NOT-IMPORTANT traffic:

set class-of-service schedulers VIDEO-STREAM buffer-size percent 20
set class-of-service schedulers VIDEO-STREAM priority medium-low
set class-of-service schedulers VIDEO-STREAM transmit-rate percent 20

 20 Day One: Juniper Ambassadors’ Cookbook for 2017

The assured-forwarding forwarding class is next, which, as you will
recall, was the forwarding class our VoIP traffic was assigned to. This
traffic is not expected to be high bandwidth, therefore the transmit rate
and buffer percentage is set at 15%. The priority level, however, is set
at high, meaning it is unlikely this traffic will be dropped during
congestion:

set class-of-service schedulers VOIP-SCHEDULER buffer-size percent 15
set class-of-service schedulers VOIP-SCHEDULER priority high
set class-of-service schedulers VOIP-SCHEDULER transmit-rate percent 15

The next forwarding class is network-control. This traffic is important
because if the traffic flow stopped, routes could be marked as inacces-
sible and removed from routing tables. Therefore, this traffic is marked
as strict-high but as this traffic is expected to be very low bandwidth,
the transmit rate and buffer are set at 5%:

set class-of-service schedulers NETWORK-CONTROL buffer-size percent 5
set class-of-service schedulers NETWORK-CONTROL priority strict-high
set class-of-service schedulers NETWORK-CONTROL transmit-rate percent 5

Once the schedulers are created they can be linked to the forwarding
class using a scheduler map. This a simple linking of one to the other.
In our case, the scheduler map is given the name of OUR-COS-MAP
and in this case, as the command is so long, the changes will be made
under the class-of-service scheduler-maps OUR-COS-MAP hierarchy:

edit class-of-service scheduler-maps OUR-COS-MAP
set forwarding-class best-effort scheduler NOT-IMPORTANT
set forwarding-class expedited-forwarding scheduler VIDEO-STREAM
set forwarding-class assured-forwarding scheduler VOIP-SCHEDULER
set forwarding-class network-control scheduler NETWORK-CONTROL
top

The next step is telling Junos which interfaces use this scheduler map.
Without specifying this option, the OS would use the default scheduler
map, which you want to override. You want to apply the scheduler
map to the interfaces in the aggregation layer, which would be done by
using the following commands:

set class-of-service interfaces ge-0/1/0 scheduler-map OUR-COS-MAP
set class-of-service interfaces ge-1/1/0 scheduler-map OUR-COS-MAP

As mentioned earlier in this recipe, another option is shaping the traffic
rather than limiting the transmit rate, which means holding onto traffic
in the buffer instead of immediately dropping the traffic and sending
the traffic during quiet periods between bursts. This treatment is more
useful for video traffic therefore the scheduler VIDEO-STREAM has

 Recipe 1: Basic QoS in the Junos OS 21

the transmit rate configuration replaced with the setting shaping-rate.
The shaping rate is set at the same 20%:

delete class-of-service schedulers VIDEO-STREAM transmit-rate percent 20
set class-of-service schedulers VIDEO-STREAM shaping-rate percent 20

All that remains now is to commit the changes and check to ensure that
the scheduler map correctly maps the forwarding classes to the sched-
ule, and that the scheduler map is assigned to the interfaces to the
aggregation layer.

To check the configuration of the scheduler map, use the show class-
of-service scheduler-map command. If you follow the command with
the map name, then only details on that particular scheduler map will
be displayed, as is done here:

admin@sw-17> show class-of-service scheduler-map OUR-COS-MAP

Scheduler map: OUR-COS-MAP, Index: 5401

 Scheduler: NOT-IMPORTANT, Forwarding class: best-effort, Index: 47922
 Transmit rate: 60 percent, Rate Limit: none, Buffer size: 60 percent,
 Buffer Limit: none, Priority: low
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low non-TCP 1 <default-drop-profile>
 Low TCP 1 <default-drop-profile>
 High non-TCP 1 <default-drop-profile>
 High TCP 1 <default-drop-profile>

 Scheduler: VIDEO-STREAM, Forwarding class: expedited-forwarding, Index: 4698
 Transmit rate: unspecified, Rate Limit: none, Buffer size: 20 percent,
 Buffer Limit: none, Priority: medium-low
 Excess Priority: unspecified
 Shaping rate: 20 percent
 Drop profiles:
 Loss priority Protocol Index Name
 Low non-TCP 1 <default-drop-profile>
 Low TCP 1 <default-drop-profile>
 High non-TCP 1 <default-drop-profile>
 High TCP 1 <default-drop-profile>

 Scheduler: VOIP-SCHEDULER, Forwarding class: assured-forwarding, Index: 4862
 Transmit rate: 15 percent, Rate Limit: none, Buffer size: 15 percent,
 Buffer Limit: none, Priority: high
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low non-TCP 1 <default-drop-profile>
 Low TCP 1 <default-drop-profile>
 High non-TCP 1 <default-drop-profile>
 High TCP 1 <default-drop-profile>

 Scheduler: NETWORK-CONTROL, Forwarding class: network-control, Index: 26790
 Transmit rate: 5 percent, Rate Limit: none, Buffer size: 5 percent,

 22 Day One: Juniper Ambassadors’ Cookbook for 2017

 Buffer Limit: none, Priority: strict-high
 Excess Priority: unspecified
 Drop profiles:
 Loss priority Protocol Index Name
 Low non-TCP 1 <default-drop-profile>
 Low TCP 1 <default-drop-profile>
 High non-TCP 1 <default-drop-profile>
 High TCP 1 <default-drop-profile>

To check whether the scheduler map has been correctly assigned to the
outgoing interface, use the show class-of-service interface command
to show all interfaces or use the interface name to check specific
interfaces, as is done here:

root@sw-17> show class-of-service interface ge-0/1/0.0
Physical interface: ge-0/1/0, Index: 133
Queues supported: 4, Queues in use: 4
 Scheduler map: OUR-COS-MAP, Index: 2
 Congestion-notification: Disabled

Once a substantial amount of CoS controlled traffic has been flowing
over the interface, the show interfaces ge-0/1/0 extensive command
can be used to view interface statistics, including CoS queue informa-
tion, however, if you use the pipe option followed by find Queue
counters, you can see just the CoS statistics:

show interfaces ge-0/1/0 extensive | find “Queue counters”
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 0 5669 0
 1 0 0 0
 5 0 0 0
 7 0 1911 1
 Queue number: Mapped forwarding classes
 0 best-effort
 1 assured-forwarding
 5 expedited-forwarding
 7 network-control

MORE? Remember that this recipe only scratches the surface of configuring
QoS or CoS on a Juniper EX Series switch, and key areas such as drop
probability have not been covered or discussed. While this recipe can
help as an introduction to QoS and possibly any VoIP deployment your
organization may be planning, see the Juniper TechLibrary for more
express instructions and configurations: http://www.juniper.net/
documentation/en_US/junos/topics/concept/cos-components-ex-series.
html.

http://www.juniper.net/documentation/en_US/junos/topics/concept/cos-components-ex-series.html
http://www.juniper.net/documentation/en_US/junos/topics/concept/cos-components-ex-series.html
http://www.juniper.net/documentation/en_US/junos/topics/concept/cos-components-ex-series.html

A service provider may provide a connectivity service to its own
customers using the access network of another service provider. In a
broadband subscriber network that access circuit is connected to the
destination service provider’s network using Layer 2 Tunneling Proto-
col (L2TP). The subscriber’s point-to-point protocol (PPP) sessions are
carried between the service provider networks using an L2TP tunnel
from the L2TP Access Concentrator (LAC) or Broadband Network
Gateway (a BNG, acting as a LAC) in the access network, to the L2TP
Network Server (LNS) in the destination service provider’s own
network.

NOTE This recipe refrains from disclosing any details on BNG configuration
or RADIUS / PPP client configuration in order to concentrate on how to
configure LNS. It also assumes you are familiar with LNS. Look for a
future Day One books to cover these wide-ranging topics in depth.

Problem

Since Junos OS release 15.1F6, you can configure the LNS or BNG
feature set on the vMX Series. This recipe shows you how to enable the
subscriber management features in Junos to configure the vMX to act
as a dual stack IPv4/IPv6 virtual LNS. Since you may wish to migrate
from another vendor router to vLNS, this recipe will work through an
example migration from a Cisco IOS LNS to a Juniper vLNS.

Recipe 2:
Migration from a Cisco LNS to vLNS Using the
Subscriber Management Features on vMX

 24 Day One: Juniper Ambassadors’ Cookbook for 2017

Solution

With vLNS deployed on the vMX you can quickly and easily deploy an
LNS into your network as shown in Figure 2.1.

Figure 2.1 Topology Used in Configuring vLNS

While Figure 2.1’s topology represents a hugely simplified broadband
aggregation network, for the purposes of this recipe, the key components
are present. The PPPoE subscriber is connecting directly into the LAC (in
this lab, vBNG on vMX) and will be tunneled using L2TP to vLNS.

NOTE If you have not already downloaded vMX and installed a trial license
key, then do so at http://www.juniper.net/us/en/dm/free-vmx-trial/ and
select the key for a 60-day trial.

MORE For more information on getting going with vMX, see Day One: vMX
Up and Running at http://www.juniper.net/us/en/training/jnbooks/
day-one/automation-series/vmx-up-running/.

Okay, let’s get started.

Routing Configuration

First, let’s configure dynamic routing between the two SP networks. In
this example the BNG and LNS are directly connected. Typically, this
would not be the case in the real world but the principles for routing are
the same – BGP, of course, is the protocol of choice, and on the LNS you
should expect to receive the prefixes of all BNGs/LACs that will be
initiating a connection to the LNS. Advertise your LNS prefixes, in this
case a /32 IPv4 address assigned on vLNS for L2TP tunnel termination.

http://www.juniper.net/us/en/dm/free-vmx-trial/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/vmx-up-running/

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 25

On the Cisco LNS you can see that the base interface and BGP configu-
ration is doing what is described above:

interface Loopback1
 ip address 203.0.113.1 255.255.255.255
!
interface GigabitEthernet0/2
 ip address 198.51.100.9 255.255.255.254
!
router bgp 65002
 neighbor 198.51.100.8 remote-as 65001
 neighbor 198.51.100.8 description Wholesale SP
 !
 address family ipv4
 neighbor 198.51.100.8 activate
 neighbor 198.51.100.8 prefix-list AS65001-in
 neighbor 198.51.100.8 prefix-list AS65001-out
 network 203.0.113.1 255.255.255.255
 exit-address-family
 !
!
ip prefix-list AS65001-in seq 5 permit 198.51.100.1/32
ip prefix-list AS65001-out seq 5 permit 203.0.113.1/32
!

The Junos OS configuration follows these steps.

1. Define the interface configuration. Outside of the lab you should
expect to see multiple loopback addresses defined, for management,
for example, or for L2TP termination.

NOTE The interface facing the LAC/BNG should be configured with an MTU
beyond the default 1500 to allow for the overhead added by the L2TP
encapsulation (IP header plus UDP header plus L2TP header). Here, it
is to set to 1614 (including the Layer 2 header) to allow for any future
headers:

set interfaces lo0 unit 0 family inet address 203.0.113.1/32
set interfaces ge-0/0/2 unit 0 family inet address 198.51.100.9/31
set interfaces ge-0/0/2 mtu 1614

2. One difference between Cisco IOS and Junos is that on Junos the
Autonomous System number is configured under the routing options
stanza, whereas the rest of the BGP configuration is under protocols
BGP. To configure BGP, define and configure a group “BNG” and add
the neighbor to the group. You can see below the filtering of prefixes
that are sent and received from the BGP neighbor: it’s good practice to
do this filtering outside of the lab, too:

set routing-options autonomous-system 65002
set protocols bgp group BNG type external
set protocols bgp group BNG import AS65001-in
set protocols bgp group BNG family inet unicast
set protocols bgp group BNG export AS65001-out
set protocols bgp group BNG peer-as 65001
set protocols bgp group BNG local-as 65002

 26 Day One: Juniper Ambassadors’ Cookbook for 2017

set protocols bgp group BNG neighbor 198.51.100.8
set policy-options prefix-list AS65001-in 198.51.100.1/32
set policy-options prefix-list AS65001-out 203.0.113.1/32
set policy-options policy-statement AS65001-in term BNG from prefix-list AS65001-in
set policy-options policy-statement AS65001-in term BNG then accept
set policy-options policy-statement AS65001-in term reject then reject
set policy-options policy-statement AS65001-out term LNS from prefix-list AS65001-out
set policy-options policy-statement AS65001-out term LNS then accept
set policy-options policy-statement AS65001-out term reject then reject

3. Verify that the BGP session has been established and that the correct
loopback prefixes are being sent and received:

mdinham@lns> show route advertising-protocol bgp 198.51.100.8

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* 203.0.113.1/32 Self I

mdinham@lns> show route receive-protocol bgp 198.51.100.8

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* 198.51.100.1/32 198.51.100.8 65001 I

Things look good. The loopback address is being advertised and we
are receiving 198.51.100.1/32 from the LAC.

Subscriber Management Configuration

Configuration of the LNS features requires Junos enhanced subscriber
management to be enabled. You must configure enhanced subscriber
management to use dynamic profiles, which are an important part of
the dynamic subscriber configuration on vLNS. First configure en-
hanced subscriber management as shown here:

1. Set the chassis mode to enhanced IP network services:

set chassis network-services enhanced-ip

2. Enable enhanced subscriber management:

set system services subscriber-management enable

3. You will need to specify a maximum size for the configuration
database used by enhanced subscriber management. At the time of this
writing, Juniper recommends 300MB for vMX, MX240, 480, 980,
and 100MB for MX5, MX10, MX40, MX80, and MX104 routers.
It’s possible to further tune other configuration database parameters,
for example, for virtual memory mapping, but these parameters can be
left as default settings unless you have a specific reason to tune them.

set system configuration-database max-db-size 300M

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 27

4. Depending on the version of Junos that you are running, you might
also need to explicitly enable the following (not required for Junos
15.1F6). The smg-service is the main subscriber management session
management process:

set system processes smg-service enable
set system auto-configuration

5. Now commit the configuration. As you changed the network services
mode to enhanced-IP and enabled subscriber management, you will be
prompted to reboot the device. Take a few moments now to reboot the
vMX before continuing with the configuration process:

mdinham@lns# commit and-quit
[edit system services subscriber-management]
 ‘enable’
 WARNING: Chassis configuration for subscriber-management has been changed. A system reboot
is mandatory. Please reboot the system NOW. Continuing without a reboot might result in
unexpected system behavior.
commit complete
Exiting configuration mode

mdinham@lns> request system reboot
Reboot the system ? [yes,no] (no) yes

6. If you wish, when the MX has rebooted you can drop to a shell to
check that the enhanced subscriber management has enabled correctly.
If the parameter net.enhanced_bbe_support is showing as set to 1, then
you are good to go:

mdinham@lns> start shell
% sysctl net.enhanced_bbe_support
net.enhanced_bbe_support: 1

The configuration of enhanced subscriber management is now com-
plete, and it’s time to get going with the actual LNS configuration.

Configuring an LNS With Inline Service Interfaces

1. To define the PPP configuration for subscribers tunneled from the
LAC, configure a user group profile named ppp-client profile:

set access group-profile ppp-client-profile ppp idle-timeout 200
set access group-profile ppp-client-profile ppp ppp-options pap
set access group-profile ppp-client-profile ppp ppp-options chap
set access group-profile ppp-client-profile ppp keepalive 30

2. This user group profile is associated with an L2TP access profile, so
all subscribers handled by a given LAC share the same PPP attributes.
You can also configure PPP attributes on a per-subscriber basis if you
wish (not shown here).

 28 Day One: Juniper Ambassadors’ Cookbook for 2017

Here the client LAC (the vBNG in our case) is named lac_1. The client
name should match the hostname of the LAC or the Client ID as
configured on the LAC. There is also a special name “default” that
represents a default tunnel client and can therefore be used as a
catchall to match multiple LACs.

The client lac_1 is configured for a maximum of 2000 subscriber
sessions allowed via the tunnel. Setting interface-id configures the ID
for the interface representing an L2TP session and should match the
value you configure in the dynamic-profile dial-options (further
details below). Configuring LCP renegotiation causes the LNS to
renegotiate parameters with the PPP client rather than accepting what
is passed through from the LAC. The supported authentication
mechanisms are specified in the referenced user-group-profile. This is
also where you should define the shared secret tunnel password to be
used between the LAC and the LNS:

set access profile lac1-profile client lac_1 l2tp maximum-sessions-per-tunnel 2000
set access profile lac1-profile client lac_1 l2tp interface-id lns-l2tp-id
set access profile lac1-profile client lac_1 l2tp lcp-renegotiation
set access profile lac1-profile client lac_1 l2tp shared-secret juniper
set access profile lac1-profile client lac_1 user-group-profile ppp-client-profile

When comparing this to your Cisco LNS, these parameters can be
found by looking at the settings you have defined under vpdn-group and
the virtual-template. It should be self-explanatory that you must map
these settings over to your Junos configuration:

vpdn-group lac_1
 accept-dialin
 protocol any
 virtual-template 1
 terminate-from hostname lac_1
 lcp renegotiation on-mismatch
 l2tp tunnel password 0 juniper
!
interface Virtual-Template1
 ip unnumbered Loopback1
 peer default ip address pool p1
 ppp authentication chap radius1
 ppp authorization radius1
 ppp accounting radius1
!

3. Now configure an AAA access-profile as this will enable you to
override the global AAA configuration and apply the AAA profile to a
group of tunnels. It’s in this profile that you define all the important
details for your RADIUS server, such as IP addressing, ports, and
secret key. If you have a preferred source address, set it here also:

set access profile radius1 authentication-order radius
set access profile radius1 radius authentication-server 192.168.122.204
set access profile radius1 radius accounting-server 192.168.122.204
set access profile radius1 radius-server 192.168.122.204 port 1812

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 29

set access profile radius1 radius-server 192.168.122.204 accounting-port 1813
set access profile radius1 radius-server 192.168.122.204 secret juniper
set access profile radius1 radius-server 192.168.122.204 timeout 10
set access profile radius1 radius-server 192.168.122.204 retry 4
set access profile radius1 radius-server 192.168.122.204 source-address 203.0.113.1
set access profile radius1 accounting order radius

To define multiple RADIUS servers configure another radius server and
specify the IP address of the additional servers at set access profile
radius1 radius authentication-server and at set access profile radius1
radius accounting-server.

Let’s look again at the Cisco LNS configuration. The configuration is
different but easy to compare with, and move to, Junos. The group
radius1 is specified in the virtual-template interface settings:

aaa authentication ppp radius1 group radius
aaa authorization network radius1 group radius
aaa accounting network radius1 start-stop group radius
ip radius source-interface Loopback0
radius-server host 192.168.122.204 auth-port 1812 acct-port 1813
radius-server timeout 10
radius-server key juniper

4. In this example, our PPP subscriber will be assigned an IPv4 address
via a local address pool. On Junos it’s executed as follows and the pool
is named p1. If you like, you can also set the upper and lower
boundaries of the addresses in the pool range. A domain map named
default matches on all subscriber domains (realms) and specifies the
address-pool to be used by all subscribers matching the domain map. If
you prefer, specify a non-default realm (the pool could also be assigned
to a subscriber via RADIUS):

set access address-assignment pool p1 family inet network 203.0.113.128/25
set access address-assignment pool p1 family inet range p1-range low 203.0.113.128
set access address-assignment pool p1 family inet range p1-range high 203.0.113.191
set access domain map default address-pool p1

NOTE Remember to advertise the subscriber pool into your own network’s
routing.

When comparing this to the Cisco configuration, your keen eyes might
have spotted the pool being referenced in the virtual-template shown
above. The pool itself would be defined like this: ip local pool p1
203.0.113.128 203.0.113.255.

5. Now configure the inline service interface. This is a virtual anchor
interface on the packet forwarding engine and allows you to use L2TP
services without a services PIC. On the MX Series, this requires an
MPC. On the vMX you configure si-0/0/0 but this interface will vary
for other MX platforms. Choose a suitable bandwidth as required for
your implementation:

set chassis fpc 0 pic 0 inline-services bandwidth 1g

 30 Day One: Juniper Ambassadors’ Cookbook for 2017

The anchor interface itself must then be configured and assigned to a
service device pool. This pool will be referenced in an L2TP tunnel
group, which we will configure next.

set interfaces si-0/0/0 encapsulation generic-services
set interfaces si-0/0/0 unit 0 family inet
set services service-device-pools pool lns_p1 interface si-0/0/0

6. Now define the L2TP tunnel group (here named tg-dynamic) that
specifies attributes applicable to the L2TP tunnels and sessions from a
group of LAC clients. The tunnel group references the access profile
lac1-profile that was defined above and validates connections to the
LNS:

set services l2tp tunnel-group tg-dynamic l2tp-access-profile lac1-profile

Specify the AAA profile to authenticate subscribers. This setting over-
rides the global setting, if it is defined (e.g. set access-profile radius1):

set services l2tp tunnel-group tg-dynamic aaa-access-profile radius1

The local gateway is the interface address on the LNS that terminates
tunnels from the LAC, usually a loopback interface address.

set services l2tp tunnel-group tg-dynamic local-gateway address 203.0.113.1

Specify the pool of inline service anchor interfaces that was defined
earlier:

set services l2tp tunnel-group tg-dynamic service-device-pool lns_p1

And finally, the name of the dynamic profile that defines and configures
the per-subscriber inline service interfaces for L2TP sessions:

set services l2tp tunnel-group tg-dynamic dynamic-profile lns-client-profile

7. This example uses a dynamic profile named lns-client-profile.
Dynamic profiles can look a bit confusing at first glance but we are
setting the parameters for the subscriber sessions that tunnel to the
LNS, kind of like the virtual template interface on a Cisco LNS. The
variables (beginning with $) are dynamically set by the Junos OS when
the per-subscriber interface is created.

The logical subscriber interfaces are defined by the anchor service
interface ($junos-interface-ifd-name) and the logical unit number
($junos-interface-unit). Now create the dynamic profile and use
lns-l2tp-id as the interface-id to match what was set earlier in the LAC
client access profile. The interface is set to dedicated to indicate that the
logical interface can only relate to one subscriber at a time:

set dynamic-profiles lns-client-profile interfaces “$junos-interface-ifd-name” unit “$junos-
interface-unit” dial-options l2tp-interface-id lns-l2tp-id
set dynamic-profiles lns-client-profile interfaces “$junos-interface-ifd-name” unit “$junos-
interface-unit” dial-options dedicated

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 31

To enable IPv4 for the subscriber, configure the inet address family for
the logical interfaces and enable the IP address of the loopback inter-
face that provides the local termination for the L2TP tunnel:

set dynamic-profiles lns-client-profile interfaces “$junos-interface-ifd-
name” unit “$junos-interface-unit” family inet unnumbered-address “$junos-loopback-
interface”

Now, if you would like to route additional prefixes to the subscriber
there is a small amount of additional configuration to the dynamic
profile by configuring the routing options for the access routes. The
configuration is applied in a similar way to what you have already been
doing.

Access and Access-Internal Routes

DHCP and PPP on Junos represent a subscriber as a /32 access-internal
route and the networks routed to the subscriber as access routes.
Access routes are generally used to apply the Framed-Route (Framed-
IPv4-Route) and (Framed-IPv6-Route) attributes from RADIUS. A
Framed-Route only needs to specify the route prefix, but optionally
can include next-hop, metric, preference, and tag. If the next hop is not
explicitly specified, then its absence implies a next-hop of 0.0.0.0,
which must resolve to the subscriber CPE IP address.

Here the PPP subscriber interface ($junos-interface-name) is dynami-
cally created in the routing instance ($junos-routing-instance) that’s
assigned to the subscriber:

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” interface “$junos-interface-name”

Routing options for access routes are the usual options and include
next-hop address ($junos-framed-route-nexthop), metric ($junos-
framed-route-cost), and preference ($junos-framed-route-distance).

The next configuration creates the per subscriber routes that have been
passed to the LNS from the RADIUS server as access routes:

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options access route $junos-framed-route-ip-address-prefix next-
hop “$junos-framed-route-nexthop”
set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options access route $junos-framed-route-ip-address-
prefix metric “$junos-framed-route-cost”
set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options access route $junos-framed-route-ip-address-
prefix preference “$junos-framed-route-distance”
set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options access route $junos-framed-route-ip-address-prefix tag “$junos-
framed-route-tag”

 32 Day One: Juniper Ambassadors’ Cookbook for 2017

NOTE Starting in release 15.1R1, you no longer need to include the access-
internal stanza in the dynamic-profile when the access stanza is
present for Framed-Route support. If the RADIUS Framed-Route
attribute does not specify the next-hop, then the variable $junos-
framed-route-nexthop defaults to 0.0.0.0. As this implies, the subscriber
address should be used; the next hop is automatically resolved by
Junos using the subscriber IP address stored in the session database.

If Framed-Routes are not being used, a dynamic IP address variable
($junos-subscriber-ip-address) configures the routing options for
access-internal routes in the routing instance:

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options access-internal route $junos-subscriber-ip-address qualified-
next-hop “$junos-interface-name”

Now would be a good time to adjust your RE filters, if you’ve not done
so already. You will need to permit UDP port 1701 between the LAC
and the LNS to allow the traffic. An example policy is shown below,
which references the prefix list created earlier. Before applying this
policy to the loopback interface, add terms as needed to allow any
other traffic that should also be permitted:

set firewall family inet filter RE-FILTER term accept-l2tp from source-prefix-
list AS65001-in
set firewall family inet filter RE-FILTER term accept-l2tp from protocol udp
set firewall family inet filter RE-FILTER term accept-l2tp from destination-port 1701
set firewall family inet filter RE-FILTER term accept-l2tp then count accept-l2tp
set firewall family inet filter RE-FILTER term accept-l2tp then accept
set firewall family inet filter RE-FILTER term deny-l2tp from protocol udp
set firewall family inet filter RE-FILTER term deny-l2tp from destination-port 1701
set firewall family inet filter RE-FILTER term deny-l2tp then count reject-l2tp
set firewall family inet filter RE-FILTER term deny-l2tp then reject

And that’s it – the LNS is configured, now to fire up your PPP client
and test the connection.

NOTE If you are doing this on the vMX, even in the lab, be sure to have the
trial license applied before you attempt a subscriber connection,
otherwise you won’t see the sessions establish.

vBNG/vLNS Licensing

At the time of this writing, using the vMX in a live environment as a
virtual broadband network gateway (BNG) or virtual L2TP network
server (vLNS) requires a vMX Premium bandwidth license for each
virtual BNG/LNS instance and a Broadband Subscriber Scale license.
Broadband Subscriber Scale licenses are available in three packages:
Introductory, Preferred, and Elite.

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 33

Introductory Package – L2TP feature set (LNS), Secure Policy/Lawful
Intercept, Service Activation/Deactivation via RADIUS, RE-based
HTTP Redirect, e.g. LNS wholesale, Walled garden (billing).

Preferred Package – All Introductory features plus DHCP subscriber
services, PPP/LAC subscriber services, DHCP Relay and Local Server,
e.g. Residential BBE, Broadband business services, L2TP LAC.

Elite Package – All Preferred features, plus Wireless Policy Manage-
ment via Gx (PCEF), Wireline online charging via Gy (PCEF), Pseudo-
wire Headend Termination, Advanced Multicast Video QoS.

MORE? For more details see the vMX Datasheet available at http://www.
juniper.net/assets/us/en/local/pdf/datasheets/1000522-en.pdf.

Subscriber IP addressing

There are two ways to allocate IP addresses to your subscribers, either
as a local pool of addressing, as shown earlier, or directly from RA-
DIUS. Let’s look at the options.

By using a domain map you will be able to configure a map that
specifies various options for all subscribers in a domain/realm. This
map can be applied to a specific domain/realm or as a default applied
to all users. The default is created like this:

set access domain map default address-pool p1

This simply says use address pool p1 for all subscribers. Of course, this
could be overridden via RADIUS, or if you wanted to apply a domain
map to a specific domain/realm:

set access domain map example.com address-pool p2

Now, let’s look at how to allocate addressing to a subscriber in RA-
DIUS. It’s all done via the profile for the subscriber. To configure the
subscriber session to use an IP address from a local pool, use the
RADIUS attribute “Framed-Pool” specific to the LNS pool. For
example, to specify using a pool named “p2” the RADIUS profile
would look like this:

juniper@example.net Cleartext-Password := “juniper”
 Framed-Pool = “p2”

Alternatively, you can use RADIUS to assign a specific IP address to the
subscriber and that’s done using the attributes “Framed-IP-Address”
and “Framed-IP-Netmask”, and you can also route a prefix at the
subscriber:

http://www.juniper.net/assets/us/en/local/pdf/datasheets/1000522-en.pdf
http://www.juniper.net/assets/us/en/local/pdf/datasheets/1000522-en.pdf

 34 Day One: Juniper Ambassadors’ Cookbook for 2017

juniper@example.net Cleartext-Password := “juniper”
 Framed-IP-Address = 208.203.0.129,
 Framed-IP-Netmask = 255.255.255.255,
 Framed-Route = “208.203.0.64/28 208.203.0.129 1”

Verification

Now to validate and troubleshoot your configuration. Assuming
RADIUS is working correctly and you have a PPP client attempting to
connect, then you will see the subscriber session on the LNS. To check
that the subscriber has connected, you can do the following:

mdinham@lns> show subscribers
Interface IP Address/VLAN ID User Name LS:RI
si-0/0/0.3221225498 208.203.0.129 juniper@example.
net default:default

You can see the virtual interface and notice that it is a sub-interface of
the service interface that was defined earlier. It’s also possible to use the
extensive option to find out more details on the subscriber:

mdinham@lns> show subscribers extensive
Type: L2TP
User Name: juniper@example.net
IP Address: 208.203.0.129
IP Netmask: 255.255.255.255
Logical System: default
Routing Instance: default
Interface: si-0/0/0.3221225498
Interface type: Dynamic
Underlying Interface: si-0/0/0.3221225498
Dynamic Profile Name: lns-client-profile
State: Active
Radius Accounting ID: 27
Session ID: 27
PFE Flow ID: 39
Login Time: 2017-01-17 23:29:31 UTC
Accounting interval: 0
Dynamic configuration:
 junos-framed-route-ip-address-prefix: 208.203.0.64/28
 junos-framed-route-nexthop: 208.203.0.129
 junos-framed-route-cost: 1

Notice that you can now see details of the prefix that was routed to the
subscriber as well as other useful information such as the dynamic
profile that is in use and the subscriber login time.

You can also look up details on the subscriber like this, specify the
Session ID to see more information:

mdinham@lns> show network-access aaa subscribers
Username Logical system/Routing instance Client type Session-ID
juniper@example.net default:default l2tp 27

mdinham@lns> show network-access aaa subscribers session-id 27
Logical system/Routing instance Client type Session-

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 35

ID Session uptime Accounting
default:default l2tp 27 00:06:29 on/time

Well, none of this would be possible without L2TP, so here’s how to
look at the status of the L2TP tunnels between the LAC/BNG and the
LNS. There’s only one tunnel here, but in a live network, you should
expect to see many:

mdinham@lns> show services l2tp session
Tunnel local ID: 20080
 Local Remote State Interface Interface
 ID ID unit Name
 33419 52912 Established 3221225498 si-0/0/0

mdinham@lns> show services l2tp tunnel
 Local ID Remote ID Remote IP Sessions State
 20080 11032 198.51.100.1:1701 1 Established

Again, specifying the extensive option gives you much more informa-
tion on the L2TP tunnel:

mdinham@lns> show services l2tp session extensive
Tunnel local ID: 20080
 Session local ID: 33419, Session remote ID: 52912
 Interface unit: 3221225498
 State: Established
 Interface: si-0/0/0
 Mode: Dedicated
 Local IP: 203.0.113.1:1701, Remote IP: 198.51.100.1:1701
 Local name: lns, Remote name: lac_1
 Bearer type: 1, Framing type: 1
 LCP renegotiation: On, Authentication: None, Interface ID: si-0/0/0
 Call serial number: 120
 Tx speed: 1000000000, Rx speed: 0
 Create time: Tue Jan 17 23:29:31 2017, Up time: 00:09:16
 Idle time: N/A, ToS Reflect: Disabled
 Statistics since: Tue Jan 17 23:29:31 2017
 Packets Bytes
 Data Tx 0 0
 Data Rx 0 0

mdinham@lns> show services l2tp tunnel extensive
Waiting for statistics...
 Tunnel local ID: 20080, Tunnel remote ID: 11032
 Remote IP: 198.51.100.1:1701
 Sessions: 1, State: Established, Administrative State: Enabled
 Tunnel Name: 2/12
 Local IP: 203.0.113.1:1701
 Local name: lns, Remote name: lac_1
 Effective Peer Resync Mechanism: failover protocol
 Nas Port Method: none
 Tunnel Logical System: default, Tunnel Routing Instance: default
 Max sessions: 2000, Window size: 4, Hello interval: 60
 Create time: Tue Jan 17 23:28:57 2017, Up time: 00:09:43
 Idle time: 00:00:00, ToS Reflect: Disabled
 Interface Name: lns_p1, Tunnel Group Name: tg-dynamic
 Statistics since: Tue Jan 17 23:28:57 2017
 Packets Bytes
 Control Tx 16 439

 36 Day One: Juniper Ambassadors’ Cookbook for 2017

 Control Rx 18 904
 Data Tx 0 0
 Data Rx 0 0
 Errors Tx 0
 Errors Rx 0

Troubleshooting

If you are finding that subscribers are not connecting it can be useful to
turn on some traceoptions for debugging. The general-authentication-
service logs will show and authentication or RADIUS related issues:

set system processes general-authentication-service traceoptions file authlog
set system processes general-authentication-service traceoptions flag all

You should use specific traceoptions flags outside of the lab because
“flag all” will generate a lot of data. For example, if a subscriber is
using an incorrect password you will see the following in the logs:

Feb 13 17:57:10.424160 RADIUS server 192.168.122.204:1812 was used for last request
Feb 13 17:57:10.424174 authd_radius_callback: RADIUS server sent an ACCESS_
REJECT, failing login for session-id:8
Feb 13 17:57:10.424187 loadDefaultService:: default service for the subscriber is empty
Feb 13 17:57:10.424191 Radius result is CLIENT_REQ_STATUS_SUCCESS
Feb 13 17:57:10.424225 Parsing RADIUS message for session-id:8
Feb 13 17:57:10.424252 Framework - module(radius) return: FAILURE

For PPP issues, it’s useful to trace the PPP service:

set protocols ppp-service traceoptions file ppp-service
set protocols ppp-service traceoptions flag all

IPv6 Subscribers

But what about IPv6? Configuring IPv6 on LNS is not too different
from what has already been configured, but it does require a few
additional steps. Let’s get going.

NOTE There are several ways that an ISP could assign prefixes to an IPv6
subscriber. This recipe demonstrates a common method that dynami-
cally allocates the subscriber WAN address using NDRA and the
knowledge of IPv6 address as subscriber LAN address using DHCP-
PD. This recipe assumes some knowledge of IPv6 address assignment.
Look for a future Day One book to cover this topic in depth.

The recipe assumes that a base-level IPv6 configuration is already
applied, for example, loopback addressing and onward network
routing:

set interfaces lo0 unit 0 family inet6 address 2001:db8:0:1::1/128

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 37

There isn’t too much additional configuration required on the LNS to
enable dual stack IPv4/IPv6. Now configure the routing options for
access routes. The next configuration creates the per-subscriber routes
that have been passed to the LNS from the RADIUS server. Notice that
although the variables have changed, the configuration is very similar
to what you configured earlier for IPv4 routes; except for IPv6 a RIB is
specified:

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access route $junos-framed-route-ipv6-
address-prefix next-hop “$junos-framed-route-ipv6-nexthop”

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access route $junos-framed-route-ipv6-
address-prefix qualified-next-hop “$junos-interface-name”

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access route $junos-framed-route-ipv6-
address-prefix metric “$junos-framed-route-ipv6-cost”

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access route $junos-framed-route-ipv6-
address-prefix preference “$junos-framed-route-ipv6-distance”

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access route $junos-framed-route-ipv6-
address-prefix tag “$junos-framed-route-ipv6-tag”

NOTE If you try to amend a dynamic-profile whilst a subscriber is connected
on the same profile, Junos will not allow you to commit the configura-
tion. You can configure set system dynamic-profile-options versioning
and this will allow the amendment to be committed. Subscribers will
pick up the changed profile as they reconnect.

As mentioned earlier, from 15.1R1 the access-internal stanza is no
longer required in the dynamic profile when the access stanza is
present for framed route support:

set dynamic-profiles lns-client-profile routing-instances “$junos-routing-
instance” routing-options rib “$junos-ipv6-rib” access-internal route $junos-subscriber-
ipv6-address qualified-next-hop “$junos-interface-name”

Configure the address family for the logical subscriber interfaces and
enable the local address on the LNS that provides termination for the
L2TP tunnel as an unnumbered address derived from the loopback
interface:

set dynamic-profiles lns-client-profile interfaces “$junos-interface-ifd-
name” unit “$junos-interface-unit” family inet6 unnumbered-address $junos-loopback-
interface

Since this will be accomplished using NDRA, the configuration is
slightly different – a numbered address is configured rather than an
unnumbered address for the IPv6 local address. The variable $junos-

 38 Day One: Juniper Ambassadors’ Cookbook for 2017

ipv6-address represents the IPv6 address of the interface used for
router advertisements:

set dynamic-profiles lns-client-profile interfaces “$junos-interface-ifd-
name” unit “$junos-interface-unit” family inet6 address $junos-ipv6-address

Next, enable NDRA to assign an IPv6 address on the WAN link. This
prefix could be assigned locally from a pool or assigned via RADIUS:

set dynamic-profiles lns-client-profile protocols router-advertisement interface “$junos-
interface-name” prefix $junos-ipv6-ndra-prefix

To use DHCPv6 Prefix Delegation (DHCP-PD) to assign an IPv6 for
subscriber LAN addressing, the Junos local DHCP server is used. This
prefix could be assigned locally from a pool or assigned via RADIUS.
The interface is the inline services anchor interface that was configured
earlier, here si-0/0/0.0:

set system services dhcp-local-server dhcpv6 group v6-ppp-subscriber interface si-0/0/0.0

In this recipe, the subscriber WAN address and LAN address will be
allocated dynamically from local pools on the LNS. Now let’s create
two address assignment pools, one for NDRA and one for DHCP-PD.

Here a pool named ndra-pool is used for assigning the WAN address
from a pool of size /48. Each subscriber will be allocated a /64:

set access address-assignment pool ndra-pool family inet6 prefix 2001:db8:1000::/48
set access address-assignment pool ndra-pool family inet6 range r1 prefix-length 64

Here a pool named dhcp-pd-pool is used for assigning the LAN address
from a pool of size /36. Each subscriber will be allocated a /48:

set access address-assignment pool dhcp-pd-pool family inet6 prefix 2001:db8:2000::/36
set access address-assignment pool dhcp-pd-pool family inet6 range r1 prefix-length 48

Now that the pools are created you must tell Junos to use them. This
can be done in RADIUS by using the attributes Framed-IPv6-Pool to
specify the NDRA pool, and the attribute Delegated-IPv6-Prefix-Pool
to specify the DHCPv6 PD pool. Rather than doing it via RADIUS,
let’s configure Junos to use the pools just created by default.

You specify the default NDRA pool like this:

set access address-assignment neighbor-discovery-router-advertisement ndra-pool

And the DHCPv6 pool like this:

set system services dhcp-local-server dhcpv6 overrides delegated-pool dhcp-pd-pool

NOTE If using RADIUS to assign the WAN IPv6 Prefix or Pool, it can be
useful to use the Framed-Interface-Id attribute as this allows you to
control the IPv6 address that the subscriber will configure. For exam-
ple, using a Framed-Interface-Id of “0:0:0:2” will set the last 64 bits of
the subscriber address to be 0:0:0:2.

 Recipe 2: Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX 39

IPv6 Verification

Okay, the LNS is configured, so now it’s time for some verification.
This time when you look at the connected subscribers, the IPv6
prefixes are shown too:

mdinham@lns> show subscribers
Interface IP Address/VLAN ID User Name LS:RI
si-0/0/0.3221225558 208.203.0.129 juniper@example.net default:default
* 2001:db8:1000:2::/64
si-0/0/0.3221225558 2001:db8:2011::/48 default:default

Notice that if the subscriber disconnects and reconnects that a different
set of IPv6 prefixes will be assigned from the pool:

mdinham@lns> show subscribers
Interface IP Address/VLAN ID User Name LS:RI
si-0/0/0.3221225560 208.203.0.129 juniper@example.net default:default
* 2001:db8:1000:3::/64
si-0/0/0.3221225560 2001:db8:2012::/48 default:default

Adding the detail option will provide more information on how the
IPv6 prefix has been assigned:

mdinham@lns> show subscribers detail
Type: L2TP
User Name: juniper@example.net
IP Address: 208.203.0.129
IP Netmask: 255.255.255.255
IPv6 User Prefix: 2001:db8:1000:3::/64
Logical System: default
Routing Instance: default
Interface: si-0/0/0.3221225560
Interface type: Dynamic
Underlying Interface: si-0/0/0.3221225560
Dynamic Profile Name: lns-client-profile
State: Active
Radius Accounting ID: 101
Session ID: 101
PFE Flow ID: 101
Login Time: 2017-01-30 06:26:06 UTC

Type: DHCP
IPv6 Prefix: 2001:db8:2012::/48
Logical System: default
Routing Instance: default
Interface: si-0/0/0.3221225560
Interface type: Static
Underlying Interface: si-0/0/0.3221225560
MAC Address: 52:54:00:66:b5:57
State: Active
Radius Accounting ID: jnpr :102
Session ID: 102
Underlying Session ID: 101
PFE Flow ID: 101
Login Time: 2017-01-30 06:26:08 UTC
DHCP Options: len 48
00 01 00 0e 00 01 00 01 20 20 b4 6c 52 54 00 66 b5 57 00 08

 40 Day One: Juniper Ambassadors’ Cookbook for 2017

00 02 00 00 00 06 00 04 00 17 00 18 00 19 00 0c 00 00 00 01
00 00 00 00 00 00 00 00

To verify the pool used for NDRA and the delegated pool that is used
for DHCPv6 prefix delegation, use the extensive option to show the
length of prefixes that were delegated and the IPv6 address that is
configured on the subscriber interface on the LNS:

mdinham@lns> show subscribers extensive | match IPv6
IPv6 User Prefix: 2001:db8:1000:3::/64
IPv6 Address Pool: ndra-pool
IPv6 Interface Address: 2001:db8:1000:3::1/64
IPv6 Framed Interface Id: 4baa:89a0:8fa8:f572
 junos-ipv6-ndra-prefix: 2001:db8:1000:3::/64
IPv6 Prefix: 2001:db8:2012::/48
IPv6 Address Pool: ndra-pool
IPv6 Delegated Address Pool: dhcp-pd-pool

You can also see the IPv6 address bindings on the local DHCP server.
The prefix field shows DHCPv6 prefix assigned to the subscriber:

mdinham@lns> show dhcpv6 server binding
Prefix Session Id Expires State Interface Client DUID
2001:db8:2012::/48 102 85875 BOUND si-0/0/0.3221225560 LL_TIME0x1-
0x2020b46c-52:54:00:66:b5:57

Discussion

Using this recipe, you will be able to deploy a Juniper LNS on a MX
Series or a vMX. The configuration might look a bit different than the
Cisco LNS at first glace, but once everything is broken down into
components there’s no problem migrating the configuration. There’s a
lot of flexibility in the way an LNS can be configured on the Junos OS,
particularly when the LNS is terminating L2TP tunnels from multiple
service providers.

This cookbook recipe is similar to Recipe 11, Migrate Your Core to
Centralized Route Reflection and Segment Routing, in that we’re
utilizing BGP add-path. But here you will look at the issue of using
route reflection within a given routing environment, which dramatically
assists with the scaling of iBGP as it eliminates the full-mesh iBGP
requirement. While route reflection (RR) can simplify and help a
network to scale, as discussed in Recipe 11, this recipe considers an
issue when using the default parameters that can minimize the ability to
perform equal-cost-multipathing (ECMP) in an environment. There’s
nothing like a new knob in Junos to attract attention. Let’s jump into
the advantages of BGP multipathing despite the fact that we’re using a
route reflector.

Problem

Under normal circumstances, in a network using traditional iBGP
peering, if an identical route is introduced via multiple peers, a peer
receiving such routes will see that it has multiple paths to reach a given
destination. Let’s take a look at this behavior under normal circum-
stances to see how routing behaves in a traditional iBGP peering
relationship, using the topology illustrated in Figure 3.1

Recipe 3:
Achieving Multi-Path in Route Reflection Using
BGP Add Path

 42 Day One: Juniper Ambassadors’ Cookbook for 2017

Figure 3.1 Traditional iBGP Peering

You can see in Figure 3.1 that Autonomous System 14023 is com-
prised of four iBGP neighbors. In this case R1 and R2 have peering
relationships to the outside world via eBGP, and they also peer inter-
nally to each other and also to R4. Peering is done from loopback to
loopback, and the IGP in this case is OSPF. Both R1 and R2 have a
peering relationship to ISP B with an Autonomous System number of
76. In this case, identical routes are being advertised from ISP B to
both R1 and R2.

Let’s take a look at R4 to see how it perceives routes that are ingested
from R1 and R2:

root@r4> show bgp summary
Groups: 1 Peers: 2 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 8 6 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/
Dwn State|#Active/Received/Accepted/Damped...
172.16.1.1 14023 6 5 0 0 1:25 4/4/4/0 0/0/0/0
172.16.1.2 14023 13 12 0 1 4:08 2/4/4/0 0/0/0/0

root@r4> show route protocol bgp

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 43

66.66.66.0/24 *[BGP/170] 00:01:33, localpref 100, from 172.16.1.1
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
67.67.67.0/24 *[BGP/170] 00:01:33, localpref 100, from 172.16.1.1
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
76.76.76.0/24 *[BGP/170] 00:01:33, localpref 100, from 172.16.1.1
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
 [BGP/170] 00:04:16, localpref 100, from 172.16.1.2
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
77.77.77.0/24 *[BGP/170] 00:01:33, localpref 100, from 172.16.1.1
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
 [BGP/170] 00:04:16, localpref 100, from 172.16.1.2
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
88.88.88.0/24 *[BGP/170] 00:04:16, localpref 100, from 172.16.1.2
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0
89.89.89.0/24 *[BGP/170] 00:04:16, localpref 100, from 172.16.1.2
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0

In this case, you can see that each upstream autonomous system is
advertising two routes, and in the case of routes being advertised via
ISP A and ISPC, there is only a single next hop because these upstream
ISPs are only single-homed into AS 14023. However, in the case of the
76.76.76.0/24 and 77.77.77.0/24 routes advertised by ISPB, you’ll see
a total of two next hops on R4 because ISPB is multi-homed to R1 and
R2. Let’s get more details about this at 76.76.76.0/24:

root@r4> show route 76.76.76.0/24 extensive

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
76.76.76.0/24 (2 entries, 1 announced)
TSI:
KRT in-kernel 76.76.76.0/24 -> {indirect(262143)}
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934cc28
 Next-hop reference count: 12
 Source: 172.16.1.1
 Next hop type: Router, Next hop index: 568
 Next hop: 10.0.1.9 via ge-0/0/1.0, selected
 Protocol next hop: 172.16.1.1
 Indirect next hop: 942c910 262143
 State: <Active Int Ext>
 Local AS: 14023 Peer AS: 14023
 Age: 1:41 Metric2: 1
 Task: BGP_14023.172.16.1.1+179

 44 Day One: Juniper Ambassadors’ Cookbook for 2017

 Announcement bits (2): 0-KRT 4-Resolve tree 1
 AS path: 76 I
 Accepted
 Localpref: 100
 Router ID: 172.16.1.1
 Indirect next hops: 1
 Protocol next hop: 172.16.1.1 Metric: 1
 Indirect next hop: 942c910 262143
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.9 via ge-0/0/1.0
 172.16.1.1/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.9 via ge-0/0/1.0
 BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934ca30
 Next-hop reference count: 8
 Source: 172.16.1.2
 Next hop type: Router, Next hop index: 569
 Next hop: 10.0.1.13 via ge-0/0/2.0, selected
 Protocol next hop: 172.16.1.2
 Indirect next hop: 942c828 262142
 State: <NotBest Int Ext>
 Inactive reason: Not Best in its group - Router ID
 Local AS: 14023 Peer AS: 14023
 Age: 4:24 Metric2: 1
 Task: BGP_14023.172.16.1.2+52339
 AS path: 76 I
 Accepted
 Localpref: 100
 Router ID: 172.16.1.2
 Indirect next hops: 1
 Protocol next hop: 172.16.1.2 Metric: 1
 Indirect next hop: 942c828 262142
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.13 via ge-0/0/2.0
 172.16.1.2/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.13 via ge-0/0/2.0

And you can see that there are two next hops in the routing table,
although one of them is inactive due to the router ID selection in the
BGP path selection algorithm.

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 45

NOTE This is to be expected due to the fact that multipathing is not enabled in
any way. The important thing to stress here is that you are in fact receiv-
ing identical routes from both R1 and R2 for the routes advertised by
ISPB, and R4 can make a local decision as to which one of these is
preferred. You can then go on to enable multipathing and add a forward-
ing table load-balancing policy for true multipathing.

Now let’s compare and contrast this behavior to one in which route
reflection is used in the network, as shown in Figure 3.2. In this case, R3
is the RR, and the direct peering relationships between all of our devices
has been removed. So all devices will simply perform iBGP peering with
R3, as shown in Figure 3.2.

Figure 3.2 iBGP Route Reflection

Before diving too deeply into the output, let’s take a look at the configura-
tion at both R3 (the route reflector) and R4 (the route reflector client):

root@r4> show route 76.76.76.0/24 extensive

R3:
[edit protocols bgp]
root@r3# show
group RR_Clients {
 type internal;

 46 Day One: Juniper Ambassadors’ Cookbook for 2017

 local-address 172.16.1.3;
 cluster 1.1.1.1;
 neighbor 172.16.1.1;
 neighbor 172.16.1.2;
 neighbor 172.16.1.4;
}

R4:
[edit protocols bgp]
root@r4# show
group ibgp {
 type internal;
 local-address 172.16.1.4;
 neighbor 172.16.1.3;
}

As you can see, there’s a normal peering relationship where R3 is the
route reflector using a cluster ID of 1.1.1.1 and from the perspective of
R4, R3 simply sees it has a traditional iBGP peering relationship with
R4. Next you can also see that R3 is receiving routes from both R1 and
R2, and has multiple potential next hops available for the multi-homed
routes from ISP B:

root@r3> show bgp summary
Groups: 1 Peers: 3 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 8 6 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
172.16.1.1 14023 8 9 0 2 1:53 4/4/4/0
0/0/0/0
172.16.1.2 14023 51 56 0 1 12:43 2/4/4/0
0/0/0/0
172.16.1.4 14023 31 39 0 1 12:43 0/0/0/0
0/0/0/0

root@r3> show route protocol bgp

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

66.66.66.0/24 *[BGP/170] 00:01:56, localpref 100, from 172.16.1.1
 AS path: 66 I
 > to 10.0.1.1 via ge-0/0/1.0
67.67.67.0/24 *[BGP/170] 00:01:56, localpref 100, from 172.16.1.1
 AS path: 66 I
 > to 10.0.1.1 via ge-0/0/1.0
76.76.76.0/24 *[BGP/170] 00:01:56, localpref 100, from 172.16.1.1
 AS path: 76 I
 > to 10.0.1.1 via ge-0/0/1.0
 [BGP/170] 00:02:34, localpref 100, from 172.16.1.2
 AS path: 76 I

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 47

 > to 10.0.1.5 via ge-0/0/2.0
77.77.77.0/24 *[BGP/170] 00:01:56, localpref 100, from 172.16.1.1
 AS path: 76 I
 > to 10.0.1.1 via ge-0/0/1.0
 [BGP/170] 00:02:34, localpref 100, from 172.16.1.2
 AS path: 76 I
 > to 10.0.1.5 via ge-0/0/2.0
88.88.88.0/24 *[BGP/170] 00:02:29, localpref 100, from 172.16.1.2
 AS path: 88 I
 > to 10.0.1.5 via ge-0/0/2.0
89.89.89.0/24 *[BGP/170] 00:02:29, localpref 100, from 172.16.1.2
 AS path: 88 I
 > to 10.0.1.5 via ge-0/0/2.0

Let’s take a look at R4 to see what it’s receiving from R3:

root@r4> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 6 6 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
172.16.1.3 14023 60 51 0 2 13:59 6/6/6/0
0/0/0/0

root@r4> show route protocol bgp

inet.0: 21 destinations, 21 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

66.66.66.0/24 *[BGP/170] 00:03:12, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
67.67.67.0/24 *[BGP/170] 00:03:12, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
76.76.76.0/24 *[BGP/170] 00:03:12, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
77.77.77.0/24 *[BGP/170] 00:03:12, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
88.88.88.0/24 *[BGP/170] 00:03:44, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0
89.89.89.0/24 *[BGP/170] 00:03:44, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0

In this case, R4 is only seeing one next hop being advertised for the
routes that are being reflected from R3. Specifically, the two routes for
76.76.76.0/24 and 77.77.77.0/24 that are being ingested via R1 and
R2. If you want to allow for multipathing in your network and achieve
better load balancing and distribution of traffic, ideally you would

 48 Day One: Juniper Ambassadors’ Cookbook for 2017

want to see both next hops as available options.

Let’s take a further look at what R3 is advertising to better understand
what is happening:

root@r3> show route advertising-protocol bgp 172.16.1.4

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* 66.66.66.0/24 172.16.1.1 100 66 I
* 67.67.67.0/24 172.16.1.1 100 66 I
* 76.76.76.0/24 172.16.1.1 100 76 I
* 77.77.77.0/24 172.16.1.1 100 76 I
* 88.88.88.0/24 172.16.1.2 100 88 I
* 89.89.89.0/24 172.16.1.2 100 88 I

You can see that R3 is only advertising a single next hop for the routes
of 76.76.76.0/24 and 77.77.77.0/24. In order to better understand
why this is happening, let’s take a deeper look inside R3’s routing table:

root@r3> show route 76.76.76.0/24 extensive

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
76.76.76.0/24 (2 entries, 1 announced)
TSI:
KRT in-kernel 76.76.76.0/24 -> {indirect(262143)} Page 0 idx 0 Type 1 val 9380f50
 Nexthop: 172.16.1.1
 Localpref: 100
 AS path: [14023] 76 I
 Communities:
 Cluster ID: 1.1.1.1
 Originator ID: 172.16.1.1
 Advertise: 00000005
Path 76.76.76.0 from 172.16.1.1 Vector len 4. Val: 0
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934ca78
 Next-hop reference count: 12
 Source: 172.16.1.1
 Next hop type: Router, Next hop index: 569
 Next hop: 10.0.1.1 via ge-0/0/1.0, selected
 Protocol next hop: 172.16.1.1
 Indirect next hop: 9430570 262143
 State: <Active Int Ext>
 Local AS: 14023 Peer AS: 14023
 Age: 2:24 Metric2: 1
 Task: BGP_14023.172.16.1.1+55563
 Announcement bits (3): 0-KRT 3-BGP_RT_Background 4-Resolve tree 1
 AS path: 76 I
 Accepted
 Localpref: 100
 Router ID: 172.16.1.1
 Indirect next hops: 1
 Protocol next hop: 172.16.1.1 Metric: 1

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 49

 Indirect next hop: 9430570 262143
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.1 via ge-0/0/1.0
 172.16.1.1/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.1 via ge-0/0/1.0
 BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934c7a8
 Next-hop reference count: 8
 Source: 172.16.1.2
 Next hop type: Router, Next hop index: 571
 Next hop: 10.0.1.5 via ge-0/0/2.0, selected
 Protocol next hop: 172.16.1.2
 Indirect next hop: 9430658 262142
 State: <NotBest Int Ext>
 Inactive reason: Not Best in its group - Router ID
 Local AS: 14023 Peer AS: 14023
 Age: 3:02 Metric2: 1
 Task: BGP_14023.172.16.1.2+179
 AS path: 76 I
 Accepted
 Localpref: 100
 Router ID: 172.16.1.2
 Indirect next hops: 1
 Protocol next hop: 172.16.1.2 Metric: 1
 Indirect next hop: 9430658 262142
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.5 via ge-0/0/2.0
 172.16.1.2/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.5 via ge-0/0/2.0

Here, R3 is selecting the route from neighbor R1 as the preferred route
and choosing to make the route from R2 inactive due to the reason of
Not Best in its group - Router ID.

In this case, everything is behaving as expected. R3 is making a local
routing decision and choosing the best routes to make active, and this
is impacting the decisions on which routes to advertise to its route
reflector clients. So you can see that while route reflection has some
real scaling benefits, it also tends to mask some of the information in
your network that would make multipathing possible.

Without the ability to have these multiple next hops available to their
clients, RRs have but one available next hop at their disposal, and
therefore will not be able to perform any type of load-balancing on a
per-route basis.

 50 Day One: Juniper Ambassadors’ Cookbook for 2017

Solution

Okay, everything we’ve seen so far is normal, expected BGP behavior.
BGP peers advertise routes to each other in update messages and each
receiver stores those routes in the routing table. For each prefix in the
routing table, the routing protocol process selects a single best path,
called the active path. In the case of route reflection, the RR is choosing
to only send the single best path, or active path, to its reflector clients.

Instead of advertising only the active path to a destination, you can
configure BGP to advertise multiple paths to destinations. You can take
advantage of this when using route reflection so that you can once
again present the availability of multiple exit points to reach a given
destination. Not only does this provide for better load balancing of
traffic, it provides immediate fault tolerance in the event of a particular
exit point going down, as the local device will always have another
option available without having to wait for the surrounding network
to reconverge.

To take advantage of this ability to advertise not only the best path, but
all potential paths, you need to utilize the BGP add-path option to your
advertised NLRI. This needs to take place in two different places –
both in the route reflector itself as well as with the clients.

Let’s take a look at the configuration required to achieve this:

R3:
[edit protocols bgp]
root@r3# set group RR_Clients family inet unicast add-path send path-count 2

R4:
[edit]
root@r4# set protocols bgp group ibgp family inet unicast add-path receive

NOTE The path-count keyword indicates how many next hops you want to
advertise. In this case, you are telling the route reflector to send a
maximum of two paths to the RR clients, but if you want to advertise
more, you can, up to a maximum of six.

Once this configuration has been committed, you can now see that R3
is advertising multiple paths to R3. And R3 is receiving multiple paths
as a result:

R3:
root@r3> show route advertising-protocol bgp 172.16.1.4

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* 66.66.66.0/24 172.16.1.1 100 66 I
* 67.67.67.0/24 172.16.1.1 100 66 I

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 51

* 76.76.76.0/24 172.16.1.1 100 76 I
 172.16.1.2 100 76 I
* 77.77.77.0/24 172.16.1.1 100 76 I
 172.16.1.2 100 76 I
* 88.88.88.0/24 172.16.1.2 100 88 I
* 89.89.89.0/24 172.16.1.2 100 88 I

R4:
root@r4> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 8 6 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
172.16.1.3 14023 7 5 0 0 1:06 6/8/8/0
0/0/0/0

root@r4> show route protocol bgp

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

66.66.66.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
67.67.67.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
76.76.76.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
 [BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
77.77.77.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.9 via ge-0/0/1.0
 [BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
88.88.88.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0
89.89.89.0/24 *[BGP/170] 00:01:09, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0

One thing to make note of here is that even though there’s advertise-
ment of multiple paths via our route reflector, at this point the behavior
would be no different than a traditional iBGP method – even though
there’s multiple paths available, R4 will still only select one of them as
the best path, per the BGP path selection algorithm:

 52 Day One: Juniper Ambassadors’ Cookbook for 2017

root@r4> show route 76.76.76.0/24 exact extensive

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
76.76.76.0/24 (2 entries, 1 announced)
TSI:
KRT in-kernel 76.76.76.0/24 -> {indirect(262142)}
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934cc28
 Next-hop reference count: 12
 Source: 172.16.1.3
 Next hop type: Router, Next hop index: 568
 Next hop: 10.0.1.9 via ge-0/0/1.0, selected
 Protocol next hop: 172.16.1.1
 Indirect next hop: 942c658 262142
 State: <Active Int Ext>
 Local AS: 14023 Peer AS: 14023
 Age: 1:47 Metric2: 1
 Task: BGP_14023.172.16.1.3+179
 Announcement bits (2): 0-KRT 4-Resolve tree 1
 AS path: 76 I (Originator) Cluster list: 1.1.1.1
 AS path: Originator ID: 172.16.1.1
 Accepted
 Localpref: 100
 Router ID: 172.16.1.3
 Addpath Path ID: 1
 Indirect next hops: 1
 Protocol next hop: 172.16.1.1 Metric: 1
 Indirect next hop: 942c658 262142
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.9 via ge-0/0/1.0
 172.16.1.1/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.9 via ge-0/0/1.0
 BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934c958
 Next-hop reference count: 8
 Source: 172.16.1.3
 Next hop type: Router, Next hop index: 569
 Next hop: 10.0.1.13 via ge-0/0/2.0, selected
 Protocol next hop: 172.16.1.2
 Indirect next hop: 942c740 262143
 State: <NotBest Int Ext>
 Inactive reason: Not Best in its group - Router ID
 Local AS: 14023 Peer AS: 14023
 Age: 1:47 Metric2: 1
 Task: BGP_14023.172.16.1.3+179
 AS path: 76 I (Originator) Cluster list: 1.1.1.1
 AS path: Originator ID: 172.16.1.2
 Accepted
 Localpref: 100

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 53

 Router ID: 172.16.1.3
 Addpath Path ID: 2
 Indirect next hops: 1
 Protocol next hop: 172.16.1.2 Metric: 1
 Indirect next hop: 942c740 262143
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.13 via ge-0/0/2.0
 172.16.1.2/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.13 via ge-0/0/2.0

Here you can see that R4 is selecting the path via R1 as the best path
based on the router ID selection. Next, you can go on to enable true
multi-pathing by enabling the multipath statement within BGP and
also enabling a forwarding table load-balancing policy:

R4:
[edit]
root@r4# set protocols bgp group ibgp multipath

[edit]
root@r4# set policy-options policy-statement load-balance then load-balance per-packet

[edit routing-options]
root@r4# set routing-options forwarding-table export load-balance

Once this configuration has been committed, you can see that multiple
next hops are available not only in the routing table, but also in the
forwarding table, too:

root@r4> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 8 8 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
172.16.1.3 14023 38 37 0 0 15:30 8/8/8/0
0/0/0/0

root@r4> show route protocol bgp

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

66.66.66.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
67.67.67.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 66 I
 > to 10.0.1.9 via ge-0/0/1.0
76.76.76.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 76 I

 54 Day One: Juniper Ambassadors’ Cookbook for 2017

 to 10.0.1.9 via ge-0/0/1.0
 > to 10.0.1.13 via ge-0/0/2.0
 [BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
77.77.77.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 76 I
 to 10.0.1.9 via ge-0/0/1.0
 > to 10.0.1.13 via ge-0/0/2.0
 [BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 76 I
 > to 10.0.1.13 via ge-0/0/2.0
88.88.88.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0
89.89.89.0/24 *[BGP/170] 00:15:38, localpref 100, from 172.16.1.3
 AS path: 88 I
 > to 10.0.1.13 via ge-0/0/2.0

root@r4> show route 76.76.76.0/24 exact extensive

inet.0: 21 destinations, 23 routes (21 active, 0 holddown, 0 hidden)
76.76.76.0/24 (2 entries, 1 announced)
TSI:
KRT in-kernel 76.76.76.0/24 -> {indirect(262142), indirect(262143)}
 *BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x94281b0
 Next-hop reference count: 6
 Source: 172.16.1.3
 Next hop type: Router, Next hop index: 568
 Next hop: 10.0.1.9 via ge-0/0/1.0
 Next hop type: Router, Next hop index: 569
 Next hop: 10.0.1.13 via ge-0/0/2.0, selected
 Protocol next hop: 172.16.1.1
 Indirect next hop: 942c658 262142
 Protocol next hop: 172.16.1.2
 Indirect next hop: 942c740 262143
 State: <Active Int Ext>
 Local AS: 14023 Peer AS: 14023
 Age: 15:49 Metric2: 1
 Task: BGP_14023.172.16.1.3+179
 Announcement bits (2): 0-KRT 4-Resolve tree 1
 AS path: 76 I (Originator) Cluster list: 1.1.1.1
 AS path: Originator ID: 172.16.1.1
 Accepted Multipath
 Localpref: 100
 Router ID: 172.16.1.3
 Addpath Path ID: 1
 Indirect next hops: 2
 Protocol next hop: 172.16.1.1 Metric: 1
 Indirect next hop: 942c658 262142
 Indirect path forwarding next hops: 1
 Next hop type: Router

 Recipe 3: Achieving Multi-Path in Route Reflection Using BGP Add Path 55

 Next hop: 10.0.1.9 via ge-0/0/1.0
 172.16.1.1/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.9 via ge-0/0/1.0
 Protocol next hop: 172.16.1.2 Metric: 1
 Indirect next hop: 942c740 262143
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.13 via ge-0/0/2.0
 172.16.1.2/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.13 via ge-0/0/2.0
 BGP Preference: 170/-101
 Next hop type: Indirect
 Address: 0x934c958
 Next-hop reference count: 8
 Source: 172.16.1.3
 Next hop type: Router, Next hop index: 569
 Next hop: 10.0.1.13 via ge-0/0/2.0, selected
 Protocol next hop: 172.16.1.2
 Indirect next hop: 942c740 262143
 State: <NotBest Int Ext>
 Inactive reason: Not Best in its group - Router ID
 Local AS: 14023 Peer AS: 14023
 Age: 15:49 Metric2: 1
 Task: BGP_14023.172.16.1.3+179
 AS path: 76 I (Originator) Cluster list: 1.1.1.1
 AS path: Originator ID: 172.16.1.2
 Accepted MultipathContrib
 Localpref: 100
 Router ID: 172.16.1.3
 Addpath Path ID: 2
 Indirect next hops: 1
 Protocol next hop: 172.16.1.2 Metric: 1
 Indirect next hop: 942c740 262143
 Indirect path forwarding next hops: 1
 Next hop type: Router
 Next hop: 10.0.1.13 via ge-0/0/2.0
 172.16.1.2/32 Originating RIB: inet.0
 Metric: 1 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: 10.0.1.13 via ge-0/0/2.0

root@r4> show route forwarding-table destination 76.76.76.0/24
Routing table: default.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
76.76.76.0/24 user 0 ulst 262146 2
 indr 262142 4
 10.0.1.9 ucst 568 5 ge-0/0/1.0

 56 Day One: Juniper Ambassadors’ Cookbook for 2017

 indr 262143 4
 10.0.1.13 ucst 569 5 ge-0/0/2.0

Routing table: __master.anon__.inet
Internet:
Destination Type RtRef Next hop Type Index NhRef Netif
default perm 0 rjct 524 1

Discussion

The add-path attribute is a particularly useful tool to use, especially
when implementing route reflection in a given environment. It enables
an RR to advertise not only the best path, but multiple paths to a given
destination. There are many other use cases outside of simple route
reflection where the add-path attribute may be desired, however,
especially where multiple paths are needed to be instantiated in the
routing table. It is important to note that in order to enable true
multipathing, you must still enable the multi-path knob within BGP and
also instantiate a forwarding table load-balancing policy.

Another consideration is that this knob becomes very important when
designing IP Clos Fabrics employing the use of route reflection. In these
cases, you may have a number of destinations available in your IP fabric
in order to reach VTEP endpoints for creating VXLAN overlays. Using
route reflection simplifies the design of the underlay network and
allows the underlay to scale, but without the add-path attribute, you’ll
lose the ability to multipath through the network.

As hardware and services become more virtualized your network needs
to support these services. For example, connecting Layer 2 networks
across multiple datacenters continues to be a pressing challenge. In
addition to avoiding the common pitfalls of stretching Layer 2 across
the WAN, forcing updates for MAC address learning in a single Layer 2
domain becomes problematic. One solution to these issues is to utilize
Virtual Extensible LAN (VXLAN) technologies with Ethernet VPN
(EVPN) signaling. Let’s investigate this as a cookbook recipe.

Problem

Let’s say you have two data centers, one in Boston and one in Chicago,
that have virtualized infrastructures as shown in Figure 4.1. You want
to extend a VLAN across a dark fiber circuit that connects the two data
centers together. In addition, the data centers will utilize vMotion to
transparently migrate Virtual Machine (VM) guests from one data
center to the other. And you want to avoid a pure Layer 2 stretch due to
inherent problems with stability in the event of a loop on the network.
How can these requirements be accomplished?

Recipe 4:
EVPN and Virtual Machine Mobility

 58 Day One: Juniper Ambassadors’ Cookbook for 2017

Figure 4.1 This Recipe’s Topology of Two Data Centers

Solution

To solve this quandary let’s use EVPN with a VXLAN overlay using
QFX5100 switches. EVPN becomes the control plane and source of all
MAC addresses, and can use proxy arp for hosts external to the local
virtualized environment. EVPN also has built-in protections that reduce
broadcast storms in the event of a loop inside a data center. When VM
guests are migrated from one data center to another, EVPN can send updates
via BGP to force MAC learning across each respective data center. VXLAN
provides the overlay infrastructure to transport traffic across the data center.

NOTE The QFX5100 switches are only capable of Layer 2 Virtual Tunneling
Endpoints (VTEPs).

Configuration

First, let’s configure the interfaces on the QFX5100 switches. The
interface xe-0/0/0 will be bridged to the vCenter hosts, while et-0/0/49
will be used to terminate the fiber connecting the two data centers.
The loopback interface (lo0.0) will be utilized as a VTEP as well as the
route distinguisher:

 Recipe 4: EVPN and Virtual Machine Mobility 59

QFX5100-Boston
[edit]
set interfaces xe-0/0/0 description “To vCenter”
set interfaces xe-0/0/0 encapsulation ethernet-bridge
set interfaces xe-0/0/0 unit 0
set interfaces et-0/0/49 description “To Chicago QFX”
set interfaces et-0/0/49 mtu 1600
set interfaces et-0/0/49 unit 0 family inet address 192.168.255.1/31
set interfaces lo0 unit 0 family inet address 10.0.0.2/32

QFX5100-Chicago
[edit]
set interfaces xe-0/0/0 description “To vCenter”
set interfaces xe-0/0/0 encapsulation ethernet-bridge
set interfaces xe-0/0/0 unit 0
set interfaces et-0/0/49 description “To Boston QFX”
set interfaces et-0/0/49 mtu 1600
set interfaces et-0/0/49 unit 0 family inet address 192.168.255.0/31
set interfaces lo0 unit 0 family inet address 10.0.0.1/32

NOTE The interfaces connecting the two data centers must have a Maximum
Transmission Unit (MTU) be set to at least 1550 due to the additional
VXLAN header for VXLAN-encapsulated traffic. A general recommenda-
tion is to set this to 1600 for future growth in VXLAN or to accommodate
future headers.

Next you need to to configure a VLAN that will be tunneled across the
network:

QFX5100-Boston and QFX5100-Chicago
[edit]
set vlans vlan101 interface xe-0/0/0.0

Before BGP is configured you need to set up several policies to allow
each QFX to reach the other’s loopback address. For the sake of
simplicity, the policy will advertise all directly connected routes. In
addition to this you need to configure a community that will be tagged
on each advertised EVPN route, and an import policy to accept all
routes learned through that community:

QFX5100-Boston and QFX5100-Chicago
[edit]
set policy-options policy-statement VRF-IMPORT term vxlan101 from community vxlan101
set policy-options policy-statement VRF-IMPORT term vxlan101 then accept
set policy-options policy-statement VRF-IMPORT then reject
set policy-options policy-statement allow-loopbacks term direct from protocol direct
set policy-options policy-statement allow-loopbacks term direct then accept
set policy-options policy-statement allow-loopbacks then reject
set policy-options community vxlan101 members target:1:101

Next up is the BGP configuration. Since BGP supports the use of
multiple protocols (in this case, IPv4 and EVPN) you can configure
two families to be transferred in a single BGP session. Both sites will
use a unique Autonomous System (AS) to ensure that External BGP
(eBGP) is used. This is also where the export policy allow-loopbacks
comes into play:

 60 Day One: Juniper Ambassadors’ Cookbook for 2017

QFX5100-Boston
[edit]
set routing-options router-id 10.0.0.2
set routing-options autonomous-system 65002
set protocols bgp group vxlan type external
set protocols bgp group vxlan family inet unicast
set protocols bgp group vxlan family evpn signaling
set protocols bgp group vxlan export allow-loopbacks
set protocols bgp group vxlan neighbor 192.168.255.0 description qfx5100-chicago
set protocols bgp group vxlan neighbor 192.168.255.0 peer-as 65001

QFX5100-Chicago
[edit]
set routing-options router-id 10.0.0.1
set routing-options autonomous-system 65001
set protocols bgp group vxlan type external
set protocols bgp group vxlan family inet unicast
set protocols bgp group vxlan family evpn signaling
set protocols bgp group vxlan export allow-loopbacks
set protocols bgp group vxlan neighbor 192.168.255.1 description qfx5100-boston
set protocols bgp group vxlan neighbor 192.168.255.1 peer-as 65002

Okay, now the VXLAN configuration. Each VLAN is tied to a unique
Virtual Network Identifier (VNI) so you can transport multiple VLANs
across a single BGP session. Each VNI is then tied to a unique Virtual
Routing and Forwarding (VRF) instance in order to set up a path for
broadcast, unknown unicast, and multicast (BUM) traffic between the
QFX Series 5100 devices. Each VRF will import the routes from the
import policy created in a previous step. Since you want to dynamically
add more QFX switches for data center expansion in the future, this VRF
signaling will allow new QFX Series devices to automatically join the
topology. The VRFs also provide isolation so routes from other VNIs are
never leaked into VNI101. Each QFX will have a route-distinguisher
configured so you can distinguish where learned routes originated. From
here, let’s configure the VTEP source interface as lo0.0. This serves as the
point where LAN traffic is encapsulated in a VXLAN header before it is
transported between data centers:

QFX5100-Boston
[edit]
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.0.2:1
set switch-options vrf-import VRF-IMPORT
set switch-options vrf-target target:9999:9999
set vlans vlan101 vxlan vni 101
set vlans vlan101 vxlan ingress-node-replication

QFX5100-Chicago
[edit]
set switch-options vtep-source-interface lo0.0
set switch-options route-distinguisher 10.0.0.1:1
set switch-options vrf-import VRF-IMPORT
set switch-options vrf-target target:9999:9999
set vlans vlan101 vxlan vni 101
set vlans vlan101 vxlan ingress-node-replication

 Recipe 4: EVPN and Virtual Machine Mobility 61

Finally, let’s configure the EVPN signaling and VXLAN encapsulation.
Each EVPN route learned inside VNI101 will be exported with a VRF
target called target:1:101, which matches the community that was
configured in the previous steps. All routes matching this target will then
be accepted by the VRF due to the VRF-IMPORT policy that was previ-
ously configured. Then a VNI list that will be allowed through this EVPN
signaling is set up:

QFX5100-Boston and QFX5100-Chicago
[edit]
set protocols evpn vni-options vni 101 vrf-target export target:1:101
set protocols evpn encapsulation vxlan
set protocols evpn extended-vni-list all
set protocols evpn multicast-mode ingress-replication

Commit the changes and then you can start to verify the configuration:

QFX5100-Boston and QFX5100-Chicago
[edit]
root@# commit and-quit
configuration check succeeds
commit complete

Verification

You should now have a fully functional VXLAN deployment that allows
you to migrate VM guests from one data center to another. Let’s begin
with some BGP validation:

root@Boston-QFX5100> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0
 2 1 0 0 0 0
bgp.evpn.0
 2 2 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
192.168.255.0 65001 2642 2794 0 0 19:48:39 Establ
 inet.0: 1/2/2/0
 bgp.evpn.0: 2/2/2/0
 default-switch.evpn.0: 2/2/2/0
 __default_evpn__.evpn.0: 0/0/0/0

root@Chicago-QFX5100> show bgp summary
Groups: 1 Peers: 1 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0
 2 1 0 0 0 0
bgp.evpn.0
 1 1 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
192.168.255.1 65002 2796 2642 0 3 19:48:46 Establ
 inet.0: 1/2/2/0
 bgp.evpn.0: 1/1/1/0

 62 Day One: Juniper Ambassadors’ Cookbook for 2017

 default-switch.evpn.0: 1/1/1/0
 __default_evpn__.evpn.0: 0/0/0/0

You can see in the output that both the family inet and family evpn
protocols are being accepted across the BGP peers. Now let’s look at
the Ethernet switching table to determine the VM guests that are being
learned from vCenter:

root@Boston-QFX5100> show ethernet-switching table interface xe-0/0/0.0

MAC database for interface xe-0/0/0.0

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
 SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 3 entries, 3 learned
Routing instance : default-switch
 Vlan MAC MAC Logical Active
 name address flags interface source
 vlan101 00:0c:29:1e:3f:a8 D xe-0/0/0.0

root@Chicago-QFX5100> show ethernet-switching table interface xe-0/0/0.0

MAC database for interface xe-0/0/0.0

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
 SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 3 entries, 3 learned
Routing instance : default-switch
 Vlan MAC MAC Logical Active
 name address flags interface source
 vlan101 00:50:56:ab:ca:70 D xe-0/0/0.0

From this output you now know that Boston-QFX5100 has learned
MAC Address 00:0c:29:1e:3f:a8 on its xe-0/0/0 interface, while
Chicago-QFX5100 has learned MAC Address 00:50:56:ab:ca:70 from
its xe-0/0/0 interface. What do these learned MACs look like on the
remote switch?

root@Boston-QFX5100> show ethernet-switching table 00:50:56:ab:ca:70

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
 SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 3 entries, 3 learned
Routing instance : default-switch
 Vlan MAC MAC Logical Active
 name address flags interface source
 vlan101 00:50:56:ab:ca:70 D vtep.32769 10.0.0.1

root@Chicago-QFX5100> show ethernet-switching table 00:0c:29:1e:3f:a8

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
 SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

 Recipe 4: EVPN and Virtual Machine Mobility 63

Ethernet switching table : 3 entries, 3 learned
Routing instance : default-switch
 Vlan MAC MAC Logical Active
 name address flags interface source
 vlan101 00:0c:29:1e:3f:a8 D vtep.32769 10.0.0.2

From this output you can verify the MACs are being learned remotely
through the VTEP interfaces, which are sourced by the IP address of
the loopback interface of the respective remote switch. Now let’s look
at the routes being learned by the EVPN protocol:

root@Boston-QFX5100> show route protocol bgp table bgp.evpn.0

bgp.evpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2:10.0.0.1:1::101::00:50:56:ab:ca:70/304
 *[BGP/170] 20:37:40, localpref 100
 AS path: 65001 I, validation-state: unverified
 > to 192.168.255.0 via et-0/0/49.0
3:10.0.0.1:1::101::10.0.0.1/304
 *[BGP/170] 20:37:40, localpref 100
 AS path: 65001 I, validation-state: unverified
 > to 192.168.255.0 via et-0/0/49.0

root@Chicago-QFX5100> show route protocol bgp table bgp.evpn.0

bgp.evpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2:10.0.0.2:1::101::00:0c:29:1e:3f:a8/304
 *[BGP/170] 00:19:52, localpref 100
 AS path: 65002 I, validation-state: unverified
 > to 192.168.255.1 via et-0/0/49.0
3:10.0.0.2:1::101::10.0.0.2/304
 *[BGP/170] 20:37:58, localpref 100
 AS path: 65002 I, validation-state: unverified
 > to 192.168.255.1 via et-0/0/49.0

Each route shows the following information listed in Table 4.1.

Table 4.1 EVPN Route Breakdown

Switch Route Type VTEP VNI MAC Address Gateway IP Preference

Boston-
QFX5100

2 (MAC Address) 10.0.0.1 101 00:50:56:ab:ca:70 -- 304

Boston-
QFX5100

3 (BUM Path) 10.0.0.1 101 -- 10.0.0.1 304

Chicago-
QFX5100

2 (MAC Address) 10.0.0.2 101 00:0c:29:1e:3f:a8 -- 304

Chicago-
QFX5100

3 (BUM Path) 10.0.0.2 101 -- 10.0.0.2 304

 64 Day One: Juniper Ambassadors’ Cookbook for 2017

What happens when a VM is migrated from one data center to another?
Let’s find out! Let’s vMotion the VM Guest 00:0c:29:1e:3f:a8 from the
Boston Data Center to the Chicago Data Center and review the Ethernet
switching table and the EVPN routes on the Boston QFX5100 Series:

root@Boston-QFX5100> show ethernet-switching table 00:0c:29:1e:3f:a8

MAC flags (S - static MAC, D - dynamic MAC, L - locally learned, P - Persistent static
 SE - statistics enabled, NM - non configured MAC, R - remote PE MAC, O - ovsdb MAC)

Ethernet switching table : 4 entries, 4 learned
Routing instance : default-switch
 Vlan MAC MAC Logical Active
 name address flags interface source
 vlan101 00:0c:29:1e:3f:a8 D vtep.32769 10.0.0.1

root@Boston-QFX5100> show route protocol bgp table bgp.evpn.0

bgp.evpn.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2:10.0.0.1:1::101::00:0c:29:1e:3f:a8/304
 *[BGP/170] 00:01:01, localpref 100
 AS path: 65001 I, validation-state: unverified
 > to 192.168.255.0 via et-0/0/49.0
2:10.0.0.1:1::101::00:50:56:ab:ca:70/304
 *[BGP/170] 20:57:17, localpref 100
 AS path: 65001 I, validation-state: unverified
 > to 192.168.255.0 via et-0/0/49.0
3:10.0.0.1:1::101::10.0.0.1/304
 *[BGP/170] 20:57:17, localpref 100
 AS path: 65001 I, validation-state: unverified
 > to 192.168.255.0 via et-0/0/49.0

You can see the MAC address that was originally learned on xe-0/0/0 is
now being advertised as an EVPN route, and the Ethernet switching
table now shows the VTEP interface as the source for the MAC Address!
Any VM Guests on the Boston QFX5100 that need to reach
00:0c:29:1e:3f:a8 will be proxied through the QFX5100 Series.

Discussion

Using EVPN and VXLAN together is a very effective tool for handling
data center interconnects without having to stretch Layer 2 protocols
between the data centers. EVPN provides the signaling capabilities for
learning MAC addresses over a Layer-3 protocol, while the VXLAN
overlay handles the transport of communication between VM Guests.

MORE? Try the excellent Day One: Using Ethernet VPNs for Data Center Intercon-
nect, a more thorough topic discussion of using EVPN: http://www.juniper.
net/us/en/training/jnbooks/day-one/proof-concept-labs/using-ethernet-vpns/.
For an excellent overview of EVPN go to the Juniper TechLibrary: https://
www.juniper.net/documentation/en_US/junos/topics/concept/evpns-over-
view.html.

http://www.juniper.net/us/en/training/jnbooks/day-one/proof-concept-labs/using-ethernet-vpns/
http://www.juniper.net/us/en/training/jnbooks/day-one/proof-concept-labs/using-ethernet-vpns/
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpns-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpns-overview.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/evpns-overview.html

While the OSPF areas in a network can correspond to individual sites,
there are other situations when multiple sites of a network are required
to be in a single area or domain. In these situations, you can opt for a
VPN service from a service provider and exchange the routing informa-
tion between sites using an MPLS VPN backbone.

Problem

With traditional OSPF to BGP redistribution, the OSPF route type is
not preserved. So even if the same route is redistributed again in OSPF,
via BGP, it always appears to be an external route (LSA Type 5). This
problem can be dealt with in two ways:

 � Using a sham link

 � Using a BGP extended community domain ID and having MPLS
L3VPN extend the typical OSPF routes to multiple CE sites

Both solutions are covered in this Ambassador Cookbook recipe.

Solution 1: Sham link

A sham link can be used to connect the VPN client sites running the
OSPF protocol. A sham link is an intra-area logical point-to-point link
between two PE VRFs and can be used when a backdoor link exists
between the two sites (it’s supposed to be a backup link while traffic
through the MPLS VPN is primary).

Recipe 5:
OSPF as a PE-CE Routing Protocol in MPLS VPNs

 66 Day One: Juniper Ambassadors’ Cookbook for 2017

The backup and primary selection between the sham link and back-
door link can be manipulated through metric change. Through a sham
link, the OSPF packets are tunneled across MPLS LSPs between the PE
routers. A receiving PE router then sends the received MPLS-tunneled
OSPF LSAs to the local CE router, hence the OSPF LSA type is re-
tained. The routes learned by the remote PE router through the OSPF
protocol (the sham link) cannot be used by the PE router for forward-
ing, hence PE routers also need to learn those routes through MP-BGP.

Figure 5.1 This Recipe’s Sham Link Solution Topology

Figure 5.1 shows the sham link functionality. The first task is to get
basic topology set, getting MP-BGP established between the PE routers
(PE1 and PE2) and the MPLS LSPs in place, then configuring the
routing instance VRFs on both PE1 and PE2.

NOTE The OSPF protocol is already configured on both sites, while subnet
203.0.113.0/24 is an external subnet to Stockholm CE.

To configure OSPF sham link:

Configure MX Series PE1 and PE2:
lab@STOCKHOLM> show configuration protocols ospf
area 0.0.0.0 {
 interface ge-0/2/2.0; >> Interface connected to PE1
 interface lo0.0;
}

lab@VIENNA> show configuration protocols ospf
area 0.0.0.0 {
 interface ge-0/2/4.0; >> Interface connected to PE2

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 67

 interface lo0.0;
 interface ge-0/2/5.0; >> Interface connected to another OSPF speaker in VIENNA cloud
}

Configure the MX Series PE routers:
lab@PE1> show configuration routing-instances STOCKHOLM_VRF
instance-type vrf;
interface ge-0/2/1.0;
interface lo0.1;
route-distinguisher 192.0.2.1:64513;
vrf-target target:123:100;
protocols {
 ospf {
 sham-link local 192.0.2.1;
 area 0.0.0.0 {
 sham-link-remote 192.0.2.2 metric 1;
 interface ge-0/2/1.0;
 interface lo0.1;
 }
 }
}

lab@PE2> show configuration routing-instances VIENNA_VRF
instance-type vrf;
interface ge-0/2/1.0;
interface lo0.1;
route-distinguisher 192.0.2.2:64512;
vrf-target target:123:100;
protocols {
 ospf {
 sham-link local 192.0.2.2;
 area 0.0.0.0 {
 sham-link-remote 192.0.2.1 metric 1;
 interface lo0.1;
 interface ge-0/2/1.0;
 }
 }
}

As mentioned, the remote PE routers won’t be able to forward packets
through LSAs learned from the sham link, so you need to have “vrf-
target” or “vrf-export/import policies” in place. These will handle
route distribution through MP-BGP. The sham link’s local address
should be the loopback address and the remote PE’s sham link will be
the loopback address of the concerned PE. The MP-BGP reachability
of loopback addresses between PE routers is taken care by the vrf-
target or vrf-export/import policies.

To verify the sham link:

First verify the OSPF adjacency:
lab@STOCKHOLM> show ospf neighbor
Address Interface State ID Pri Dead
192.51.100.60 ge-0/2/2.0 Full 192.0.2.1 128 36

lab@VIENNA> show ospf neighbor
Address Interface State ID Pri Dead
192.51.100.50 ge-0/2/4.0 Full 192.0.2.2 128 34
192.51.100.65 ge-0/2/5.0 Full 192.51.100.65 128 33

 68 Day One: Juniper Ambassadors’ Cookbook for 2017

lab@PE2> show ospf neighbor instance VIENNA_VRF
Address Interface State ID Pri Dead
192.51.100.51 ge-0/2/1.0 Full 192.51.100.1 128 37
192.0.2.1 shamlink.0 Full 192.0.2.1 0 35

lab@PE1> show ospf neighbor instance STOCKHOLM_VRF
Address Interface State ID Pri Dead
192.51.100.61 ge-0/2/1.0 Full 192.51.100.2 128 33
192.0.2.2 shamlink.0 Full 192.0.2.2 0 39

Now check the OSPF database status on both MX routers:
lab@STOCKHOLM> show ospf database

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 192.0.2.1 192.0.2.1 0x8000000a 305 0x22 0x76c2 48
Router 192.0.2.2 192.0.2.2 0x80000006 335 0x22 0x86b2 48
Router 192.51.100.1 192.51.100.1 0x80000006 616 0x22 0xab0d 60
Router *192.51.100.2 192.51.100.2 0x80000008 304 0x22 0xcb2b 48
Router 192.51.100.65 192.51.100.65 0x80000003 612 0x22 0x804a 36
Network *192.51.100.61 192.51.100.2 0x80000002 2430 0x22 0xe0d6 32
Network 192.51.100.51 192.51.100.1 0x80000001 1700 0x22 0xe255 32
Network 192.51.100.65 192.51.100.65 0x80000001 617 0x22 0xae66 32
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern *203.0.113.0 192.51.100.2 0x80000001 344 0x22 0x9c7e 36

lab@VIENNA> show ospf database

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 192.0.2.1 192.0.2.1 0x8000000a 688 0x22 0x76c2 48
Router 192.0.2.2 192.0.2.2 0x80000006 716 0x22 0x86b2 48
Router *192.51.100.1 192.51.100.1 0x80000006 995 0x22 0xab0d 60
Router 192.51.100.2 192.51.100.2 0x80000008 689 0x22 0xcb2b 48
Router 192.51.100.65 192.51.100.65 0x80000003 991 0x22 0x804a 36
Network 192.51.100.61 192.51.100.2 0x80000002 2815 0x22 0xe0d6 32
Network *192.51.100.51 192.51.100.1 0x80000001 2079 0x22 0xe255 32
Network 192.51.100.65 192.51.100.65 0x80000001 996 0x22 0xae66 32
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern 203.0.113.0 192.51.100.2 0x80000001 729 0x22 0x9c7e 36

You can see that Stockholm retains the LSA type (Router/Network)
learned from Vienna as highlighted in boldface. Even the External LSA
being advertised from Stockholm to Vienna is installed in the database
of Vienna as an External LSA Type 5.

Now let’s check out the route table on the MXs:
lab@STOCKHOLM> show route table inet.0

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[Direct/0] 00:41:39
 > via ge-0/2/2.0
192.51.100.61/32 *[Local/0] 00:41:39
 Local via ge-0/2/2.0
192.51.100.1/32 *[OSPF/10] 00:06:02, metric 3

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 69

 > to 192.51.100.60 via ge-0/2/2.0
192.51.100.2/32 *[Direct/0] 00:41:40
 > via lo0.0
192.51.100.50/31 *[OSPF/10] 00:06:02, metric 3
 > to 192.51.100.60 via ge-0/2/2.0
192.51.100.64/31 *[OSPF/10] 00:06:02, metric 4
 > to 192.51.100.60 via ge-0/2/2.0
203.0.113.0/24 *[Static/5] 00:06:13
 Receive
224.0.0.5/32 *[OSPF/10] 01:13:38, metric 1
 MultiRecv

lab@VIENNA> show route table inet.0

inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[OSPF/10] 00:11:33, metric 3
 > to 192.51.100.50 via ge-0/2/4.0
192.51.100.1/32 *[Direct/0] 00:34:58
 > via lo0.0
192.51.100.2/32 *[OSPF/10] 00:11:33, metric 3
 > to 192.51.100.50 via ge-0/2/4.0
192.51.100.50/31 *[Direct/0] 00:34:58
 > via ge-0/2/4.0
192.51.100.51/32 *[Local/0] 00:34:58
 Local via ge-0/2/4.0
192.51.100.64/31 *[Direct/0] 00:16:54
 > via ge-0/2/5.0
192.51.100.64/32 *[Local/0] 00:16:54
 Local via ge-0/2/5.0
203.0.113.0/24 *[OSPF/150] 00:11:33, metric 0, tag 0
 > to 192.51.100.50 via ge-0/2/4.0
224.0.0.5/32 *[OSPF/10] 01:18:43, metric 1
 MultiRecv

And now let’s check the routes in the PE VRFs:
lab@PE1> show route table STOCKHOLM_VRF.inet.0

STOCKHOLM_VRF.inet.0: 10 destinations, 13 routes (10 active, 0 holddown, 3 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[Direct/0] 00:41:39
 > via ge-0/2/1.0
192.51.100.60/32 *[Local/0] 00:41:39
 Local via ge-0/2/1.0
192.0.2.1/32 *[Direct/0] 00:41:39
 > via lo0.1
192.0.2.2/32 *[BGP/170] 00:25:10, localpref 100, from 192.0.2.2
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.1/32 *[BGP/170] 00:25:10, MED 1, localpref 100, from 192.0.2.2
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.2/32 *[OSPF/10] 00:06:08, metric 1
 > to 192.51.100.61 via ge-0/2/1.0
192.51.100.50/31 *[BGP/170] 00:25:10, localpref 100, from 192.0.2.2
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.64/31 *[BGP/170] 00:10:40, MED 2, localpref 100, from 192.0.2.2
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
203.0.113.0/24 *[OSPF/150] 00:06:13, metric 0, tag 0

 70 Day One: Juniper Ambassadors’ Cookbook for 2017

 > to 192.51.100.61 via ge-0/2/1.0
224.0.0.5/32 *[OSPF/10] 00:41:40, metric 1
 MultiRecv

lab@PE2> show route table VIENNA_VRF.inet.0

VIENNA_VRF.inet.0: 10 destinations, 13 routes (10 active, 0 holddown, 3 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[BGP/170] 00:11:44, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.0.2.1/32 *[BGP/170] 00:30:53, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.0.2.2/32 *[Direct/0] 00:34:58
 > via lo0.1
192.51.100.1/32 *[OSPF/10] 00:34:12, metric 1
 > to 192.51.100.51 via ge-0/2/1.0
192.51.100.2/32 *[BGP/170] 00:11:39, MED 1, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.51.100.50/31 *[Direct/0] 00:34:58
 > via ge-0/2/1.0
192.51.100.50/32 *[Local/0] 00:34:58
 Local via ge-0/2/1.0
192.51.100.64/31 *[OSPF/10] 00:16:11, metric 2
 > to 192.51.100.51 via ge-0/2/1.0
203.0.113.0/24 *[BGP/170] 00:11:44, MED 0, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
224.0.0.5/32 *[OSPF/10] 00:34:58, metric 1
 MultiRecv

You can see here that “vrf-target” handles route distribution via
MP-BGP, which is used by data plane to forward traffic. Finally, let’s
check data plane reachability:

lab@VIENNA> ping 203.0.113.1
PING 203.0.113.1 (203.0.113.1): 56 data bytes
64 bytes from 203.0.113.1: icmp_seq=0 ttl=63 time=0.812 ms
64 bytes from 203.0.113.1: icmp_seq=1 ttl=63 time=0.821 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=63 time=0.773 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=63 time=0.757 ms
^C
--- 203.0.113.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.757/0.791/0.821/0.027 ms

lab@VIENNA> ping 192.51.100.2
PING 192.51.100.2 (192.51.100.2): 56 data bytes
64 bytes from 192.51.100.2: icmp_seq=0 ttl=63 time=0.835 ms
64 bytes from 192.51.100.2: icmp_seq=1 ttl=63 time=0.763 ms
^C
--- 192.51.100.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.763/0.799/0.835/0.036 ms

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 71

Solution 2: Using BGP Extended Community: Domain ID

A sham link can only be used in cases where both sites are placed in
same OSPF area and domain, but when sites are placed in different
areas you can make use of BGP extended communities like domain ID
to exchange routes. It’s 8-byte, which is considered a BGP extended
community attribute. When MP-BGP redistributes VPNv4 routes to
other PE routers, the domain ID is carried with the routes as an
extended community. With domain ID community, the PE router
redistributes routes learned from its MP-BGP to OSPF domain,
checking domain ID to decide whether the routes should be redistrib-
uted as inter-area (same domain ID) routes or external (different
domain ID) routes to the CE router, as shown in Figure 5.2. External
routes learned from remote PEs are distributed as external routes back
to CE routers though domain ID matches. When both sites are in the
same OSPF area, with same domain ID the internal routes will be
redistributed as Summary LSAs (LSA Type 3) instead of LSA Type 1
and LSA Type 2.

NOTE If no domain ID is present on the received route and no domain ID is
on the local OSPF VRF instance, then the route is redistributed as LSA
Type 3. Also, if there is a different domain ID on the received route and
local OSPF VRF, then this leads to redistribution of all LSAs as Exter-
nal LSAs.

Figure 5.2 This Recipe’s Domain ID Solution Topology

The first task is to get the basic topology set up, getting MP-BGP
established between PE routers (PE1 and PE2), and getting the MPLS
LSPs (using LDP or RSVP signaling) in place. RSVP LSP is used
between PE1 and PE2, so let’s start with the configuration of routing
instance alias VRFs on both PE1 and PE2.

 72 Day One: Juniper Ambassadors’ Cookbook for 2017

To configure Domain ID BGP extended community to extend OSPF routes:

Start with the configuration of the MX Series routers:
lab@STOCKHOLM> show configuration protocols ospf
area 0.0.0.0 {
 interface ge-0/2/2.0; >> Interface connected to PE1
 interface lo0.0;
}
lab@VIENNA> show configuration protocols ospf
area 0.0.0.0 {
 interface ge-0/2/4.0; >> Interface connected to PE2
 interface lo0.0;
 interface ge-0/2/5.0; >> Interface connected to another OSPF speaker in VIENNA cloud
}

Now configure the PE routers:
lab@PE1> show configuration routing-instances STOCKHOLM_VRF
instance-type vrf;
interface ge-0/2/1.0;
interface lo0.1
route-distinguisher 192.0.2.1:64513;
vrf-import STOCKHOLM_VRF_IMPORT;
vrf-export STOCKHOLM_VRF_EXPORT;
protocols {
 ospf {
 domain-id 2.2.2.2;
 export EXPORT_OSPF_STOCKHOLM;
 area 0.0.0.0 {
 interface ge-0/2/1.0;
 interface lo0.1
 }
 }
}

lab@PE2> show configuration routing-instances VIENNA_VRF
instance-type vrf;
interface ge-0/2/1.0;
interface lo0.1
route-distinguisher 192.0.2.2:64512;
vrf-import VIENNA_VRF_IMPORT;
vrf-export VIENNA_VRF_EXPORT;
protocols {
 ospf {
 domain-id 2.2.2.2;
 export EXPORT_OSPF_VIENNA;
 area 0.0.0.0 {
 interface lo0.1
 interface ge-0/2/1.0;
 }
 }
}

The configuration uses the VRF import and export policies instead of
using the vrf-target knob, which helps in the exchange of MP-BGP
routes. (You can use vrf-target to achieve this, too.) Additionally, you
need to export BGP routes to OSPF, which is achieved by policies
EXPORT_OSPF_VIENNA and EXPORT_OSPF_STOCKHOLM.

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 73

CAUTION Use the same domain ID for all the sites so that all routes will not be
exchanged as LSA Type 5 or LSA Type 7(NSSA), apart from those that
are eligible.

Now configure the export and import policies mentioned earlier in this
recipe:

lab@PE1> show configuration policy-options policy-statement EXPORT_OSPF_STOCKHOLM
term ACCEPT {
 from {
 protocol bgp;
 community STOCKHOLM_TARGET;
 }
 then accept;
}
term REJECT_ALL {
 then reject;
}
lab@PE1> show configuration policy-options policy-statement STOCKHOLM_VRF_IMPORT
term ACCEPT {
 from {
 protocol bgp;
 community STOCKHOLM_TARGET;
 }
 then accept;
}
term REJECT_ALL {
 then reject;
}
lab@PE1> show configuration policy-options policy-statement STOCKHOLM_VRF_EXPORT
term ACCEPT {
 from protocol ospf;
 then {
 community add STOCKHOLM_TARGET;
 community add DOMAIN;
 accept;
 }
}
term DIRECT {
 from protocol direct;
 then {
 community add STOCKHOLM_TARGET;
 accept;
 }
}
term REJECY_ALL {
 then reject;
}
lab@PE1> show configuration policy-options community STOCKHOLM_TARGET
members target:123:100;
lab@PE1> show configuration policy-options community DOMAIN
members domain-id:2.2.2.2:0;
lab@PE2> show configuration policy-options policy-statement EXPORT_OSPF_VIENNA
term ACCEPT {
 from {
 protocol bgp;
 community VIENNA_TARGET;
 }
 then accept;
}
term REJECT_ALL {
 then reject;

 74 Day One: Juniper Ambassadors’ Cookbook for 2017

}
lab@PE2> show configuration policy-options policy-statement VIENNA_VRF_IMPORT
term ACCEPT {
 from {
 protocol bgp;
 community VIENNA_TARGET;
 }
 then accept;
}
term REJECT_ALL {
 then reject;
}
lab@PE2> show configuration policy-options policy-statement VIENNA_VRF_EXPORT
term ACCEPT {
 from protocol ospf;
 then {
 community add VIENNA_TARGET;
 community add DOMAIN;
 accept;
 }
}
term DIRECT {
 from protocol direct;
 then {
 community add VIENNA_TARGET;
 accept;
 }
}
term REJECY_ALL {
 then reject;
}
lab@PE2> show configuration policy-options community VIENNA_TARGET
members target:123:100;
lab@PE2> show configuration policy-options community DOMAIN
members domain-id:2.2.2.2:0;

Make sure the direct routes, i.e. interface and loopback routes of
concerned VRFs, are exported to achieve data plane reachability.

To verify the working of the domain ID:

Let’s verify the OSPF database of the MX Series routers:
lab@STOCKHOLM> show ospf database

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 192.0.2.1 192.0.2.1 0x8000002a 241 0x22 0x5246 48
Router *192.51.100.2 192.51.100.2 0x80000027 240 0x22 0x8d4a 48
Network *192.51.100.61 192.51.100.2 0x80000020 1171 0x22 0xa4f4 32
Summary 192.51.100.1 192.0.2.1 0x8000001d 1395 0xa2 0x6e14 28
Summary 192.51.100.64 192.0.2.1 0x8000001c 1995 0xa2 0xfb48 28
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern 192.0.2.2 192.0.2.1 0x8000001c 795 0xa2 0x1d4 36
Extern 192.51.100.50 192.0.2.1 0x8000001c 195 0xa2 0x7898 36
Extern *203.0.113.0 192.51.100.2 0x8000001e 2171 0x22 0x629b 36
lab@VIENNA> show ospf database

 OSPF database, Area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
Router 192.0.2.2 192.0.2.2 0x80000026 328 0x22 0xa6ef 48
Router *192.51.100.1 192.51.100.1 0x80000024 327 0x22 0x6f2b 60

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 75

Router 192.51.100.65 192.51.100.65 0x80000021 328 0x22 0x4468 36
Network *192.51.100.51 192.51.100.1 0x8000001f 327 0x22 0xa673 32
Network 192.51.100.65 192.51.100.65 0x8000001f 328 0x22 0x7284 32
Summary 192.51.100.2 192.0.2.2 0x8000001d 328 0xa2 0x5e22 28
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern 192.51.100.60 192.0.2.2 0x8000001c 328 0xa2 0xf0dc 36
Extern 192.0.2.1 192.0.2.2 0x8000001c 328 0xa2 0x7998 36
Extern 203.0.113.0 192.0.2.2 0x8000001d 328 0xa2 0x286f 36

Observe that all the routes that were learned through OSPF, on each
remote site, have changed their LSA types to Type 3 (Summary LSA)
and that the 203.0.113.0 route retains its LSA Type 5 (External LSA).
The routes that were local to the PE routers are, by default, exported as
External LSAs.

Let’s continue with the domain ID tag verification:
lab@PE1> show route table STOCKHOLM_VRF.inet.0 192.51.100.64 extensive | match Communities
 Communities: target:123:100 domain-id:2.2.2.2:0 rte-type:0.0.0.0:1:0
lab@PE1> show route table STOCKHOLM_VRF.inet.0 192.51.100.1 extensive | match Communities
 Communities: target:123:100 domain-id:2.2.2.2:0 rte-type:0.0.0.0:1:0
lab@PE1> show route table STOCKHOLM_VRF.inet.0 192.51.100.50 extensive | match Communities
 Communities: target:123:100
lab@PE2> show route table VIENNA_VRF.inet.0 192.51.100.2 extensive | match Communities
 Communities: target:123:100 domain-id:2.2.2.2:0 rte-type:0.0.0.0:1:0
lab@PE2> show route table VIENNA_VRF.inet.0 192.0.2.1 extensive | match Communities
 Communities: target:123:100
lab@PE2> show route table VIENNA_VRF.inet.0 203.0.113.0 extensive | match Communities
 Communities: target:123:100 domain-id:2.2.2.2:0 rte-type:0.0.0.0:5:1

You can verify that the routes are tagged with extended BGP commu-
nity domain IDs. Moreover, the rte-type displays the area number, the
LSA type, and options. The syntax of rte-type is area number:LSA
type:options.

Now let’s verify the route tables in the MX Series routers:
lab@STOCKHOLM> show route table inet.0

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[Direct/0] 02:43:03
 > via ge-0/2/2.0
192.51.100.61/32 *[Local/0] 02:43:03
 Local via ge-0/2/2.0
192.0.2.1/32 *[OSPF/10] 00:34:13, metric 1
 > to 192.51.100.60 via ge-0/2/2.0
192.0.2.2/32 *[OSPF/150] 00:03:15, metric 0, tag 3489725929
 > to 192.51.100.60 via ge-0/2/2.0
192.51.100.1/32 *[OSPF/10] 00:34:13, metric 2
 > to 192.51.100.60 via ge-0/2/2.0
192.51.100.2/32 *[Direct/0] 02:43:04
 > via lo0.0
192.51.100.50/31 *[OSPF/150] 00:03:15, metric 0, tag 3489725929
 > to 192.51.100.60 via ge-0/2/2.0
192.51.100.64/31 *[OSPF/10] 00:34:13, metric 3
 > to 192.51.100.60 via ge-0/2/2.0
203.0.113.0/24 *[Static/5] 02:07:37

 76 Day One: Juniper Ambassadors’ Cookbook for 2017

 Receive
224.0.0.5/32 *[OSPF/10] 03:15:02, metric 1
 MultiRecv
lab@VIENNA> show route table inet.0

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[OSPF/150] 00:02:16, metric 0, tag 3489680734
 > to 192.51.100.50 via ge-0/2/4.0
192.0.2.1/32 *[OSPF/150] 00:02:16, metric 0, tag 3489680734
 > to 192.51.100.50 via ge-0/2/4.0
192.0.2.2/32 *[OSPF/10] 00:28:24, metric 1
 > to 192.51.100.50 via ge-0/2/4.0
192.51.100.1/32 *[Direct/0] 02:30:32
 > via lo0.0
192.51.100.2/32 *[OSPF/10] 00:28:18, metric 2
 > to 192.51.100.50 via ge-0/2/4.0
192.51.100.50/31 *[Direct/0] 02:30:32
 > via ge-0/2/4.0
192.51.100.51/32 *[Local/0] 02:30:32
 Local via ge-0/2/4.0
192.51.100.64/31 *[Direct/0] 02:12:28
 > via ge-0/2/5.0
192.51.100.64/32 *[Local/0] 02:12:28
 Local via ge-0/2/5.0
203.0.113.0/24 *[OSPF/150] 00:28:18, metric 0, tag 3489680734
 > to 192.51.100.50 via ge-0/2/4.0
224.0.0.5/32 *[OSPF/10] 03:14:17, metric 1
 MultiRecv

Verify the route table of the PE VRFs:
lab@PE1> show route table STOCKHOLM_VRF.inet.0

STOCKHOLM_VRF.inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[Direct/0] 02:43:03
 > via ge-0/2/1.0
192.51.100.60/32 *[Local/0] 02:43:03
 Local via ge-0/2/1.0
192.0.2.1/32 *[Direct/0] 02:43:03
 > via lo0.1
192.0.2.2/32 *[BGP/170] 00:03:16, localpref 100, from 100.64.87.4
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.1/32 *[BGP/170] 02:26:34, MED 1, localpref 100, from 100.64.87.4
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.2/32 *[OSPF/10] 02:07:32, metric 1
 > to 192.51.100.61 via ge-0/2/1.0
192.51.100.50/31 *[BGP/170] 00:03:16, localpref 100, from 100.64.87.4
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
192.51.100.64/31 *[BGP/170] 02:12:04, MED 2, localpref 100, from 100.64.87.4
 AS path: 64512 I
 > to 192.0.2.129 via ge-0/2/0.0, label-switched-path PE1_PE2
203.0.113.0/24 *[OSPF/150] 02:07:37, metric 0, tag 0
 > to 192.51.100.61 via ge-0/2/1.0
224.0.0.5/32 *[OSPF/10] 02:43:04, metric 1
 MultiRecv
lab@PE2> show route table VIENNA

 Recipe 5: OSPF as a PE-CE Routing Protocol in MPLS VPNs 77

VIENNA_VRF.inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

192.51.100.60/31 *[BGP/170] 00:02:16, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.0.2.1/32 *[BGP/170] 00:02:16, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.0.2.2/32 *[Direct/0] 02:30:32
 > via lo0.1
192.51.100.1/32 *[OSPF/10] 02:29:46, metric 1
 > to 192.51.100.51 via ge-0/2/1.0
192.51.100.2/32 *[BGP/170] 02:07:13, MED 1, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
192.51.100.50/31 *[Direct/0] 02:30:32
 > via ge-0/2/1.0
192.51.100.50/32 *[Local/0] 02:30:32
 Local via ge-0/2/1.0
192.51.100.64/31 *[OSPF/10] 02:11:45, metric 2
 > to 192.51.100.51 via ge-0/2/1.0
203.0.113.0/24 *[BGP/170] 02:07:18, MED 0, localpref 100, from 192.0.2.1
 AS path: 64513 I, validation-state: unverified
 > to 192.0.2.160 via ge-0/2/3.0, label-switched-path PE2_PE1
224.0.0.5/32 *[OSPF/10] 02:30:32, metric 1
 MultiRecv

Here, the MP-BGP learned routes for the remote sites OSPF routes,
provides reachability to data plane traffic, since the PE router uses the
MP-BGP routes to forward traffic to the remote sites.

And data plane reachability:
lab@STOCKHOLM> ping 192.51.100.65
PING 192.51.100.65 (192.51.100.65): 56 data bytes
64 bytes from 192.51.100.65: icmp_seq=0 ttl=62 time=0.835 ms
64 bytes from 192.51.100.65: icmp_seq=1 ttl=62 time=0.744 ms
^C
--- 192.51.100.65 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.744/0.789/0.835/0.046 ms

lab@VIENNA> ping 192.51.100.2
PING 192.51.100.2 (192.51.100.2): 56 data bytes
64 bytes from 192.51.100.2: icmp_seq=0 ttl=63 time=0.835 ms
64 bytes from 192.51.100.2: icmp_seq=1 ttl=63 time=0.763 ms
^C
--- 192.51.100.2 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.763/0.799/0.835/0.036 ms

lab@VIENNA> ping 203.0.113.1
PING 203.0.113.1 (203.0.113.1): 56 data bytes
64 bytes from 203.0.113.1: icmp_seq=0 ttl=63 time=0.812 ms
64 bytes from 203.0.113.1: icmp_seq=1 ttl=63 time=0.821 ms
64 bytes from 203.0.113.1: icmp_seq=2 ttl=63 time=0.773 ms
64 bytes from 203.0.113.1: icmp_seq=3 ttl=63 time=0.757 ms
^C
--- 203.0.113.1 ping statistics ---
4 packets transmitted, 4 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.757/0.791/0.821/0.027 ms

 78 Day One: Juniper Ambassadors’ Cookbook for 2017

Discussion

When using a backdoor link between two sites (as shown in Figure
5.3) you can toggle the primary and backup role between the back-
door link and the MPLS VPN backbone.

Figure 5.3 This Recipe’s Topology – With Backdoor Link

When using a sham link you need to manipulate metric as in the
following:

[edit]
lab@PE2# set routing-instances VIENNA_VRF protocols ospf area 0.0.0.0 sham-link-
remote 192.0.2.1 metric 10

When using domain ID to accomplish the OSPF route exchange,
manipulate metric with the help of export policies configured under
OSPF protocol for the respective routing-instance:

[edit]
lab@PE2# set policy-options policy-statement EXPORT_OSPF_
STOCKHOLM term ACCEPT from protocol bgp
lab@PE2# set policy-options policy-statement EXPORT_OSPF_
STOCKHOLM term ACCEPT from community STOCKHOLM_TARGET
lab@PE2# set policy-options policy-statement EXPORT_OSPF_
STOCKHOLM term ACCEPT then metric 10
lab@PE2# set policy-options policy-statement EXPORT_OSPF_STOCKHOLM term ACCEPT then accept
lab@PE2# set policy-options policy-statement EXPORT_OSPF_STOCKHOLM term REJECT_
ALL then reject

CAUTION When using a backdoor link with the MPLS VPN backbone exchang-
ing OSPF routes, make sure to have a routing loop avoidance mecha-
nism in place (example: route tag).

You always want to make sure the functionality of your network does
not degrade after upgrading software, committing configurations, or
changing a physical topology. Even during normal operations there is
always a need to check your work. This recipe shows you how to
automate checks of your network’s health using Junos PyEZ, a power-
ful Python library for Junos automation.

Problem

Administering networks requires a lot of repetitive tasks. Automating
network administration, on the other hand, is a way to increase effec-
tiveness, reduce downtime, and release human resources for more
creative tasks.

Network automation comes in numerous flavors. You can automate
configuration, monitoring, and event processing. You can write on-box
scripts or orchestrate off-box, from a central server. Different possibili-
ties lead to an initial question – where should you start automation
efforts?

It makes sense to start with automating network monitoring, not only
because it is very valuable, but because it allows you to feel the automa-
tion power while occupying a space in which it’s safer to experiment
(when compared to configuration automation).

Typically, to make sure your network is operating normally, you log in
to several devices and check the command outputs (e.g., show bgp
summary). Alternatively, you might look at graphs that represent differ-

Recipe 6:
Network Regression Testing with Junos PyEZ

 80 Day One: Juniper Ambassadors’ Cookbook for 2017

ent counters and values (such as CPU load, interface throughput, etc.).
Why not make a program (or call it a script) that will do it for you? In
this recipe, you will see how to do it with Junos PyEZ, a powerful yet
simple library for automating Junos-based devices.

NOTE The scripts presented in this chapter are available on GitHub: https://
github.com/pklimai/pyez-network-testing.

Solution

Software engineers use a common practice of writing “unit tests”
– small pieces of code that test different parts of the main program
(interestingly, sometimes tests are even written before the main code).
Instead of the program, network engineers have their network – so let’s
write tests to be sure that our network is working fine!

Note that in different tests you will see several ways you can query
run-time information from a Junos-based device:

 � Directly processing XML output of Junos Remote Procedure
Calls (RPCs)

 � Using jxmlease library for easier processing of the XML output
of RPC calls

 � Using PyEZ built-in op Tables and Views

 � Creating your own PyEZ op Table and View

Different methods have different advantages and use cases. After
getting familiar with all of them, you can simply choose the ones that
best suit your needs in a particular situation.

Demonstration Network and Prerequisites

You will use the network shown in Figure 6.1 as an example. It has a
simple enterprise topology with three routers R1, R2, and R3. All
routers are running OSPF in area 0.0.0.0, and IBGP is using lo0-based
peering. Routers R1 and R2 have EBGP sessions attached to the ISPs
and receive default routes from them.

https://github.com/pklimai/pyez-network-testing
https://github.com/pklimai/pyez-network-testing

 Recipe 6: Network Regression Testing with Junos PyEZ 81

Figure 6.1 The Network Tested by PyEZ Scripts in this Recipe

In this recipe, you will write a set of tests to check OSPF, BGP, memory
utilization, etc. Once you understand the examples you will be able to
easily use similar testing methodology in your real network, even if the
topology and the protocols used are significantly different.

For successful connections from PyEZ scripts, Netconf over SSH must
be enabled on each Junos device, as shown in this example configura-
tion:

[edit]
lab@R1# show system services
ssh;
netconf {
 ssh;
}

Python and PyEZ Installation

Next let’s make sure the Python language interpreter is installed on
your development host. For this recipe, the development host machine
runs Ubuntu Linux and Python is pre-installed. To learn more about
Python and its installation, visit https://www.python.org/.

https://www.python.org/

 82 Day One: Juniper Ambassadors’ Cookbook for 2017

For the steps required to install PyEZ on your operating system (just
like Python, PyEZ is cross-platform) please refer to this Juniper
technical publication: https://www.juniper.net/techpubs/en_US/
junos-pyez2.0/topics/task/installation/junos-pyez-server-installing.
html.

Starting from release 2.0, PyEZ supports both Python 2 and Python 3.
The examples presented in this recipe were tested to work with Python
2.7 and Python 3.5, using PyEZ version 2.0.1.

The Base Script for the Testing Framework

The base script that you will use, pyez-network-testing.py, is presented
below. It is a main file that calls all tests you will develop later. The
actual tests must be placed in other files in the same directory, with
names tests_*.py. The script’s parts are numbered as # (n) for explana-
tion:

from __future__ import print_function
from jnpr.junos import Device # (1)
from os.path import split, splitext, isfile, join
from os import listdir

script_dir = split(__file__)[0] or “.” # (2)
for f in listdir(script_dir): # (3)
 if isfile(join(script_dir, f)) and f.startswith(“tests_”) and f.endswith(“.py”):
 exec(“from %s import *” % splitext(f)[0])

HOSTS = { # (4)
 “R1”: “10.254.0.35”,
 “R2”: “10.254.0.37”,
 “R3”: “10.254.0.38”,
}

USER = “lab” # (5)
PASSWD = “lab123”

if __name__ == “__main__”: # (6)

 tests_success = 0 # (7)
 tests_fail = 0

 for host in sorted(HOSTS.keys()): # (8)
 print(“Running tests for %s” % host)
 with Device(host=HOSTS[host], user=USER, passwd=PASSWD, gather_facts=False) as dev:#
(9)
 for name in dir(): # (10)
 if name.startswith(“test_%s_” % host) or name.startswith(“test_all_”): #
(11)
 print(“ Running %s... “ % name, end=””)
 test_result = locals()[name](dev) # (12)
 if test_result: # (13)
 print(“ pass”)
 tests_success += 1
 else:

https://www.juniper.net/techpubs/en_US/junos-pyez2.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez2.0/topics/task/installation/junos-pyez-server-installing.html
https://www.juniper.net/techpubs/en_US/junos-pyez2.0/topics/task/installation/junos-pyez-server-installing.html

 Recipe 6: Network Regression Testing with Junos PyEZ 83

 print(“ ***FAIL***”)
 tests_fail += 1

 print(“--------”) # (14)
 print(“Network test script finished. Successful tests: %s, failed tests: %s” %
 (tests_success, tests_fail))
 print(“All went OK.” if tests_fail == 0 else “***WARNING***: There were failed tests!”)

So, what is happening in this script?

1. You import the Device class from the PyEZ package, jnpr.junos. The
instance of this class will handle a connection to a Junos device. Addition-
ally, some functions needed to work with the file system are imported
from the standard library. The import of print_function is used to make
print() work the same way both in Python 3 and in Python 2.6+.

2. Get the directory in which script is located and save to script_dir
variable.

3. For each file in script_dir whose name starts with tests_ and ends
with .py, import the contents of the file into the current namespace. Thus,
all test functions get into the current module’s namespace. This simple
approach is adequate for our task.

4. HOSTS is a Python dictionary (associative array) with hostnames R1,
R2, and R3 as keys. The corresponding values are management IP
addresses. For a larger network, consider using a separate file or a
database instead.

5. USER and PASSWD are, obviously, username and password on the
managed devices and you hard code them in a script because this is a lab
network. For production, it is highly recommended that you either ask
that a password be entered from a keyboard every time, or use SSH keys
instead.

6. Standard Python script “entry point”.

7. Initialize two counters for successful and failed tests.

8. Loop for each of the HOSTS – in our case loop over R1, R2, R3.

9. Initialize PyEZ connection to the device and assign it to variable dev.
Note the “context manager” syntax (with operator). In short, this means
open() and close() functions will be called automatically when needed.

10. Loop over all names in the current scope (module). Remember, in
Step 3, all tests were copied to the module’s namespace, for loop will
make the name variable run past all name values.

11. Check if name starts with test_<hostname>_ or test_all_. If so,
proceed.

 84 Day One: Juniper Ambassadors’ Cookbook for 2017

12. Get reference to the function with name given by name, using
locals()[name] construction (locals() returns a dictionary
representing the current local symbol table). Call the function
(particular network test), providing dev as a parameter. Save the result
to test_result variable.

13. Note that test_result should be either True or False, meaning
either a passed or failed test. Print the corresponding message and
increase the proper counter.

14. When all tests on all devices are finished, print summary.

Okay, what’s left now is to write the tests themselves.

Directly Processing XML Output of RPC Calls

The first option for writing tests you can employ is processing the
XML response of a particular Junos XML RPC call. For example, let’s
check the chassis alarms (show chassis alarms is the corresponding CLI
command). You can obtain the XML RPC from the CLI as follows:

lab@R1> show chassis alarms | display xml rpc
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <rpc>
 <get-alarm-information>
 </get-alarm-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

As you see, the RPC you need is get-alarm-information.

The corresponding output, in case of no alarms, is (both in clear text
and XML form):

lab@R1> show chassis alarms
No alarms currently active

lab@R1> show chassis alarms | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <alarm-information xmlns=”http://xml.juniper.net/junos/12.1X47/junos-alarm”>
 <alarm-summary>
 <no-active-alarms/>
 </alarm-summary>
 </alarm-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

As you see, if chassis alarms are absent, alarm-summary/no-active-
alarms XML element is present (it might be not obvious but in the

 Recipe 6: Network Regression Testing with Junos PyEZ 85

script we will be “rooted” at the alarm-information element and it
should not be included in the XPath).

With this information, writing your first test is really easy (you can put
it in the file named tests_general.py):

def test_all_chassis_alarms(dev):
 rpc_result = dev.rpc.get_alarm_information()
 return rpc_result.find(“alarm-summary/no-active-alarms”) is not None

This short function performs an RPC call to dev (note that hyphens
must be replaced with underscores in the actual call to method get_
alarm_information()). The result is saved to rpc_result, which will be
of lxml.etree._Element type, allowing you to parse the XML with
methods such as find(), findall(), findtext(), and xpath().

MORE? More information on the lxml library and the mentioned methods can
be found at the following URL: http://lxml.de/

The second line uses find() method to check if alarm-summary/no-ac-
tive-alarms element exists. Function will return True (passed test) if it
is actually present.

It is easy to write similar tests, for example to check system alarms and
the existence of core files (dumps) on the device. Normally we would
expect that neither alarms nor dumps are present; these tests can be put
in the same file as test_all_chassis_alarms:

def test_all_system_alarms(dev):
 rpc_result = dev.rpc.get_system_alarm_information()
 return rpc_result.find(“alarm-summary/no-active-alarms”) is not None

def test_all_core_dumps(dev):
 rpc_result = dev.rpc.get_system_core_dumps()
 return rpc_result.find(“directory/file-information”) is None

A more complicated example that still uses the direct processing of
XML RPC output is checking the existence of a BGP default route on
R3. Normally, you expect the following state:

lab@R3> show route protocol bgp 0.0.0.0/0 exact

inet.0: 13 destinations, 14 routes (13 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[BGP/170] 21:23:26, localpref 100, from 192.168.0.1
 AS path: 100 I
 > to 10.3.0.1 via ge-0/0/3.0
 [BGP/170] 21:23:26, localpref 100, from 192.168.0.2
 AS path: 200 I
 > to 10.4.0.1 via ge-0/0/4.0

This corresponds to the following XML RPC and XML response
(output abbreviated):

http://lxml.de/

 86 Day One: Juniper Ambassadors’ Cookbook for 2017

lab@R3> show route protocol bgp 0.0.0.0/0 exact | display xml rpc
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <rpc>
 <get-route-information>
 <destination>0.0.0.0/0</destination>
 <exact/>
 <protocol>bgp</protocol>
 </get-route-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

lab@R3> show route protocol bgp 0.0.0.0/0 exact | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <route-information xmlns=”http://xml.juniper.net/junos/12.1X47/junos-routing”>
 <route-table>
 <table-name>inet.0</table-name>
...
 <rt junos:style=”brief”>
 <rt-destination>0.0.0.0/0</rt-destination>
 <rt-entry>
...
 <learned-from>192.168.0.1</learned-from>
 <as-path>100 I</as-path>
 <nh>
 <selected-next-hop/>
 <to>10.3.0.1</to>
 <via>ge-0/0/3.0</via>
 </nh>
 </rt-entry>
 <rt-entry>
...
 <learned-from>192.168.0.2</learned-from>
 <as-path>200 I</as-path>
 <nh>
 <selected-next-hop/>
 <to>10.4.0.1</to>
 <via>ge-0/0/4.0</via>
 </nh>
 </rt-entry>
 </rt>
 </route-table>
 </route-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The corresponding test that will check for the presence of two next
hops for BGP 0.0.0.0/0 route on R3 might look like the following (you
can put it in tests_bgp.py file):

def test_R3_bgp_default(dev):
 rpc_result = dev.rpc.get_route_information(protocol=”bgp”,destination=”0.0.0.0/0”,exac
t=True)
 nh_list = []
 for item in rpc_result.findall(“route-table[table-name=‘inet.0’]/rt[rt-
destination=‘0.0.0.0/0’]/rt-entry/nh/to”):

 Recipe 6: Network Regression Testing with Junos PyEZ 87

 nh_list.append(item.findtext(“.”))
 nh_list.sort()
 return nh_list == [“10.3.0.1”, “10.4.0.1”]

As you can see, the test’s name starts with test_R3_ which means it will
run only on R3 by our main script. Note that a more complicated
XPath expression in an argument of findall()allows you to extract all
the BGP next hops (compare this XPath expression to the XML output
above to see how it works; remember square brackets are used to
denote the selection criteria).

And now it’s time to run pyez-network-testing.py for the first time:

$ python pyez-network-testing.py
Running tests for R1
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
Running tests for R2
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... ***FAIL***
 Running test_all_system_alarms... pass
Running tests for R3
 Running test_R3_bgp_default... pass
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass

Network test script finished. Successful tests: 9, failed tests: 1
WARNING: There were failed tests!

Wait, one test failed? test_all_core_dumps on R2? Let’s see what
happens on this device:

lab@R2> show system core-dumps
/var/crash/*core*: No such file or directory
-rw-rw---- 1 root wheel 3044927 Nov 24 22:32 /var/tmp/rpd.core.0.gz
/var/tmp/pics/*core*: No such file or directory
/var/crash/kernel.*: No such file or directory
/tftpboot/corefiles/*core*: No such file or directory
total files: 1

Really, a RPD core file exists on this router? After investigating the
issue and removing the core file, let’s run the script again:

$ python pyez-network-testing.py
Running tests for R1
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
Running tests for R2
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
Running tests for R3
 Running test_R3_bgp_default... pass
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass

 88 Day One: Juniper Ambassadors’ Cookbook for 2017

 Running test_all_system_alarms... pass

Network test script finished. Successful tests: 10, failed tests: 0
All went OK.

Great! All the tests that you created have passed. Let’s create some
more.

Using jxmlease Library

Parsing XML with XPath expressions, as you’ve just done, is not
always fun. A Python package called jxmlease (https://github.com/
Juniper/jxmlease) can be used to convert XML to native Python data
structures (lists, dictionaries, and their combinations) for easier access
to XML elements.

NOTE To use jxmlease, you will need to install it. Consult https://github.com/
Juniper/jxmleasehttps://github.com or just use the pip install jxm-
lease command.

As an example, this XML:

lab@R1> show chassis routing-engine | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <route-engine-information xmlns=”http://xml.juniper.net/junos/12.1X47/junos-chassis”>
 <route-engine>
 <status>Testing</status>
 <memory-system-total>2048</memory-system-total>
 <memory-system-total-used>963</memory-system-total-used>
 <memory-system-total-util>47</memory-system-total-util>
 <memory-control-plane>1150</memory-control-plane>
 <memory-control-plane-used>334</memory-control-plane-used>
 <memory-control-plane-util>29</memory-control-plane-util>
...

…will be mapped to the following nested dictionaries:

{‘route-engine-information’:
 {‘route-engine’: {
 ‘status’: ‘Testing’,
 ‘cpu-background’: ‘0’,
 ‘memory-system-total’: ‘2048’,
 ‘memory-system-total-used’: ‘963’,
 ‘memory-system-total-util’: ‘47’,
 ‘memory-control-plane’: ‘1150’,
 ‘memory-control-plane-used’: ‘334’,
 ‘memory-control-plane-util’: ‘29’,
...

… and you will be able to access the corresponding elements using
dictionary indexing, as done in the following test (file tests_memory.py):

import jxmlease

def test_all_total_memory_percent_util(dev):
 parser = jxmlease.EtreeParser()
 res = parser(dev.rpc.get_route_engine_information())

https://github.com/Juniper/jxmlease
https://github.com/Juniper/jxmlease
https://github.com/Juniper/jxmlease
https://github.com/Juniper/jxmlease

 Recipe 6: Network Regression Testing with Junos PyEZ 89

 return int(res[“route-engine-information”][“route-engine”][“memory-system-total-
util”]) < 80

Here, the parser variable is an instance of the EtreeParser class defined
in the jxmlease package. It is used to convert XML (in the form of
lxml.etree._Element) to Pythonic data structure res. This data struc-
ture is then accessed using regular (but nested) indexing, res[“route-
engine-information”][“route-engine”][“memory-system-total-util”],
to extract the required data (total memory utilization in this case).

Note that the 80% hard coded in this test as the threshold for total
memory utilization is arbitrary and you might want to set a different
value for your particular environment. Additionally, using a set of
constants defined in some central place should be considered a better
approach then hard coding the values inside the tests.

Another example test checks for the existence of a specific ARP record
on R1’s uplink (file tests_arp.py):

import jxmlease

def test_R1_arp_gateway(dev):
 R1_GW_CORRECT_ARP_ENTRY = {
 ‘arp-table-entry-flags’: {‘none’: ‘‘},
 ‘hostname’: ‘10.10.0.1’,
 ‘interface-name’: ‘ge-0/0/3.0’,
 ‘ip-address’: ‘10.10.0.1’,
 ‘mac-address’: ‘00:0c:29:60:25:80’
 }
 parser = jxmlease.EtreeParser()
 res = parser(dev.rpc.get_arp_table_information())
 for item in res[‘arp-table-information’][‘arp-table-entry’]:
 if item == R1_GW_CORRECT_ARP_ENTRY:
 return True
 return False

Clearly, this test will fail if the MAC address of the gateway router
changes, which might or might not be what you want. As usual,
modify the test accordingly, to suit your network.

You will see the results of running all of the developed tests soon.

Using PyEZ Op Tables and Views

PyEZ uses a concept of op (operational) tables and views as another
way to simplify interaction with RPC’s XML output. The idea is that
particular fields from the XML document are mapped to specific fields
of the Python data structure that is created automatically.

For example, this XML output:

lab@R1> show ospf neighbor extensive | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <ospf-neighbor-information xmlns=”http://xml.juniper.net/junos/12.1X47/junos-routing”>

 90 Day One: Juniper Ambassadors’ Cookbook for 2017

 <ospf-neighbor>
 <neighbor-address>10.1.0.222</neighbor-address>
 <interface-name>ge-0/0/1.0</interface-name>
 <ospf-neighbor-state>Full</ospf-neighbor-state>
 <neighbor-id>192.168.0.2</neighbor-id>
...

… can be collected to a table using the built-in OspfNeighborTable class
to a standard PyEZ distribution. The corresponding test, that only cares
about ospf-neighbor-state and the number of neighbors, is hopefully
worth a thousand words (the file is called tests_ospf.py; note that in
this example you create a function named check_ospf_full_adjacen-
cies() and then reuse it in three different tests – reusing code is always a
good idea):

from jnpr.junos.op.ospf import OspfNeighborTable

def check_ospf_full_adjacencies(dev, neighbor_count):
 ospf_table = OspfNeighborTable(dev) # Create an instance of the Table
 ospf_table.get() # Populate the Table
 if len(ospf_table) != neighbor_count:
 return False
 for neighbor in ospf_table:
 if neighbor[“ospf_neighbor_state”] != “Full”:
 return False
 return True

def test_R1_ospf(dev):
 return check_ospf_full_adjacencies(dev, 3)

def test_R2_ospf(dev):
 return check_ospf_full_adjacencies(dev, 3)

def test_R3_ospf(dev):
 return check_ospf_full_adjacencies(dev, 2)

Here, OspfNeighborTable mapped ospf-neighbor/ospf-neighbor-state
XML elements to dictionary entries with the key of “ospf_neighbor_
state” – for each of the OSPF neighbors.

MORE? If you are interested, the definition of OspfNeighborTable can be found at
GitHub: https://github.com/Juniper/py-junos-eznc/blob/master/lib/jnpr/
junos/op/ospf.yml. You can browse the complete list of built-in tables/
views at the following URL: https://github.com/Juniper/py-junos-eznc/
tree/master/lib/jnpr/junos/op. You will see how tables/views are defined
very shortly.

Creating a Custom Op Table and View

Although PyEZ has several dozen predefined tables/views, Junos has so
many commands and corresponding RPCs that there is always a chance
you will not find one you need for getting particular data. Do not get
upset in such a situation, as creating custom Tables/Views is easy.

https://github.com/Juniper/py-junos-eznc/blob/master/lib/jnpr/junos/op/ospf.yml
https://github.com/Juniper/py-junos-eznc/blob/master/lib/jnpr/junos/op/ospf.yml
https://github.com/Juniper/py-junos-eznc/tree/master/lib/jnpr/junos/op
https://github.com/Juniper/py-junos-eznc/tree/master/lib/jnpr/junos/op

 Recipe 6: Network Regression Testing with Junos PyEZ 91

For example, show bgp summary command has no corresponding Table/
View in the current PyEZ version. Let’s create them. First, you look at
the corresponding text and XML outputs, and obtain the XML RPC:

lab@R2> show bgp summary
Groups: 2 Peers: 3 Down peers: 0
Table Tot Paths Act Paths Suppressed History Damp State Pending
inet.0 2 1 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...
10.20.0.1 200 5621 5641 0 2 1d 18:35:17 1/1/1/0 0/0/0/0
192.168.0.1 65000 6709 6709 0 0 2d 2:38:24 0/1/1/0 0/0/0/0
192.168.0.3 65000 6681 6705 0 2 1d 18:35:02 0/0/0/0 0/0/0/0

lab@R2> show bgp summary | display xml
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <bgp-information xmlns=”http://xml.juniper.net/junos/12.1X47/junos-routing”>
 <group-count>2</group-count>
 <peer-count>3</peer-count>
 <down-peer-count>0</down-peer-count>
 <bgp-rib junos:style=”brief”>
 <name>inet.0</name>
...
 </bgp-rib>
 <bgp-peer junos:style=”terse” heading=”Pe
er AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#Active/
Received/Accepted/Damped...”>
 <peer-address>10.20.0.1</peer-address>
 <peer-as>200</peer-as>
 <input-messages>5621</input-messages>
 <output-messages>5641</output-messages>
 <route-queue-count>0</route-queue-count>
 <flap-count>2</flap-count>
 <elapsed-time junos:seconds=”153320”>1d 18:35:20</elapsed-time>
 <peer-state junos:format=”1/1/1/0 0/0/0/0”>Established</peer-
state>
 <bgp-rib>
 <name>inet.0</name>
 <active-prefix-count>1</active-prefix-count>
 <received-prefix-count>1</received-prefix-count>
 <accepted-prefix-count>1</accepted-prefix-count>
 <suppressed-prefix-count>0</suppressed-prefix-count>
 </bgp-rib>
 </bgp-peer>
 <bgp-peer junos:style=”terse”>
 <peer-address>192.168.0.1</peer-address>
 <peer-as>65000</peer-as>
 <input-messages>6709</input-messages>
 <output-messages>6709</output-messages>
 <route-queue-count>0</route-queue-count>
 <flap-count>0</flap-count>
 <elapsed-time junos:seconds=”182307”>2d 2:38:27</elapsed-time>
 <peer-state junos:format=”0/1/1/0 0/0/0/0”>Established</peer-
state>
...
</rpc-reply>

lab@R2> show bgp summary | display xml rpc
<rpc-reply xmlns:junos=”http://xml.juniper.net/junos/12.1X47/junos”>
 <rpc>

 92 Day One: Juniper Ambassadors’ Cookbook for 2017

 <get-bgp-summary-information>
 </get-bgp-summary-information>
 </rpc>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

When creating a PyEZ table, you need to decide on the following main
fields:

 � rpc : an RPC that must be issued: in the present case, it will be
get-bgp-summary-information;

 � item : in this case, each table element will represent a BGP peer
and correspond to XML element bgp-peer;

 � key: field(s) that will be used as an unique key, in this case just
peer-address is used, assuming different peers can’t have the same
IP;

 � view : reference to a corresponding view, in this case BgpSumma-
ryView.

Views in PyEZ are used to map the XML tag names in the RPC
response to the property names used within the Python program.
Overall, this works so that XML data appears as Python objects with
certain attributes.

When creating BgpSummaryView, just choose the fields (XML elements)
you need to obtain for each bgp-peer, and give them proper names. For
example, you can map peer-address XML element to peer_ip field.
Field names are, in fact, arbitrary.

The complete test that uses your custom table/view will look like this
(file tests_bgp_table.py). This example only defines the test for R2:

from jnpr.junos.factory.factory_loader import FactoryLoader
import yaml

bgpYAML = “””

BgpSummaryTable:
 rpc: get-bgp-summary-information
 item: bgp-peer
 key: peer-address
 view: BgpSummaryView

BgpSummaryView:
 fields:
 peer_ip: peer-address
 peer_as: peer-as
 peer_state: peer-state
“””

def test_R2_bgp_peers_established(dev):

 Recipe 6: Network Regression Testing with Junos PyEZ 93

 globals().update(FactoryLoader().load(yaml.load(bgpYAML)))
 bgp_table = BgpSummaryTable(dev).get()
 for peer in bgp_table:
 if peer[“peer_state”] != “Established”:
 return False
 return True

NOTE As you can see, tables and views are formatted using YAML. Its syntax
is rather intuitive, but for more information please read about it at:
https://en.wikipedia.org/wiki/YAML.

The above test uses “inline” table/view defined in a multi-line string
bgpYAML directly in the Python file (you could use a separate file as
well). Then it was loaded to global namespace and used to check if all
configured BGP peers are in the Established state.

NOTE We have not covered all the options supported for Junos PyEZ op
tables/views. For a complete discussion, please consult the Juniper
TechLibrary at: https://www.juniper.net/techpubs/en_US/junos-py-
ez2.0/information-products/pathway-pages/junos-pyez-developer-
guide.html.

Finally, let’s run all the tests again:

$ python pyez-network-testing.py
Running tests for R1
 Running test_R1_arp_gateway... pass
 Running test_R1_bgp_default... pass
 Running test_R1_ospf... pass
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
 Running test_all_total_memory_percent_util... pass
Running tests for R2
 Running test_R2_arp_gateway... pass
 Running test_R2_bgp_peers_established... pass
 Running test_R2_ospf... pass
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
 Running test_all_total_memory_percent_util... pass
Running tests for R3
 Running test_R3_bgp_default... pass
 Running test_R3_ospf... pass
 Running test_R3_ping_ISP1_GW... pass
 Running test_R3_ping_ISP2_GW... pass
 Running test_all_chassis_alarms... pass
 Running test_all_core_dumps... pass
 Running test_all_system_alarms... pass
 Running test_all_total_memory_percent_util... pass

Network test script finished. Successful tests: 22, failed tests: 0
All went OK.

So far, so good!

https://en.wikipedia.org/wiki/YAML
https://www.juniper.net/techpubs/en_US/junos-pyez2.0/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/techpubs/en_US/junos-pyez2.0/information-products/pathway-pages/junos-pyez-developer-guide.html
https://www.juniper.net/techpubs/en_US/junos-pyez2.0/information-products/pathway-pages/junos-pyez-developer-guide.html

 94 Day One: Juniper Ambassadors’ Cookbook for 2017

Of course, you can schedule running of the testing scripts with, for
example, the cron utility. And it is easy to make Python send you email
with results - every time, or just in case some failures were encoun-
tered.

NOTE In the above output, some tests are present that were not detailed in
this recipe, such as test_R3_ping_ISP1_GW. Complete code for all the
tests as well as Junos-based device configurations used in this recipe are
available at: https://github.com/pklimai/pyez-network-testing.

Discussion

This recipe provided a series of tests that can check the state of your
network. Of course, when you perform network configuration chang-
es, such as adding new devices and links, some old tests may fail just
because they are unaware of the new “normal” state. You will need to
modify the tests accordingly, and do it from time to time (alternatively
– try to write tests so that they do not fail if “allowed” changes are
made). But having an automated test suite will for sure outweigh the
need to support a set of test scripts – as you’ve seen, writing them is
easy once you get the idea.

The goal of this recipe was two-fold: get you familiar with Junos PyEZ
and suggest a simple way network regression testing can be performed.
Regardless of what exact tool you use for Junos automation, very soon
you will start feeling its power. The capabilities are almost endless and
your work rises to a completely new level.

MORE? For an example of an advanced testing framework, check out the
JSNAPy tool available at GitHub under this URL: https://github.com/
Juniper/jsnapy. An excellent Day One book covers JSNAPy here:
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-
series/jsnapy/.

https://github.com/pklimai/pyez-network-testing
https://github.com/Juniper/jsnapy
https://github.com/Juniper/jsnapy
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/jsnapy/
http://www.juniper.net/us/en/training/jnbooks/day-one/automation-series/jsnapy/

MPLS VPNs can be used to isolate different customer networks from
each other. In some cases, though, a service running in a VPN should be
available to other VPNs as well. There can be several reasons as to why
this is desirable:

 � Customers want to exchanges services with each other

 � A customer has multiple VPNs

 � The operator has a service it wants to offer inside multiple
customer VPNs

This cookbook recipe shows you how you can selectively leak resources
(or subnets) between different VPNs.

Problem

There’s a service running in VPN A but you need to make sure that this
service is made available to VPN B and VPN C as well. Furthermore,
you need to make sure that only specific hosts from the other VPNs are
allowed access this resource.

Recipe 7:
Selective Resource Sharing Across VPNs

 96 Day One: Juniper Ambassadors’ Cookbook for 2017

Solution

The working topology for this cookbook recipe is as shown here.

Figure 7.1 Topology for Selective Resource Sharing Across VPNs

Every site that is connected to a VPN will advertise a /24 route and a
host route. You need to make sure that the host routes from VPN B
and VPNC will be able to access a service in VPN A. This means that
you need to realize IP connectivity between the following hosts:

 Recipe 7: Selective Resource Sharing Across VPNs 97

Figure 7.2 Host Connectivity

What you will not do is realize IP connectivity between any other host
residing in any of the VPNs. You can do this by using different route
targets and routing policies and by using the route targets:

Figure 7.3 Route Targets

The black route targets are used for routes that should only be visible
in their ‘native’ VPN. The red route-target is added to the service
residing in VPNA. This is the service that we want to share with both
VPN B and VPN C. The blue target is added to host routes that we
want to make the service accessible to.

In Figure 7.3, route targets target:65000:1, target:65000:2, tar-
get:65000:3 are used for routes that should only be visible in their
‘native’ VPN. Route target target:65000:4 is added to the service
residing in VPNA, the service that you want to share with both VPN B
and VPN C. Route targets target:65000:5 is added to host routes that
you want to make the service accessible to.

Now configure the routing instances on all the PE routers in a similar
way:

lab@PE1# show routing-instances
vpn-a {
 instance-type vrf;
 interface ge-0/0/2.100;

 98 Day One: Juniper Ambassadors’ Cookbook for 2017

 vrf-import vpna-import;
 vrf-export vpna-export;
 vrf-table-label;
 protocols {
 bgp {
 group cpe {
 family inet {
 unicast;
 }
 peer-as 66000;
 as-override;
 neighbor 172.16.1.2;
 }
 }
 }
}
vpn-b {
 instance-type vrf;
 interface ge-0/0/2.200;
 vrf-import vpnb-import;
 vrf-export vpnb-export;
 vrf-table-label;
 protocols {
 bgp {
 group cpe {
 family inet {
 unicast;
 }
 peer-as 66001;
 as-override;
 neighbor 172.17.1.2;
 }
 }
 }
}
vpn-c {
 instance-type vrf;
 interface ge-0/0/2.300;
 vrf-import vpnc-import;
 vrf-export vpnc-export;
 vrf-table-label;
 protocols {
 bgp {
 group cpe {
 family inet {
 unicast;
 }
 peer-as 66001;
 as-override;
 neighbor 172.18.1.2;
 }
 }
 }
}

The policies used for all three VPNs are the same as well. The follow-
ing is the example policy for VPN A:

 Recipe 7: Selective Resource Sharing Across VPNs 99

lab@PE2# show policy-options
policy-statement vpna-export {
 term 1 {
 from protocol [bgp direct];
 then {
 community add vpna;
 accept;
 }
 }
}
policy-statement vpna-import {
 term 1 {
 from {
 protocol bgp;
 community vpna;
 }
 then accept;
 }
}
community vpna members target:65000:1;

So far, there should be nothing unusual for you. This is your standard no
frills MPLS L3VPN with full mesh connectivity across your MPLS
network. Configured like this, the different VPNs are nicely separated.

But let’s now move to PE1. The first step is to alter the policy that you are
using for VPN A. You need to alter the import and the export policy.
What you need to do is add a shared-resource community to the host
route giving access to the resource (10.200.100.1/32). The other thing
you need to do is import the clients that need granted access to this shared
resource. To accomplish this, configure the following:

[edit]
lab@PE1# set policy-options policy-statement vpna-export term 0 from route-
filter 10.200.100.1/32 exact

[edit]
lab@PE1# set policy-options policy-statement vpna-export term 0 then community add vpna

[edit]
lab@PE1# set policy-options policy-statement vpna-export term 0 then community add shared-
resource

[edit]
lab@PE1# set policy-options policy-statement vpna-export term 0 then accept

[edit]
lab@PE1# insert policy-options policy-statement vpna-export term 0 before term 1

[edit]
lab@PE1# set policy-options policy-statement vpna-import term 2 from protocol bgp

[edit]
lab@PE1# set policy-options policy-statement vpna-import term 2 from community clients

[edit]
lab@PE1# set policy-options policy-statement vpna-import term 2 then accept

 100 Day One: Juniper Ambassadors’ Cookbook for 2017

[edit]
lab@PE1# set policy-options community clients members target:65000:5

[edit]
lab@PE1# set policy-options community shared-resource members target:65000:4

You have now instructed this VPN to advertise the 10.200.100.1 route
with an additional community. The import policy for VPN A was also
altered to import the client routes.

Now you need to configure the routing policies for VPN B and VPN C.
As an example, let’s look at the changes to VPN B:

[edit]
lab@PE1# rename policy-options policy-statement vpnb-import term 1 to term 2

[edit]
lab@PE1# set policy-options policy-statement vpnb-import term 1 from protocol bgp

[edit]
lab@PE1# set policy-options policy-statement vpnb-import term 1 from community shared-
resource

[edit]
lab@PE1# set policy-options policy-statement vpnb-import term 1 from route-
filter 10.200.100.1/32 exact

[edit]
lab@PE1# set policy-options policy-statement vpnb-import term 1 then accept

[edit]
lab@PE1# insert policy-options policy-statement vpnb-import term 1 before term 2

[edit]

This will make sure that the shared resource route will be imported
into VPN B. Next, move on to the export policy:

[edit]
lab@PE1# rename policy-options policy-statement vpnb-export term 1 to term 2

[edit]
lab@PE1# set policy-options policy-statement vpnb-export term 1 from protocol bgp

[edit]
lab@PE1# set policy-options policy-statement vpnb-export term 1 from route-
filter 10.200.101.0/24 prefix-length-range /32-/32

[edit]
lab@PE1# set policy-options policy-statement vpnb-export term 1 then community add vpnb

[edit]
lab@PE1# set policy-options policy-statement vpnb-export term 1 then community add clients

[edit]
lab@PE1# set policy-options policy-statement vpnb-export term 1 then accept

 Recipe 7: Selective Resource Sharing Across VPNs 101

[edit]
lab@PE1# insert policy-options policy-statement vpnb-export term 1 before term 2

[edit]

And this policy will make sure that the host routes within the
10.200.101.0/24 range will be exported with both the VPN route
target as well as the shared resource route target.

There is one last, little catch. Altering the import and export policies
for VPN B and VPN C on all PE routers will ensure that the routes are
being shared on all PE routers except for the router that is local to the
shared resource.

This is because the routing information is evaluated when received by a
BGP peer. So PE2 and PE3 received the routes from PE1. The received
routes are evaluated by the VPNs routing policy. After this, the routes
are shared or ‘leaked’ between the VPNs. However, the PE1 router
does not advertise this information to itself. In order to make PE1
evaluate the configured route policies for the locally configured routing
instances, you need to add the auto-export knob to all the VPNs
involved and that means adding it to VPN A, VPN B, and VPN C.

[edit]
lab@PE1# set routing-instances vpn-a routing-options auto-export

[edit]
lab@PE1# set routing-instances vpn-b routing-options auto-export

[edit]
lab@PE1# set routing-instances vpn-c routing-options auto-export

You can verify the configuration by issuing the following commands
on any of the PE routers:

lab@PE1> show route community-name clients terse
...

vpn-a.inet.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.101.1/32 B 170 100 66001 I
 unverified >172.17.1.2
* ? 10.200.101.2/32 B 170 100 66001 I
 unverified >10.0.0.6
* ? 10.200.101.3/32 B 170 100 66001 I
 unverified >10.0.0.6
* ? 10.200.101.4/32 B 170 100 66001 I
 unverified >172.18.1.2
* ? 10.200.101.5/32 B 170 100 66001 I
 unverified >10.0.0.6
* ? 10.200.101.6/32 B 170 100 66001 I
 unverified >10.0.0.6

 102 Day One: Juniper Ambassadors’ Cookbook for 2017

vpn-b.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.101.2/32 B 170 100 66001 I
 unverified >10.0.0.6
* ? 10.200.101.3/32 B 170 100 66001 I
 unverified >10.0.0.6

vpn-c.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.101.5/32 B 170 100 66001 I
 unverified >10.0.0.6
* ? 10.200.101.6/32 B 170 100 66001 I
 unverified >10.0.0.6

lab@PE3> show route community-name shared-resource terse
...

vpn-a.inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.100.1/32 B 170 100 66000 I
 unverified >10.0.0.10

vpn-b.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.100.1/32 B 170 100 66000 I
 unverified >10.0.0.10

vpn-c.inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

A V Destination P Prf Metric 1 Metric 2 Next hop AS path
* ? 10.200.100.1/32 B 170 100 66000 I
 unverified >10.0.0.10

Using this recipe’s methodology, you can selectively share resources
across VPNs and by altering the VRF routing policies you can make
sure that a service is available to multiple VPNs. Cool.

The Arbor Networks SP product provides a reporting and visibility tool
to detect DDoS attacks, profile network traffic, and monitor network
path utilization. In order to provide these reports the product relies on
getting information from the managed routers using the following
protocols to collect data:

 � SNMP polling for interface information

 � Jflow for sampled information on all interfaces

 � BGP peering to obtain route table data and monitor table changes

The SP appliance or virtual machine (VM) requires access to the MX
Series for all three protocols to collect and store this information. Once
the information is collected the system provides multiple reporting and
alerting options based on the data.

Problem

Typically, Arbor Networks SP is deployed in a service provider or large
enterprise network. The monitored routers need to be at the edge
where Internet traffic ingresses to the network, providing the first point
of access to detect anomalies in traffic and the best opportunity to deal
with malicious traffic entering the network.

Recipe 8:
Integrate MX Series Routers into Arbor Networks

 104 Day One: Juniper Ambassadors’ Cookbook for 2017

When the network has multiple upstream Internet peers, all MX Series
routers involved in the various peerings need to be included in the
monitoring solution to insure that all possible sources are visible for
DDoS evaluations. And for traffic and transit management, all points
of Internet ingress and egress are needed.

Integrating the SP device into the network to collect all three types of
data from all the MX Series routers can be tricky and should be first
done in your lab before being used in production environments.

Solution

Arbor Networks SP is deployed into the network using two network
interfaces: one provides the SNMP, BGP, and web interface address,
and the second interface is used for flow collection. The MX Series
uses the loopback address for the BGP peer and SNMP collection and
the fxp0 management address for the flow.

Table 8.1 Table IP Address Assignments

Device Interface Address Protocols

Arbor SP eth0 192.0.2.11/24 BGP; SNMP

eth1 172.16.0.11/24 jflow

MX Router lo0.0 127.0.0.1/32 BGP; SNMP

fxp0.0 172.16.0.10/24 jflow

MX Series Configuration

The MX Series configuration consists of three parts: the SNMP, BGP,
and Jflow configurations.

For SNMP you simply need to add the Arbor SP IP address as an
allowed host for the SNMP community on the MX Series. This is used
to pull interface statistics from the MX to the Arbor SP appliance. The
String value is the SNMP community string that Arbor SP uses when
collecting data from the MX:

[edit]
root@# set snmp community String clients 192.0.2.11/32
root@# set snmp community String authorization read-only

The next configuration has an iBGP to the MX loopback address from
the Arbor SP eth0 interface. These peerings are set up as standard
iBGP internal peers using the local AS with the default loopback
addresses. The idea is to integrate the Arbor appliances into the
upstream peerings:

 Recipe 8: Integrate MX Series Routers into Arbor Networks 105

[edit]
root@# set protocols bgp group Arbor type internal
root@# set protocols bgp group Arbor family inet unicast
root@# set protocols bgp group Arbor peer-as 64496
root@# set protocols bgp group Arbor neighbor 192.0.2.11 local-address 127.0.0.1

The Jflow configuration sends the flow data at a 1000 sample rate
from the fxp0 interface to the dedicated flow collection interface eth1
on the Arbor SP. Also note the requirement that all the interfaces be
configured to send flow data. Here a group configuration to automati-
cally apply the jflow to all interfaces on the MX is used:

[edit]
root@# set forwarding-options sampling input rate 1000
root@# set forwarding-options sampling family inet output flow-
server 172.16.0.11 port 2055
root@# set forwarding-options sampling family inet output flow-server 172.16.0.11 source-
address 172.16.0.10
root@# set forwarding-options sampling family inet output flow-
server 172.16.0.11 version 5

root@# set groups jflow_subinterfaces interfaces <*-*> unit <*> family inet sampling input
root@# set groups jflow_subinterfaces interfaces <*-
> unit <> family inet sampling output
root@# set apply-groups jflow_subinterfaces

NOTE If your MX Series is using a “protect-re” firewall filter on the loopback
interface, you will need to add the Arbor SP addresses to the sections
that restrict SNMP and BGP traffic.

NOTE NTP must be configured and enabled for Jflow to work properly in the
Junos OS.

Add MX Series to Arbor SP

To add the MX Series as a managed router, use the Arbor SP installa-
tion GUI interface, and follow this GUI path: Administration >
Monitoring > Routers > Add Router button.

 106 Day One: Juniper Ambassadors’ Cookbook for 2017

Use SNMP to add the address of the MX Series to poll and the commu-
nity string and version to use.

Use BGP to set up the peer address and the ASN.

And use the Flow settings to verify the address sending the flow data
and the sampling rate for calculations.

 Recipe 8: Integrate MX Series Routers into Arbor Networks 107

Verifications

On the MX Series, SNMP get statistics should be incrementing. Run the
show snmp command statistics several times and confirm the incrementing
get responses:

root@> show snmp statistics
SNMP statistics:
…
 Output:
 Packets: 18643, Too bigs: 0, No such names: 0,

Look in the message log for the IP address value of the Arbor SP appli-
ance. The following sample log message shows an unauthorized SNMP
query failure as an example. When all is working correctly no log
messages are returned:

root@> show log messages | match 192.0.2.11
Jan 2 00:25:33 MX snmpd[4035]: SNMPD_AUTH_FAILURE: nsa_log_
community: unauthorized SNMP community from 192.0.2.11 to 127.0.0.1 (String)
 Get responses: 142392142392, Traps: 850995

Confirm the BGP peer is up and established on the MX:
root > show bgp neighbor 192.0.2.11
Peer: 193.0.2.11+3038 AS 33154 Local: 127.0.0.1+179 AS 64496
 Type: Internal State: Established Flags: <Sync RSync>
 Last State: EstabSync Last Event: RecvKeepAlive
 Last Error: Hold Timer Expired Error
 Options: <Preference LocalAddress PeerAS Refresh>
 Local Address: 127.0.0.1 Holdtime: 90 Preference: 170
 Number of flaps: 14
 Last flap event: Closed
 Error: ‘Hold Timer Expired Error’ Sent: 4 Recv: 1
 Peer ID: 192.0.2.11 Local ID: 127.0.0.1 Active Holdtime: 90
 Keepalive Interval: 30 Group index: 16 Peer index: 0
 BFD: disabled, down
 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast inet-flow
 NLRI for this session: inet-unicast
 Peer does not support Refresh capability
 Stale routes from peer are kept for: 300
 Peer does not support Restarter functionality
 Peer does not support Receiver functionality
 Peer supports 4 byte AS extension (peer-as 33154)
 Peer does not support Addpath
 Table inet.0 Bit: 20007
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 0
 Received prefixes: 0
 Accepted prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 620403
 Last traffic (seconds): Received 20 Sent 2 Checked 50
 Input messages: Total 11289 Updates 0 Refreshes 0 Octets 214521
 Output messages: Total 906633 Updates 895002 Refreshes 0 Octets 105942039
 Output Queue[1]: 0
 Trace options: state
 Trace file: /var/log/bgp.log size 10485760 files 10

 108 Day One: Juniper Ambassadors’ Cookbook for 2017

You can only verify the Jflow configuration on the MX although there
isn’t a mechanism to verify the flow data exporting to Arbor SP. But on
the Arbor SP GUI interface you can confirm that the data for all three
protocols is being received and recorded under SystemSystem >
Appliance Monitoring.

The numbers on each column confirm the number of routers sending
data versus the number of routers configured for data collection.
When all is working the numbers should be the same. The ArborFlow
column is null because the two MX Series are using Jflow.

After the Arbor SP reporting and monitoring is configured for an MX
Series router, there is an option to use BGP flow specification (flowspec)
for mitigation announcements. For DDoS mitigation, the SP appliance
can send BGP flow spec updates to compatible routers to automatically
apply filters that either rate-limit or drop traffic per the filter specifica-
tions.

Problem

When a DDoS attack is in progress one potential avenue of mitigation is
to drop traffic matching a specific criteria of the protocol, the port, and
the destination IP address in particular combinations. These mitiga-
tions can occur by applying firewall filters to the appropriate interfaces
on the MX Series router to discard the attack traffic.

BGP flowspec is a mitigation technique specified in RFC 5575 that
allows such filters to be defined in a BGP peer advertisement and then
applied to router interfaces. This technique can help automate the
application of filters.

But the operator still needs to identify the properties of the malicious
traffic in order to create the correct discard criteria for the filter. Then
the operator needs to create the necessary mitigation filter for the attack
traffic.

Recipe 9:
BGP Flow Spec Between Arbor Networks
and MX Series

https://tools.ietf.org/html/rfc5575

 110 Day One: Juniper Ambassadors’ Cookbook for 2017

Solution

Arbor SP provides the operator with the alert information needed to
identify the proper elements of the filter and a mechanism to send the
BGP flowspec announcements to the MX Series router. After the MX
router is set up for basic monitoring with Arbor SP, the BGP flowspec
configuration can be added to the setup. This recipe provides the
basics of that configuration for the MX Series..

The BGP flowspec advertisement can use BGP communities as criteria
for import policies just as any other route advertisement. So the MX
configuration adds a community to the advertisement to facilitate the
handling of the updates. Table 9.1 lists the details of the address
assignments.

Table 9.1 Table IP Address Assignments

Device Interface Address Protocols

Arbor SP eth0 192.0.2.11/24 BGP; SNMP

eth1 172.16.0.11/24 jflow

MX Series Router lo0.0 127.0.0.1/32 BGP; SNMP

fxp0.0 172.16.0.10/24 jflow

MX Series Configuration

The MX Series configuration requires enabling BGP flowspec and then
setting it up as the peer to the Arbor SP system to receive the an-
nouncements. The following enables the basic processing order:

[edit]
root@# set routing-options flow term-order standard
root@# set policy-options community SP_flowspec members 64496:500
root@# set policy-options policy-statement flowspec_import term flowspec_
in from community SP_flowspec
root@# set policy-options policy-statement flowspec_import term flowspec_in then accept

The next configuration creates an iBGP to the MX loopback address
from the Arbor SP eth0 interface, adding the flow options to the
peering and the flow import policy:

[edit]
root@# set protocols bgp group Arbor type internal
root@# set protocols bgp group APF family inet unicast
root@# set protocols bgp group Arbor peer-as 64496
root@# set protocols bgp group Arbor neighbor 192.0.2.11 local-address 127.0.0.1
root@# set protocols bgp group APF family inet flow
root@# set protocols bgp group APF family inet flow no-validate flowspec_import

 Recipe 9: BGP Flow Spec Between Arbor Networks and MX Series 111

NOTE If your MX Series is using a “protect-re” firewall filter on the loopback
interface, you will need to add the Arbor SP addresses to the sections
that restrict BGP traffic.

Arbor SP: Add BGP Flow Spec to MX

You will need to add the MX Series as a managed router on the Arbor
SP installation GUI, under Administration > Monitoring > Routers > .

Edit the setup information for the MX Series that will receive the BGP
flowspec announcement by selecting the BGP tab and enabling Flow
Specification for the BGP peer.

As an option, you can set up your BGP communities in advance so they
can be selected for use during the BGP process. You can also enter the
community values manually, later, but setting them up in advance
prevents typos from occurring during the mitigation process. Go to:
Administration > Mitigation > Community Groups > Create New.

 112 Day One: Juniper Ambassadors’ Cookbook for 2017

Create the community value and add the No advertise and No export
options. Click Save.

Verifications

On the MX Series, the BGP peer should now show that “address
families” has inet-flow is enabled. Let’s check the lab MX:

root > show bgp neighbor 192.0.2.11
Peer: 193.0.2.11+3038 AS 33154 Local: 127.0.0.1+179 AS 64496
 Type: Internal State: Established Flags: <Sync RSync>
 Last State: EstabSync Last Event: RecvKeepAlive
 Last Error: Hold Timer Expired Error
 Options: <Preference LocalAddress PeerAS Refresh>
 Address families configured: inet-unicast inet-flow
 Local Address: 127.0.0.1 Holdtime: 90 Preference: 170
 Number of flaps: 14
 Last flap event: Closed
 Error: ‘Hold Timer Expired Error’ Sent: 4 Recv: 1
 Peer ID: 192.0.2.11 Local ID: 127.0.0.1 Active Holdtime: 90
 Keepalive Interval: 30 Group index: 16 Peer index: 0
 BFD: disabled, down

 Recipe 9: BGP Flow Spec Between Arbor Networks and MX Series 113

 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast inet-flow
 NLRI for this session: inet-unicast
 Peer does not support Refresh capability
 Stale routes from peer are kept for: 300
 Peer does not support Restarter functionality
 Peer does not support Receiver functionality
 Peer supports 4 byte AS extension (peer-as 33154)
 Peer does not support Addpath
 Table inet.0 Bit: 20007
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 0
 Received prefixes: 0
 Accepted prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 620403
 Last traffic (seconds): Received 20 Sent 2 Checked 50
 Input messages: Total 11289 Updates 0 Refreshes 0 Octets 214521
 Output messages: Total 906633 Updates 895002 Refreshes 0 Octets 105942039
 Output Queue[1]: 0
 Trace options: state
 Trace file: /var/log/bgp.log size 10485760 files 10

Okay, all is well. To send a BGP flowspec announcement go back to the
Arbor SP GUI and choose Mitigate Alert from the DoS alert that you are
working on, first making notes on the traffic tab of the details you will
need for the filter, namely the destination address and the protocol and
source port of the attack type (i.e. NTP reflection UDP 123).

On the announcement tab use the Select Routers button to pull in the
correct target and then Select Community Group to copy the correct
values.

 114 Day One: Juniper Ambassadors’ Cookbook for 2017

Use the GUI’s Filter tab to enter your values saved from the traffic
details. The following shows a typical NTP reflection attack:

 Recipe 9: BGP Flow Spec Between Arbor Networks and MX Series 115

Next, on the Action tab, set the discard option.

Now the mitigation can be controlled from the main listing screen.

If you want to send an announcement, independent of an Alert, you can
set that directly from the Mitigation menu, under Mitigation > Flow
Specification.

On the MX Series, the announcement should now be visible in the
inetflow routing table. Let’s check the lab MX:

root > show route receive-protocol bgp 192.0.2.11 table inetflow.0
inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 192.0.2.100,*,proto=17,srcport=123/term:1
* Self 100 ?
root > show route table inetflow.0 extensive

inetflow.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
64.58.255.10,*,proto=17,srcport=53/term:1 (1 entry, 1 announced)
TSI:
KRT in dfwd;
Action(s): discard,count

 116 Day One: Juniper Ambassadors’ Cookbook for 2017

 *BGP Preference: 170/-101
 Next hop type: Fictitious
 Address: 0x9279f64
 Next-hop reference count: 1
 State: <Active Int Ext>
 Local AS: 64496 Peer AS: 64496
 Age: 28
 Validation State: unverified
 Task: BGP_64496.192.0.2.100+2271
 Announcement bits (1): 0-Flow
 AS path: ?
 Communities: 64496:500 no-export no-advertise traffic-rate:0:0
 Accepted
 Localpref: 100
 Router ID: 127.0.0.1

And we can see the effectiveness of the filter by checking the counter
for the number of packets that are hitting the filter parameters:

root > show firewall filter __flowspec_Upstream_inet__

Filter: __flowspec_Upstream_inet__
Counters:
Name Bytes Packets
192.0.2.100,*,proto=17,srcport=123 23815402 182184

Arbor Networks TMS can be added to its SP product to provide an
off-ramp scrubbing station for DDoS mitigation. It requires the Arbor
SP to already be successfully implemented in the network to the man-
aged MX Series. TMS is a hardware solution with various models to
accommodate the capacity of traffic required.

Problem

During a DDoS event, malicious traffic is sent to the victim along with
legitimate traffic. The challenge is to drop the malicious traffic while
allowing the legitimate connections to proceed as normal. Attackers
use a variety of techniques to make identifying and dropping their
traffic difficult.

Solution

Off-ramp scrubbing solutions provide inline processing and evaluation
of the traffic to identify the attack traffic, and more surgically, to drop
the malicious activity. Off ramping is used on traffic after simple
firewall filters have removed the more obvious attack traffic. A wide
variety of countermeasures are available and these are changed by the
TMS processor, on the fly, to counteract the dynamic attack activity.

In order to evaluate and process the traffic, the off ramp appliance
diverts the inbound traffic for the IP address that is under attack. Using
BGP, the IP address of the host under attack is advertised to the up-
stream MX Series, so instead of proceeding down the normal network
path, the traffic enters the Arbor TMS. After processing, the traffic is
returned to the downstream network path.

Recipe 10:
Integrate MX Series With Arbor Networks
TMS Off Ramp

 118 Day One: Juniper Ambassadors’ Cookbook for 2017

In this scenario, MX-1 is the device under licensed management by the
Arbor SP appliance. MX-2 represents the further downstream path for
the client’s Internet traffic. These can also be configured as virtual
routing instances on the same MX Series platform to accomplish the
necessary diversion traffic flow. The basic requirement is that there be
a separation of routing tables between the upstream forwarding to the
Internet peers, where the off-ramp interface is connected, and the
downstream path to the client networks where the off-ramp interface
will return the clean traffic to the flow, as illustrated in Figure 10.1.
The IP address assignments for this recipe are listed in Table 10.1.

Figure 10.1 The Off-ramp Interface Returns the Clean Traffic to the Flow

Table 10.1 Table IP Address Assignments

Device Interface Address Description

Arbor SP eth0 192.0.2.11/24 BGP; SNMP

eth1 172.16.0.11/24 jflow

MX-1

Upstream

lo0.0 127.0.0.1/32 BGP; SNMP

fxp0.0 172.16.0.10/24 Jflow

xe-0/0/0 198.51.100.0/31 Internet Peer

xe-0/0/1 198.51.100.2/31 TMS On Ramp tmsx0

xe-0/0/2 198.51.100.4/31 MX-2 Downstream

MX-2

Downstream

xe-0/0/0 198.100.100.5/31 MX-1 Upstream

xe-0/0/1 198.51.100.6/31 TMS Off Ramp tmsx2

xe-0/0/2 198.51.100.8/31 Downstream clients

Arbor TMS tmsx0 198.51.100.3/31 On Ramp

tmsx2 198.51.100.7/31 Off Ramp

mgt0 192.0.2.12/24 BGP - mgmt

 Recipe 10: Integrate MX Series With Arbor Networks TMS Off Ramp 119

MX Series Configuration

The MX requires that the interfaces connecting to the TMS be set up in
the link subnets and that a BGP peer session be established to receive
the mitigation routes for the traffic that needs to be sent to the off
ramp. The interface configuration is standard:

MX-1

[edit]
root@# set interfaces xe-0/0/1 description “Arbor TMS | tmsx0”
root@# set interfaces xe-0/0/1 unit 0 description “Upstream MX to Arbor TMS offramp”
root@# set interfaces xe-0/0/1 unit 0 family inet address 198.51.100.2/31
---These sampling commands are required on every interface of an Arbor SP managed router.
They can be applied directly or via apply-groups to all interfaces
root@# set interfaces xe-0/0/1 unit 0 family inet sampling input
root@# set interfaces xe-0/0/1 unit 0 family inet sampling output

MX-2

[edit]
root@# set interfaces xe-0/0/1 description “Arbor TMS | tmsx2”
root@# set interfaces xe-0/0/1 unit 0 description “Downstream MX from Arbor TMS onramp”
root@# set interfaces xe-0/0/1 unit 0 family inet address 198.51.100.6/31

This configuration has an iBGP to the MX loopback address from the
Arbor TMS mgt0 interface. These peerings are set up as standard
iBGP internal peers using the local AS with the default loopback
addresses. The idea is to integrate the Arbor appliances into the
upstream peerings:

[edit]
root@# set protocols bgp group ArborTMS type internal
root@# set protocols bgp group ArborTMS family inet unicast
root@# set protocols bgp group ArborTMS peer-as 64496
root@# set protocols bgp group ArborTMS neighbor 192.0.2.12 local-address 127.0.0.1

NOTE If your MX Series is using a “protect-re” firewall filter on the loopback
interface, you will need to add the Arbor SP addresses to the sections
that restrict SNMP and BGP traffic.

Configure TMS Appliance in Arbor SP

You will now need to add the MX Series as a managed router on the
Arbor SP installation GUI. Administration > Appliances > Add
Appliance button:

 120 Day One: Juniper Ambassadors’ Cookbook for 2017

And add the management IP address along with the hardware type:

The IPv4 diversion next hop is the address that will be put into the
BGP advertisement to use the off-ramp interface of the TMS. Use the
pull-down Name list to select the TMS interface that acts as the on
ramp.

The Patch Panel (see next page screen capture) tab settings use the
interface addresses assigned to the TMS connecting to the upstream
and downstream MX devices. The interface addresses come from the
ones assigned to tmsx0 and tmsx2 that provide the on and off ramp
connection.

The Edit Peering Sessions button allows you to select the MX device’s
BGP peers that are available in the Arbor system. This will be the
upstream MX where you want to advertise the diversion route.

Since tmsx0 is the on ramp, set the output interface to be the off-ramp
interface to the downstream router.

On both interfaces set the next hop to be the output interface on the
downstream MX router. This will be the next hop that traffic leaving
the TMS will use.

 Recipe 10: Integrate MX Series With Arbor Networks TMS Off Ramp 121

Verifications

Let’s confirm that the interfaces are up and active on the MX-1:

root > show interfaces descriptions | match apf
xe-0/0/1 up up Arbor TMS | tmsx0
xe-0/0/1.0 up up Upstream MX to Arbor TMS offramp

And the interfaces on MX-2:

xe-0/0/1 up up Arbor TMS | tmsx2
xe-0/0/1.0 up up Downstream MX from Arbor TMS onramp

On MX-1 let’s confirm the BGP peer is up and established:

root > show bgp neighbor 192.0.2.12
Peer: 193.0.2.11+3038 AS 33154 Local: 127.0.0.1+179 AS 64496
 Type: Internal State: Established Flags: <Sync RSync>
 Last State: EstabSync Last Event: RecvKeepAlive
 Last Error: Hold Timer Expired Error
 Options: <Preference LocalAddress PeerAS Refresh>
 Local Address: 127.0.0.1 Holdtime: 90 Preference: 170
 Number of flaps: 14
 Last flap event: Closed
 Error: ‘Hold Timer Expired Error’ Sent: 4 Recv: 1
 Peer ID: 192.0.2.12 Local ID: 127.0.0.1 Active Holdtime: 90
 Keepalive Interval: 30 Group index: 16 Peer index: 0
 BFD: disabled, down
 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast inet-flow

 122 Day One: Juniper Ambassadors’ Cookbook for 2017

 NLRI for this session: inet-unicast
 Peer does not support Refresh capability
 Stale routes from peer are kept for: 300
 Peer does not support Restarter functionality
 Peer does not support Receiver functionality
 Peer supports 4 byte AS extension (peer-as 33154)
 Peer does not support Addpath
 Table inet.0 Bit: 20007
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 0
 Received prefixes: 0
 Accepted prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 423726
 Last traffic (seconds): Received 0 Sent 2 Checked 30
 Input messages: Total 11289 Updates 0 Refreshes 0 Octets 214521
 Output messages: Total 906633 Updates 895002 Refreshes 0 Octets 105942039
 Output Queue[1]: 0
 Trace options: state
 Trace file: /var/log/bgp.log size 10485760 files 10

Let’s return to the GUI and look at the status menu, by going to System
> Status > Appliances.

And the TMS appliance should confirm that the BGP peer is up.

The aim of this recipe is to provide sample migration scenarios of a
typical service provider network moving toward two new networking
enhancements in order to facilitate the integration of SD-WAN
solutions.

Problem

You just got orders from the boss. Go seek out SD-WAN solutions
and report back to the execs. Yikes! Well, you want to look at two
things: route reflection and segment routing.

The first step is to centralize the route reflection function in your
network. A route reflector (RR) solution is one widely deployed by
providers to distribute BGP routes in a scaled environment. Most of
time, the BGP route reflection function consists of several dedicated
physical routers connected at several right places of your network. For
scaling purposes the topology of the RRs is usually hierarchical:
regional vs. national RRs. With the emergence of virtualization
technologies, more and more often the RR’s function becomes just a
piece of software that can easily run on appliances. Virtual route
reflecting scales out very well and the centralization of the RR’s
function becomes more accessible. Nevertheless, for centralizing route
reflection function in a network you need to play with some tricks to
help avoid routes blackholing or non-optimal routing, especially with
some route families.

The second step is to switch the MPLS transport solution from LDP to
Segment Routing (SPRING): SPRING seems to be one of the key
drivers to deploy SDN in service providers and enterprise backbones.

Recipe 11:
Migrate Your Core to Centralized Route
Reflection and Segment Routing

 124 Day One: Juniper Ambassadors’ Cookbook for 2017

This solution provides flexibility and agility to define and build LSP
with or without traffic engineering (TE) constraints, and in some
topologies and failure scenarios offers better fast reroute coverage
than other solutions such as LFA or rLFA.

Solution 1: Centralize Route Reflection

Figure 11.1 shows you a classic service provider network with regional
point-of-presence (PoPs) connected to an MPLS backbone. Each
location has its regional Internet exit point made of two ASBRs
connected to the Internet transit networks. The IGP is IS-IS and a
unique Level 2 area composed this network. Each MX router runs
Junos 16.1R2.11.

Figure 11.1: Typical Service Provider Network

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 125

To simplify the reading, Figure 11.1 represents only two regional PoPs
of the “Foo” service provider. As observed, each PoP, is made of two
PEs, is connected to the core network via P routers and to two ASBRs.
The entire core network is a pure IS-IS/ LDP network (BGP free core).
It conveys L2/L3VPN services and also offers IPv6 connectivity via the
6PE technology. A regional PoP has its dedicated RR (respectively RR1
for PoP 1, and RR2 for PoP 2). In real networks, any RR is often
redundant (it means operator installs a couple of RRs). All edge
routers (both ASBRs and PEs) of a given location peer with the local
RR. Each local RR then peers with a national RR (RR3) in order to
exchange customer’s routes of each location with the entire network.
The regional default routes must not be reflected by Regional RR to
National RR in order to avoid traffic attraction from one regional area
over another. Only CEs can communicate with each other independent
of where they are located.

Figure 11.2 BGP Peering on PoP 1

 126 Day One: Juniper Ambassadors’ Cookbook for 2017

The local “customers” of Foo are connected to the local PEs and can
reach either the Internet (via ASBR) or remote customers (inter-
regional traffic through the core network). Foo supports both IPv4
and IPv6 protocols. For purposes of this recipe’s brevity, let’s only
consider the IPv6 transit service offered to customers.

The “full” IPv6 Internet routing table must reside only on the ASBRs.
Each regional ASBR sends a default route to its regional PEs via the
local RR. Let’s zoom in to the PoP 1 (the configuration is exactly the
same on PoP 2).

Figure 11.2 illustrates that all four PEs (A1, A2, R1, and R2) peer with
RR1. RR1 then peers with RR3.

Let’s start with RR1’s configuration:

user@RR1> show configuration protocols bgp
log-updown;
group REGIONAL-1 {
 type internal;
 local-address 172.16.1.11;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 cluster 0.0.0.1; <<< Unique Cluster ID per regional area
 neighbor 172.16.1.1;
 neighbor 172.16.1.2;
 neighbor 172.16.1.7;
 neighbor 172.16.1.8;
}
group NATIONAL {
 type internal;
 local-address 172.16.1.11;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 export DENY-DEFAULT; <<< Avoid Regional default route leaking
 neighbor 172.16.1.13;
}

RRs are only connected to the network with the IS-IS protocol. To
allow 6PE next-hop resolution, copy the inet.0 routes in the inet6.3
table like this:

user@RR1> show configuration routing-options
rib-groups {
 rib_isis {
 import-rib [inet.0 inet6.3];
 }
}

Now, let’s move on with the Internet access. The Internet transit
networks, AS65010 and AS65011, send the full Internet routing table
to ASBR A1 and A2. There is an export policy on A1 and A2 to send a

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 127

default route only to RR1 and thus to regional PEs. You keep the full
Internet table only on A1 and A2. There is also a dedicated iBGP session
between A1 and A2 to exchange the full routing table one more time for
securing the architecture. And, as observed, some routes coming from
AS65011 are privileged by ASBR A1 (Local Preference 150). Here is the
BGP configuration of A1:

user@A1> show configuration protocols bgp
log-updown;
group RR-6PE {
 type internal;
 local-address 172.16.1.7;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 export DEFAULT-V6; <<<<<<<<<<<< ONLY SEND the ::/0 route to RR1
 neighbor 172.16.1.13;
}
group eBGP-AS65010 {
 type external;
 peer-as 65010;
 neighbor 2001:db8:cafe::13;
}
group eBGP-AS65011 {
 type external;
 import ADD_LP150; <<<<<<<<<<< Some routes are best by A1
 peer-as 65011;
 neighbor 2001:db8:cafe::15;
}
group INTER-ASBR {
 type internal;
 local-address 172.16.1.7;
 advertise-external; <<<<< To avoid hidden eBGP routes due to LP 150
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 neighbor 172.16.1.8;
}

Finally, let’s have a look at the failure protection features implemented in
this network. As already presented above, each ASBR has a dedicated
iBGP session with its neighbor. The advertise-external knob is config-
ured to force an ASBR to still send a best eBGP route to its iBGP peers
even if this route is preferred by an internal path. This is the case for A2,
which receives some routes from A1 with a local preference of 150. These
routes are better than direct eBGP routes of A2 with a default local
preference of 100. Without the knob, these eBGP routes would not be
advertised by A2 to A1 and in case of a loss of the eBGP sessions on A1,
the missing routes should be learned back from A2, and that could impact
the convergence time.

 128 Day One: Juniper Ambassadors’ Cookbook for 2017

Just to see an example, the advertise-external knob has been removed
on A2 and now let’s check the BGP paths of some of the prefixes on A1:

user@A1> show route 2001:db8:202::/47

inet6.0: 17 destinations, 19 routes (17 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8:202::/48 *[BGP/170] 22:57:22, localpref 100
 AS path: 65010 I, validation-state: unverified
 > to 2001:db8:cafe::13 via ae10.0 <<< To Other ASs
 [BGP/170] 00:04:40, localpref 100, from 172.16.1.8
 AS path: 65010 I, validation-state: unverified
 > to 192.168.1.49 via ae11.0, Push 2 <<<< To A2
2001:db8:203::/48 *[BGP/170] 01:13:22, localpref 150
 AS path: 65011 I, validation-state: unverified
 > to 2001:db8:cafe::15 via ae10.0 <<< To Other ASs

The highlighted prefix 2001:db8:203::/48 is one prefix preferred (by
default) through A1 because it has a specific local preference set to 150.
This route, sent by A1 to A2 via the dedicated BGP session, would be
best on A2 (instead of the direct eBGP route with the default LP set to
100). In this case, the eBGP route of A2 will not be sent to A1. This is
why on A1 you only see the direct eBGP route for 2001:db8:203::/48.

To force A2 to send the “backup and best” eBGP path, use the adver-
tise-external feature. Once configured on A2, you can check the routes
on A1 and confirm that A1 now knows both paths – one from the direct
eBGP session and the other via the iBGP session with A2:

user@A1> show route 2001:db8:202::/47

inet6.0: 17 destinations, 21 routes (17 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

2001:db8:202::/48 *[BGP/170] 1d 01:34:25, localpref 100
 AS path: 65010 I, validation-state: unverified
 > to 2001:db8:cafe::13 via ae10.0
 [BGP/170] 02:41:43, localpref 100, from 172.16.1.8
 AS path: 65010 I, validation-state: unverified
 > to 192.168.1.49 via ae11.0, Push 2
2001:db8:203::/48 *[BGP/170] 03:50:25, localpref 150
 AS path: 65011 I, validation-state: unverified
 > to 2001:db8:cafe::15 via ae10.0
 [BGP/170] 00:00:03, localpref 100, from 172.16.1.8
 AS path: 65011 I, validation-state: unverified
 > to 192.168.1.49 via ae11.0, Push 2

On each regional RR add the add-path send 2 knob and on each PE
configure the Add-Path receive statement. This allows you to send more
than one, but at most two, paths for each prefix the route reflector
knows. At least two paths of the default routes (one per ASBR) are
needed on remote PE in order to use the PIC Edge feature (see below).
The RR1 and R1 add-path configuration are depicted here:

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 129

user@RR1> show configuration protocol bgp
[..]
 family inet6 {
 labeled-unicast {
 add-path {
 send {
 path-count 2;
 }
 }
 explicit-null;
 }
 }
[..]
user@R1> show configuration protocol bgp
[..]
 family inet6 {
 labeled-unicast {
 add-path {
 receive;
 }
 explicit-null;
 }
 }
[..]

In order to minimize the convergence time (in case of some failure
scenarios) the PE routers also have two knobs configured. First is the
IPv6 protect core feature (aka PIC Edge). This feature installs both
nominal and backup BGP paths in FIB. It protects the case of a remote
next-hop failure:

user@R1> show configuration routing-options
rib inet6.0 {
 protect core;
}

The second knob feature is the LFA link-protection: this feature
allows installation of both nominal and backup forwarding next hop
in the FIB for fast reroute in case of a nominal link failure. We apply it
on each core interface:

user@R1> show configuration protocols isis
interface ae6.0 {
 point-to-point;
 link-protection;
 level 2 metric 25;
}

After setting up all of these protection features, you should check on
how the default route is known on PE1. And, as you can see next, the
default route has two paths: one from A1, and the other from A2. Both
BGP paths are installed in the FIB (PIC Edge) and for each path there
are two forwarding next hops installed (LFA): the nominal interface is
the R1/A1’s (ae6.0) link and a backup interface computed by LFA is
the R1/R2’s link (ae5.0):

 130 Day One: Juniper Ambassadors’ Cookbook for 2017

user@R1> show route logical-system R1 ::/0 exact

inet6.0: 11 destinations, 13 routes (11 active, 0 holddown, 0 hidden)
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both

::/0 @[BGP/170] 00:00:23, localpref 100, from 172.16.1.11
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2
 to 192.168.1.2 via ae5.0, Push 2, Push 300192(top)
 [BGP/170] 00:00:23, localpref 100, from 172.16.1.11
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2, Push 299792(top)
 to 192.168.1.2 via ae5.0, Push 2, Push 300080(top)
 #[Multipath/255] 00:00:23, metric2 1
 > to 192.168.1.54 via ae6.0, Push 2 << Nominal BGP path
 to 192.168.1.2 via ae5.0, Push 2, Push 300192(top)
 to 192.168.1.54 via ae6.0, Push 2, Push 299792(top) << Backup BGP path
 to 192.168.1.2 via ae5.0, Push 2, Push 300080(top)

Now it’s time to migrate this network toward a centralized route reflec-
tor (RR3) for our 6PE family.

Migrate To a Centralized RR

An RR reflects a route to its BGP clients by default only if that route is
the best from the RR’s point of view. In other words, if the RR receives
several BGP paths of a given prefix, it picks the best path and only
reflects that path to its clients. BGP tiebreakers are used to select the
best path, and most of the time the selector is the Interior Gateway
Protocol (IGP) distance to the next hop. Because the cost to a given
point in the network will vary across routers, and, conversely, RRs are
usually outside of the forwarding plane – but still connected to the
network – the IGP metric as best path selector is often not relevant.
As a consequence, the choice of exit point for a RR and its clients will
be the best exit point for the RR - not necessarily the one best for the
RR clients. It is important to note that this drawback does not impact
all route families the same way. For instance, L3VPN routes are usually
unique in terms of “path”. That’s because an L3VPN route is the
concatenation of the prefix itself with a route-distinguisher that is
often uniquely attributed by the operator per PE or per VRF. In this
way, for the RR, all L3VPN prefixes are unique (have a unique path)
and thus are distributed to the clients.

NOTE To optimize the L3VPN route distribution use the Route Target
Constraint solution, which is unfortunately beyond the scope of this
recipe.

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 131

As shown in Figure 11.1, to avoid the current limitations, the service
provider Foo had chosen the placement of physical route reflector
equipment on each regional area. This meant installing several RRs in
several IGP locations of the network to indirectly force the RR to
select the closest exit point of a given network region. In this configu-
ration, the RRs should be meshed to each other to allow the distribu-
tion of regional routes in the entire network. A second layer of route
reflection is often used to aggregate and reflect routes from regional
RRs – in this case study, RR1 and RR2 peer with an upper stage of
RR: RR3.

Evaluate Solutions for Centralizing RR

To centralize the RR function, the first solution consists of sending all
paths or a subset of paths of each prefix to all RR’s clients. In this case,
the best path selection would be accomplished by the client itself. This
approach – which uses what is called BGP Add-Path feature – suffers
the significant drawback of pushing a large amount of BGP states to
all edge routers. Moreover, add-path is also limited in terms of the
number of paths it can send. For instance, the Junos OS currently
supports six paths. In our configuration, where there are several
regional network areas (more than two), six paths wouldn’t be
enough. However, add-path has, in other circumstances, had the
opportunity to offer path diversity to BGP clients (i.e. for better
convergence time in a failure scenario – see above in addition with PIC
Edge).

This recipe details a new way to distribute routes via a RR indepen-
dent of where is the RR located. The core of this solution is to config-
ure the RR to use a virtual IGP location for a given BGP client or a
group of clients (aka peer group). This enables having a given group of
clients receive routes with optimal distance to the next hops from the
position of the configured virtual IGP location. This solution is called:
Optimal Route Reflection (ORR), and has been implemented in Junos
since 15.1.

This solution will be deployed in the national route reflector RR3.
Let’s start to modify our network configuration.

Migration Procedure

As each network has its “change” processes, let’s not cover the
step-by-step migration from several regional RRs to one national RR.
You might imagine several scenarios, such as double meshing PEs and
ASBRs with the regional RR and the rational RR, then shutting down
the BGP session to the regional RR, and so on.

 132 Day One: Juniper Ambassadors’ Cookbook for 2017

Instead, let’s focus on what happens if the RR function is centralized
without doing anything more than establishing BGP sessions between
our remote BGP RR clients and RR3, and then how ORR can help
solve the issue.

ORR Theory

In theory, ORR is quite simple, beginning with virtual IGP location.
That means the capability of a router to run an SPF not from its point
of view, its own placement in the IGP topology, but by choosing
another remote node as if it was the root of the SPF tree. The Junos
ORR configuration is very simple. It only takes in the input of the
router ID of the remote node – the one you want to compute the SPF.
You could also provide a backup router ID in case the primary remote
node fails and disappears off the IGP database. Figure 11.3 illustrates
these ORR concepts.

Figure 11.3 ORR Concepts

Changing Our Topology

Let’s assume that all BGP sessions between A1, A2, R1, R2, B1, B2,
R3, and R4 are established with RR3, but RR1 and RR2 have been
removed. Figure 11.4 provides some information regarding the routes
sent by the RR’s clients to RR3 – the four ASBRs send only the default
IPv6 route and each PE sends its customer an attached prefix.

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 133

Figure 11.4 Move BGP Sessions to National RR

For practical purposes, let’s not configure ORR in the BGP groups yet,
so we can observe the issue you might encounter with a centralized
RR. Given that bit of news, the RR3 router is configured like this:

user@RR3> show configuration protocols bgp
log-updown;
group REGIONAL-1 {
 type internal;
 local-address 172.16.1.13;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 cluster 0.0.0.3;
 neighbor 172.16.1.1;
 neighbor 172.16.1.2;
 neighbor 172.16.1.7;

 134 Day One: Juniper Ambassadors’ Cookbook for 2017

 neighbor 172.16.1.8;
}
group REGIONAL-2 {
 type internal;
 local-address 172.16.1.13;
 family inet6 {
 labeled-unicast {
 explicit-null;
 }
 }
 cluster 0.0.0.3;
 neighbor 172.16.1.3;
 neighbor 172.16.1.4;
 neighbor 172.16.1.9;
 neighbor 172.16.1.10;
}

You can see a separate BGP group per regional network location. In
this configuration RR3 should receive four paths of the default IPv6
route and one path for each customer’s prefix. Let’s check:

user@RR3> show route protocol bgp

::/0 *[BGP/170] 1d 23:52:43, localpref 100, from 172.16.1.7 << Best path from A1
 AS path: I, validation-state: unverified
 > to 192.168.1.130 via ae5.0, Push 2
 [BGP/170] 23:00:55, localpref 100, from 172.16.1.8
 AS path: I, validation-state: unverified
 > to 192.168.1.134 via ae8.0, Push 2
 [BGP/170] 1d 23:52:43, localpref 100, from 172.16.1.9
 AS path: I, validation-state: unverified
 > to 192.168.1.130 via ae5.0, Push 2
 [BGP/170] 1d 23:46:18, localpref 100, from 172.16.1.10
 AS path: I, validation-state: unverified
 > to 192.168.1.134 via ae8.0, Push 2
2001:db8:101::/48 *[BGP/170] 1d 23:52:43, localpref 100, from 172.16.1.1
 AS path: 65100 I, validation-state: unverified
 > to 192.168.1.130 via ae5.0, Push 2
2001:db8:102::/48 *[BGP/170] 1d 23:46:18, localpref 100, from 172.16.1.2
 AS path: 65100 I, validation-state: unverified
 > to 192.168.1.134 via ae8.0, Push 2
2001:db8:103::/48 *[BGP/170] 1d 23:52:43, localpref 100, from 172.16.1.3
 AS path: 65100 I, validation-state: unverified
 > to 192.168.1.130 via ae5.0, Push 2
2001:db8:104::/48 *[BGP/170] 1d 23:46:18, localpref 100, from 172.16.1.4
 AS path: 65100 I, validation-state: unverified
 > to 192.168.1.134 via ae8.0, Push 2

Here you can see the issue with a national RR – RR3 selects one path
among the four default routes based on its IGP location viewpoint. In
this case, it selects the default route sent by A1 and this route is
reflected to all remote clients. For R1 and R2, this isn’t a big issue.
They will receive the default route coming from a next hop of their
network location. But for R3 and R4 it’s another story. For them, the
next hop points to an exit not in their regional area. To reach the
Internet they should use core backbone links. This causes the use of un-
provisioned bandwidth and could trigger traffic congestion within the

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 135

core. You can confirm this issue by checking which default route is sent
to R1, R2, R3, and R4 from RR3. The next-hop address for the default
route is 172.16.1.7 (A1) for all of them:

user@RR3> show route advertising-protocol bgp 172.16.1.1 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.2 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.3 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.4 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

It’s time to solve this issue by adding the ORR configuration on RR3
for each peer group, like this:

user@RR3> show configuration protocols bgp
log-updown;
group REGIONAL-1 {
[...]
 optimal-route-reflection {
 igp-primary 172.16.1.1;
 igp-backup 172.16.1.2;
 }
[...]
}
group REGIONAL-2 {
[...]
 optimal-route-reflection {
 igp-primary 172.16.1.3;
 igp-backup 172.16.1.4;
 }
[...]
}

As you can see, for each BGP group you add the specific ORR configu-
ration. For the REGIONAL-1 group you configure the primary virtual IGP
location with the IP address of R1 (its router ID) and in case this one
fails, there’s a secondary virtual IGP location with the IP address of R2.
You do exactly the same for the second BGP group with R3 as the
primary virtual IGP location and R4 as a backup. You can then check
the “virtual SPF” result for a given group:

 136 Day One: Juniper Ambassadors’ Cookbook for 2017

user@RR3> show isis bgp-orr group REGIONAL-1
BGP ORR Peer Group: REGIONAL-1
 Primary: 172.16.1.1, active
 Backup: 172.16.1.2
IPv4/IPv6 ORR Routes

Prefix L Version Metric Type
172.16.1.1/32 2 13 0 int
172.16.1.2/32 2 13 25 int
172.16.1.3/32 2 13 100 int
172.16.1.4/32 2 13 115 int
172.16.1.5/32 2 13 50 int
172.16.1.6/32 2 13 65 int
172.16.1.7/32 2 13 100 int <<< Cost from R1 to reach A1
172.16.1.8/32 2 13 124 int
172.16.1.9/32 2 13 200 int
172.16.1.10/32 2 13 215 int
172.16.1.11/32 2 13 500 int
172.16.1.12/32 2 13 600 int
[...]

user@RR3> show route 172.16.1.7 protocol isis

inet.0: 34 destinations, 34 routes (34 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.1.7/32 *[IS-IS/18] 00:06:28, metric 650
 > to 192.168.1.130 via lt-4/0/0.200

This output shows you the result of the SPF computation as if the RR3
was R1. Indeed, from RR3’s point of view the loopback address for a
remote ASBR such as A1 – 172.16.1.7 – is reachable with a cost of 650
while from R1 point of view it is reachable with a metric of 100. That is
the power of ORR.

So now let’s check back to see which default route is sent by RR3 to R1,
R2, R3, and R4:

user@RR3> show route advertising-protocol bgp 172.16.1.1 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.2 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.3 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 ::/0 ::ffff:172.16.1.10 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.4 ::/0 exact

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 137

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 ::/0 ::ffff:172.16.1.10 100 I

Interesting, isn’t it? As you can see, RR3 reflects to R1 and R2, the
default route of A1, and for routers R3 and R4, the default route of B2.
Each regional PE receives an Internet exit point attached to its loca-
tion. To keep consistent with the previous configuration with regional
RR, you could add add-path in conjunction with ORR – then you could
reflect both ASBR’s default routes of each location. Let’s configure this
feature on RR3 (don’t forget to enable add-path on remote PEs):

user@RR3> show configuration protocols bgp
log-updown;
group REGIONAL-1 {
 type internal;
 local-address 172.16.1.13;
 family inet6 {
 labeled-unicast {
 add-path {
 send {
 path-count 2;
 }
 }
 explicit-null;
 }
 }
 cluster 0.0.0.3;
 optimal-route-reflection {
 igp-primary 172.16.1.1;
 igp-backup 172.16.1.2;
 }
[...]

Finally, let’s check which default routes are sent to remote PEs one
more time:

user@RR3> show route advertising-protocol bgp 172.16.1.1 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I
 ::ffff:172.16.1.8 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.2 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
* ::/0 ::ffff:172.16.1.7 100 I
 ::ffff:172.16.1.8 100 I

user@RR3> show route advertising-protocol bgp 172.16.1.3 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 ::/0 ::ffff:172.16.1.10 100 I
 ::ffff:172.16.1.9 100 I

 138 Day One: Juniper Ambassadors’ Cookbook for 2017

user@RR3> show route advertising-protocol bgp 172.16.1.4 ::/0 exact

inet6.0: 5 destinations, 8 routes (5 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 ::/0 ::ffff:172.16.1.10 100 I
 ::ffff:172.16.1.9 100 I

Fantastic! Each remote PE now receives its two local ASBR routes.
Let’s validate on R1 that you find exactly the same default route with
the same protection mechanisms enabled (PIC Edge and LFA):

user@R1> show route ::/0 exact

inet6.0: 11 destinations, 13 routes (11 active, 0 holddown, 0 hidden)
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both

::/0 @[BGP/170] 00:17:56, localpref 100, from 172.16.1.13
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2
 to 192.168.1.2 via ae5.0, Push 2, Push 299840(top)
 [BGP/170] 00:17:56, localpref 100, from 172.16.1.13
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2, Push
299856(top)
 to 192.168.1.2 via ae5.0, Push 2, Push 299856(top)
 #[Multipath/255] 00:17:56, metric2 1
 > to 192.168.1.54 via ae6.0, Push 2
 to 192.168.1.2 via ae5.0, Push 2, Push 299840(top)
 to 192.168.1.54 via ae6.0, Push 2, Push 299856(top)
 to 192.168.1.2 via ae5.0, Push 2, Push 299856(top)

ORR Current Limitations

As seen earlier in this recipe, ORR sends the best route to a regional
network (a given BGP group) from a given virtual IGP location. It may
not be exactly the best route for each router (RR client) of this loca-
tion. To achieve that ideal state, you could instead configure ORR per
neighbor, which would occupy high CPU and memory usage on the
RR. Nevertheless, you could partially solve the issue by adding
add-path in conjunction with ORR as has been demonstrated.

The current drawback of ORR implementation is that you can’t
manage the ORR feature itself with a policy. The IETF documentation
has described this option although it is not yet implemented in the
Junos OS (but it should be put in soon).

Now let’s move on to the second migration and replace LDP with
Segment Routing while maintaining the same protection features (PIC
Edge and LFA).

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 139

Solution 2: Migrate to Segment Routing

This recipe will not present the theory of Segment Routing (SPRING) or
else it would quadruple in size. Many books cover this topic in depth.
The best is the awesome MPLS in the SDN Era, by Sánchez-Monge and
Szrkowicz, 2016, O’Reilly Media: http://www.juniper.net/us/en/
training/jnbooks/oreilly-juniper-library/mpls-sdn-era/.

Current Junos Limitation with SPRING

Currently, Junos 16.1 does not support the LDP mapping server, which
allows some routers to play the role of an LDP/SPRING gateway. This
feature is often requested when you deploy segment routing in a
network with some legacy equipment that does not support SPRING,
or equipment that does not yet support the feature. It should be on the
roadmap soon.

Another limitation that you may be aware of is the fact that the node-
segment ID is applied to the primary loopback address. Usually the
operator configures several loopback addresses (one primary and
several secondary) in order to allocate a loopback per BGP family: one
for BGP L3VPN, and another for BGP IPv4 or BGP 6PE. If your current
loopback used by LDP as a local FEC is not the primary address, the
migration from LDP to Segment Routing may not be smooth. No
worries, this current limitation has been handled by Juniper and you
should be able to configure which loopback address you want to be the
node segment ID in a coming next release (rumors say 17.2). Junos also
plans to support prefix-SID in this same release. Please note that
currently SPRING is only supported on IS-IS for Junos.

Finally, Junos does not yet support TI-LFA but implements segment
routing for LFA and rLFA protection mechanisms, which already covers
many topologies.

Migrate the Topology

Okay, with all the disclaimers completed, let’s re-examine our network
diagram in Figure 11.5.

http://www.juniper.net/us/en/training/jnbooks/oreilly-juniper-library/mpls-sdn-era/
http://www.juniper.net/us/en/training/jnbooks/oreilly-juniper-library/mpls-sdn-era/

 140 Day One: Juniper Ambassadors’ Cookbook for 2017

Figure 11.5 Segment Routing Migration

The first step in the migration phase is to enable segment routing on
each router in the backbone. You will see it’s very simple. Moreover, in
this recipe’s case there is only one primary loopback address that is
also the local LDP FEC, so you don’t need to reallocate the primary
statement to the right address.

Let’s allocate one unique node segment ID per router. For this case, the
ID is equal to the less significant byte of the loopback address. Let’s
configure the node-segment ID on each router. Although the configura-
tion is only shown on two nodes, R1 and R4, it’s exactly the same way
on the others:

user@R1> show configuration protocols isis
lsp-lifetime 65500;
overload timeout 60;
source-packet-routing {
 node-segment ipv4-index 1;
}
[...]

 Recipe 11: Migrate Your Core to Centralized Route Reflection and Segment Routing 141

user@R4> show configuration protocols isis
lsp-lifetime 65500;
overload timeout 60;
source-packet-routing {
 node-segment ipv4-index 4;
}
[...]

Once segment routing is enabled everywhere let’s check the inet.3
table, say on R1:

user@R1> show route table inet.3

inet.3: 11 destinations, 20 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

172.16.1.2/32 *[LDP/9] 01:05:41, metric 1
 > to 192.168.1.2 via ae5.0
 to 192.168.1.10 via ae4.0, Push 299808
 [L-ISIS/14] 01:05:41, metric 25
 > to 192.168.1.2 via ae5.0
 to 192.168.1.10 via ae4.0, Push 800002
172.16.1.3/32 *[LDP/9] 01:05:41, metric 1
 > to 192.168.1.10 via ae4.0, Push 299888
 to 192.168.1.2 via ae5.0, Push 299952
 [L-ISIS/14] 01:05:41, metric 100
 > to 192.168.1.10 via ae4.0, Push 800003
 to 192.168.1.2 via ae5.0, Push 800003
172.16.1.4/32 *[LDP/9] 01:05:41, metric 1
 > to 192.168.1.10 via ae4.0, Push 299936
 to 192.168.1.2 via ae5.0, Push 299968
 [L-ISIS/14] 01:05:35, metric 115
 > to 192.168.1.10 via ae4.0, Push 800004
 to 192.168.1.2 via ae5.0, Push 800004
[...]

As you can see, each loopback address is known by LDP and the
segment routing protocol (L-ISIS). One thing to notice is the adminis-
trative distance of each protocol. By default, LDP is better than
SPRING. You could confirm that by issuing a traceroute from R1 to
R4:

user@R1> traceroute 172.16.1.4 source 172.16.1.1
traceroute to 172.16.1.4 (172.16.1.4) from 172.16.1.1, 30 hops max, 52 byte packets
 1 192.168.1.10 0.907 ms 0.830 ms 0.819 ms
 MPLS Label=299936 CoS=0 TTL=1 S=1
 2 192.168.1.26 0.717 ms 0.775 ms 0.806 ms
 MPLS Label=299888 CoS=0 TTL=1 S=1
 3 172.16.1.4 0.719 ms 1.181 ms 0.820 ms

The segment routing default label space starts at 800000. You can see
that the LDP label is still used over the entire path. To switch to the
segment routing data plane you need to configure a higher preference
for LDP on each ingress PE. Please notice that switching from LDP to
segment routing can be done ingress PE by ingress PE, and both data
planes can work together. The only mandatory step is to enable
segment routing everywhere in your network.

 142 Day One: Juniper Ambassadors’ Cookbook for 2017

Let’s switch the R1 PE to the segment routing data plane:

user@R1# set logical-systems R1 protocols ldp preference 15
 And now issue back the traceroute from R1 to R4:
user@R1> traceroute 172.16.1.4 source 172.16.1.1
traceroute to 172.16.1.4 (172.16.1.4) from 172.16.1.1, 30 hops max, 52 byte packets
 1 192.168.1.10 0.980 ms 0.799 ms 0.797 ms
 MPLS Label=800004 CoS=0 TTL=1 S=1
 2 192.168.1.26 0.730 ms 0.782 ms 0.774 ms
 MPLS Label=800004 CoS=0 TTL=1 S=1
 3 172.16.1.4 0.680 ms 0.819 ms 0.810 ms

Great! As ingress PE R1 now uses the transport label (in the 800K
range) provided by segment routing, all the other routers also swap the
segment routing label hop-by-hop until the packet reaches R4. Re-
member, R4 has not switched to Segment Routing so the return traffic
from R4 to R1 still uses the LDP data plane.

Finally let’s check back on how our default route is protected on R1:

user@R1> show route ::/0 exact

inet6.0: 11 destinations, 13 routes (11 active, 0 holddown, 0 hidden)
@ = Routing Use Only, # = Forwarding Use Only
+ = Active Route, - = Last Active, * = Both

::/0 @[BGP/170] 00:13:35, localpref 100, from 172.16.1.13
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2
 to 192.168.1.2 via ae5.0, Push 2, Push 800007(top)
 [BGP/170] 00:13:35, localpref 100, from 172.16.1.13
 AS path: I
 validation-state: unverified, > to 192.168.1.54 via ae6.0, Push 2, Push
800008(top)
 to 192.168.1.2 via ae5.0, Push 2, Push 800008(top)
 #[Multipath/255] 00:13:35, metric2 100
 > to 192.168.1.54 via ae6.0, Push 2
 to 192.168.1.2 via ae5.0, Push 2, Push 800007(top)
 to 192.168.1.54 via ae6.0, Push 2, Push 800008(top)
 to 192.168.1.2 via ae5.0, Push 2, Push 800008(top)

As you can see PIC Edge and LFA work perfectly with segment rout-
ing.

Discussion

This recipe has briefly covered two new networking enhancements that
can help you to migrate progressively to SD-WAN solutions: central-
izing the routing information delivering with ORR, and segment
routing to easily manage the end-to-end flow forwarding. These
solutions, which are quite new, are already running well on the Junos
OS. Each feature will be improved upon in order to handle more
complex topologies and to provide more protection mechanism.

	Front Cover
	Back Cover
	Title Page & Table of Contents
	Copyright
	About the Juniper Ambassadors
	After Reading This Book, You’ll Be Able To:
	Preface
	Recipe 1:
Basic QoS in the Junos OS
	Recipe 2:
Migration from a Cisco LNS to vLNS Using the Subscriber Management Features on vMX
	Recipe 3:
Achieving Multi-Path in Route Reflection Using BGP Add Path
	Recipe 4:
EVPN and Virtual Machine Mobility
	Recipe 5:
OSPF as a PE-CE Routing Protocol in MPLS VPNs
	Recipe 6:
Network Regression Testing with Junos PyEZ
	Recipe 7:
Selective Resource Sharing Across VPNs
	Recipe 8:
Integrate MX Series Routers into Arbor Networks
	Recipe 9:
BGP Flow Spec Between Arbor Networks and
MX Series
	Recipe 10:
Integrate MX Series With Arbor Networks TMS Off Ramp
	Recipe 11:
Migrate Your Core to Centralized Route Reflection and Segment Routing

