

JUNOS Enterprise Switching

JUNOS Enterprise Switching

Harry Reynolds and Doug Marschke

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

JUNOS Enterprise Switching
by Harry Reynolds and Doug Marschke

Copyright © 2009 Harry Reynolds and Doug Marschke. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Copyeditor: Audrey Doyle
Proofreader: Sada Preisch

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
July 2009: First Edition.

O’Reilly and the O’Reilly logo are registered trademarks of O’Reilly Media, Inc. JUNOS Enterprise
Switching, the image of a gorgeted bird of paradise, and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-15397-7

[M]

1247252300

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Foreword . xiii

Preface . xvii

1. LAN and Internetworking Overview . 1
What Is a Network? 2

The OSI Model 3
Network Types and Communication Modes 8
So, Where Did We LANd? 9

Ethernet Technologies 10
A Brief Look Back 10
Ethernet or 802.3, That Is the Question 11
The MAC Layer 13
Ethernet Standards Wrap-Up 16
Ethernet Technology Summary 19

The TCP/IP Suite 20
Enter OSI 20
Exit OSI, Enter IP 21
The IP Stack, in a Nutshell 22
Internet Protocol Summary 35

LAN Interconnection 36
Repeaters 37
Bridges 38
Routers 41
LAN Interconnect Summary 43

Conclusion 44
Chapter Review Questions 44
Chapter Review Answers 46

2. EX Platform Overview . 47
EX Hardware Overview 49

The EX8200 Series 52

v

Separate Control and Forwarding: It’s a Good Thing 55
EX Hardware: The Numbers 57
EX Feature Support 61
EX Hardware Summary 64

EX Series Architecture 64
The EX-PFE ASIC 64
EX3200 Architecture 65
EX4200 Architecture 66
A Day in the Life of a Packet 68
EX Series Architecture Summary 72

JUNOS Software Overview 73
JUNOS Software Summary 75

CLI Overview 76
J-Web and EZSetup 76
CLI Operational Modes and General Features 78
Configuration Mode 85
The JUNOS CLI Summary 98

Advanced CLI and Other Cool Stuff 99
SOS 99
Scheduled Commits and Wildcards 102
Copying, Renaming, and Inserting 103

Conclusion 104
Chapter Review Questions 105
Chapter Review Answers 106

3. Initial Configuration and Maintenance . 109
The Factory-Default Configuration and EZSetup 110

Factory-Default Configuration 110
EZSetup 115
Factory-Default Configuration and EZSetup Summary 122

Initial Configuration Using the CLI 122
CLI Configuration Summary 123

Secondary Configuration 123
Customized User Accounts, Authentication, and Authorization 124
Out of Band Network 132
Remote Access 134
Dynamic Host Configuration Protocol 138
Secondary Configuration Summary 143

EX Interfaces 143
Permanent Interfaces 143
Network Interfaces 145
Interface Configuration 146
EX Interface Configuration Examples 150

vi | Table of Contents

Interface Troubleshooting 156
EX Interface Summary 167

Basic Switch Maintenance 167
Chassis Health Check 168
Syslog 170
SNMP 176
NTP 179
Rescue Configuration 182
Password Recovery 183
Switch Maintenance Summary 187

Conclusion 187
Chapter Review Questions 188
Chapter Review Answers 189

4. EX Virtual Chassis . 191
The EX Virtual Chassis 191

Virtual Chassis Overview 191
Virtual Chassis Design and Deployment Options 198
Packet Flow in a Virtual Chassis 206
Virtual Chassis Summary 215

Configuration, Operation, and Maintenance 215
Virtual Chassis Configuration Modes 216
Virtual Chassis Configuration 217
Virtual Chassis Operation and Maintenance 223
Configuration, Operation, and Maintenance Summary 240

Virtual Chassis Case Study 241
Prepare for the Merge 244
Configure VC Parameters 245
Expand the VC with VCE Links 258
Case Study Summary 263

Conclusion 263
Chapter Review Questions 263
Chapter Review Answers 265

5. Virtual LANs and Trunking . 267
Virtual LANs and Trunking 267

Port Modes 268
Tagging User Traffic 268
The Native and Default VLANs 274
Generic Attribute Registration Protocol 277
VLAN and Trunking Summary 278

EX to Catalyst VLAN Integration 279
Default VLAN/Trunking Behavior 280

Table of Contents | vii

Define VLANs 287
Add Native VLAN Support 305
Getting Loopy with It 309
VLAN Integration Summary 314

Conclusion 314
Chapter Review Questions 314
Chapter Review Answers 316

6. Spanning Tree Protocol . 319
Feeling a Little Loopy 319

Stupid Is As Stupid Does 320
Loop Issue Summary 321

Spanning Tree Protocol 322
STP Basics 322
Calculating and Maintaining the Spanning Tree 326
Bridge Protocol Data Units 328
BPDU Learning and Port States 330
Protocol Timers 332
Putting the Theory Together 334
STP Issues 336
STP Summary 338

Rapid Spanning Tree Protocol 338
New BPDU Definition and Function 338
Interface Types and States 339
RSTP Convergence 341
Link Cost in RSTP 346
Compatibility with STP 347
Interoperability Between Juniper and Cisco 347
RSTP Summary 350

Spanning Tree Configuration 350
Failures with Default Parameters 360
Configuring RSTP 361
Spanning Tree Configuration Summary 368

Multiple Spanning Tree Protocol 369
MSTP Configuration 372
MSTP Summary 377

Redundant Trunk Groups 377
RTG Configuration 378
RTG Summary 381

Conclusion 381
Chapter Review Questions 381
Chapter Review Answers 383

viii | Table of Contents

7. Routing on the EX . 385
EX Routing Overview 386

What Is Routing? 386
EX Routing Capabilities 387
JUNOS Routing Concepts 389
Summary of EX Routing Capabilities 393

Inter-VLAN Routing 393
A Router on a Stick 395
Enter the Routed VLAN Interface 396
Deploy an RVI 397
Use VRRP with an RVI 404
Restricting RVI Communications 407
RVI Summary 410

Static Routing 411
Next Hop Types 411
Route Attributes and Flags 412
Floating Static Routes 414
EX Static Routing Scenario 414
Static Routing Summary 421

RIP Routing 422
RIP Overview 423
RIP Deployment Scenario 427
Verify RIP 438
RIP Summary 446

Conclusion 447
Chapter Review Questions 447
Chapter Review Answers 449

8. Routing Policy and Firewall Filters . 451
Routing Policy 451

What Is Routing Policy, and When Do I Need One? 452
Where and How Is Policy Applied? 452
Policy Components 456
Policy Match Criteria and Actions 458
Route Filters 460
Default Policies 465
Testing and Monitoring Policy 466
Policy Case Study 470
Routing Policy Summary 477

Firewall Filters 477
Types of Filters 478
Filter Term Processing 480
Filter Match Conditions 480

Table of Contents | ix

Filter Actions 483
Applying a Filter 483
Transit Filter Case Study 484
Case Study: Loopback Filters 495
Policers 497
Storm Control and Rate Limiting 502
Filters and Policers Summary 502

Conclusion 502
Chapter Review Questions 503
Chapter Review Answers 505

9. Port Security and Access Control . 507
Layer 2 Security Overview 507

EX Layer 2 Security Support 508
MAC Limiting, DHCP, and ARP 509

MAC Limiting 515
DHCP Snooping and ARP Inspection 522
MAC Limiting, DHCP, and ARP Summary 530

IEEE 802.1X Port-Based Authentication 530
Terminology and Basic Operation 530
JUNOS 802.1X Feature Support 535
Deploy and Verify 802.1X 538
802.1X Port-Based Authentication Summary 555

Conclusion 555
Chapter Review Questions 555
Chapter Review Answers 557

10. IP Telephony . 559
Deployment Scenarios 559

QoS or CoS? 560
Deployment Scenarios Summary 564

Power over Ethernet 564
JUNOS Support for PoE 565
PoE Summary 567

Link Layer Discovery Protocol 568
JUNOS LLDP 570
LLDP Summary 572

LLDP with Media Endpoint Discovery 573
LLDP-MED and JUNOS 574
LLDP-MED Summary 577

Voice VLAN 577
Case Studies 578

Without LLDP-MED Support 579

x | Table of Contents

With LLDP-MED Support 587
Case Study Summary 590

Conclusion 590
Chapter Review Questions 590
Chapter Review Answers 592

11. High Availability . 595
Hardware Redundancy 596

Routing Engine Failover 597
Default Failover Layer 2 599
Default Failover Layer 3 600
Graceful Routing Engine Switchover 603
Graceful Restart 610
Non-Stop Routing 612
GRES, GR, NSR, Oh My! 612

VRRP 613
In-Service Software Upgrades 614
Aggregated Ethernet 615

LACP in Action 616
JUNOS Configuration 620

Bidirectional Forwarding Detection (BFD) 629
High Availability Summary 632

Conclusion 632
Chapter Review Questions 632
Chapter Review Answers 634

Glossary . 637

Index . 699

Table of Contents | xi

Foreword

Charles Darwin once said, “I have called this principle, by which each slight variation,
if useful, is preserved, by the term of Natural Selection.” This principle of evolution
applies to business as well as to nature. Individuals, companies, and industries evolve
and compete with one another in preparation for the future.

Back in 1998, a group of engineers decided to split from the mainstream and form a
new company, Juniper Networks. That company has evolved to create and acquire
many products over the last decade. While Darwin might have viewed this as an
evolutionary step in products, we view it as a competitive step.

Humankind differs from the rest of the animal kingdom not only because our instincts
go beyond the primal survival urge (a.k.a. Darwin’s “survival of the fittest”), but also
because of our intellect and capacity to improve. When one group splits off from
another, it does not necessarily sound the death knell for the original group. More likely,
the two groups will start taking steps to outdo one another. In other words, they
compete.

Those who are not directly involved in that competition can reap the benefits of the
intellectual sparring. We have observed many such competitive moves within the
routing industry over the years. Now, we are entering another such arena within
the switching side of our industry.

Evolution of the Bridging World
More than 20 years ago, Radia Perlman developed an interesting algorithm while
working for Digital Equipment Corporation. At the time, it was meant to solve an
irritating little problem brought on by the forced evolution of data networks. Although
networking in 1985 was significantly different than it is today, it’s amazing how some
of the basic building blocks have survived.

This book discusses some of those building blocks, both historically and with reference
to the present-day network infrastructure. For example, the Spanning Tree Protocol,
which was based on Perlman’s algorithm, is like one of the amino acids from which
today’s switching was created. (I’ve always despised biology, but it seems to fit here!)

xiii

You’ll also learn how to improve on features we’ve always believed to be necessities
“just because they are.” This book helps you understand the evolution—or
stagnation—of networking to date, and then shows you how to see past it and unlock
your networking potential in a few short steps.

What Is the Big Deal About Switching Anyway?
Interestingly, Layer 2 networking in general, and Ethernet internetworking in particu-
lar, are technologies vastly overlooked by many people in the current networking world.

Ethernet has become a commodity. We see many a WAN link today delivered as an
“Ethernet handoff,” which tells the tale of how common and simple it has become.
And with it has emerged a number of supporting technologies and design mediums.

Many people see this area of networking as “voodoo magic.” That term implies it can
be good as well as bad, but it doesn’t explain why! Without waxing philosophical or
launching a religious debate in this foreword, I’ll leave it at this: you may learn things
in this book that you knew only bits and pieces of before.

As we expand our networks to include IP telephony, data centers, or really large Layer
2 networks, we should pay attention to the details of many technologies that we have
taken for granted over the years.

Even with as much Layer 2 experience as I have, serving as technical editor for this book
has opened my eyes on several topics. It has spurred some entertaining debates, and
perhaps it will do the same for you!

How This Book Will Help You (a.k.a. What’s in It for Me?)
I don’t think better people could have been found to write this book. Doug and Harry
not only have an incredible set of technical talents—which I’ve come to know over the
years—but they also have a great sense of style. Although those virtues alone make
them qualified, their track record of success in teaching, training, and consulting has
also been put to use for your edification.

Too many technical books jump off the Boring Board into the abyss of Techie Soup.
While this book covers plenty of deep technical matters, I think you will find its
approach refreshing and compelling.

Now, I can’t guarantee that it will lead to any evolutionary process in your own life.
But I can certainly say that after you read it, you’ll have some eye-opening conversations
(at least with yourself!). This book will help you quickly acquire knowledge surround-
ing the topics presented, and it will add to your successful implementation of those
technologies.

xiv | Foreword

One thing I’ve gained from being part of this book’s evolutionary process is the burning
desire to dive in and get my hands on these switches to see what they can do. While
that may not mean much to some of you, anyone who has perused my personal lab on
the Internet should understand.

Evolution is progress. The antithesis of that is Congress.... No, sorry, wrong disserta-
tion. The antithesis of that is stagnancy. We should always strive to find new ways to
improve our conditions. Whether you apply that to your personal life or to networking,
it has the ring of truth.

Darwin said, “In the long history of humankind (and animal kind, too) those who
learned to collaborate and improvise most effectively have prevailed.” Let us go forth
and collaborate on and improvise our internetworking.

At the very least, as you go through this book and pay attention to the details, you’ll
feel like Saturday Night Live’s Church Lady: “Well.... Isn’t that special!”

—Scott Morris
Four-time CCIE and JNCIE-M, and a Juniper Networks Certified Instructor

June 1, 2009

Foreword | xv

http://smorris.uber-geek.net/lab.htm
http://smorris.uber-geek.net/lab.htm

Preface

It wasn’t but a day or so after we finished JUNOS Enterprise Routing, the companion
book to this one, that our editor started pressuring us to start writing again. Writing a
book may seem easy on the surface; how hard could it have been to write some words
on these pages? But in reality, writing a book is a time-consuming and collaborative
effort that affects everyone close to you. Also, at the time of the request, the EX Series
was a new product line, and although we had extensive experience in the switching
space, we did not have many customer deployments of the EX Series switches.

We were really impressed when the first EX units arrived for us to put in the rack that
we reserved for this book. As JUNOS “experts,” we expected a lot, and we were im-
pressed at the ease of configuration and stability that the JUNOS software provided to
the EX. Although the performance and configuration of the EX switches are slightly
different from those of a JUNOS router, the EX platform fit our needs, and hopefully
it will fit yours, too.

The world of Ethernet switching changed when Juniper Networks got involved. At the
time of this writing, the EX Series switches are already making significant inroads into
the enterprise marketplace.

In this book, we have extended the same approach and writing style we used in JUNOS
Enterprise Routing so that you, the reader, can have a set of books that work together.
We did not write these books with the idea that you’d read one before the other, so
some content overlap may exist. Most people will want to work up the OSI stack and
read this book before the routing book; still, for many reasons, the routing book came
out first, and we kept this in mind as we organized this book.

This book does double duty. It is both a field guide and a certification study guide.
Readers who are interested in attaining a Juniper Networks certification level are wise
to note that we discuss and cover topics that are relevant to the official exams (hint,
hint), and at the end of each chapter we provide a list of examination topics covered,
as well as a series of review questions that allow you to test your comprehension. Since
the EX does both switching and routing, you should be able to answer a majority of
enterprise certification questions by reading and understanding the content of all of the
chapters in both books.

xvii

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/

We wrote this book to serve as a field guide for any time you work on your EX. We
present a lot of tutorials and samples, with lots of actual command output. We like to
think that the detailed theoretical coverage we provide goes well beyond any certifica-
tion exam, to give you something that can’t be tested: the ability to get things to work
the right way the first time. When plan A fails, this material provides the steps needed
to monitor network operation and quickly identify and resolve the root cause of mal-
functions. We believe this level of coverage extends the life of both this book and its
predecessor, far beyond any short-term certification goals.

Some of our chapters tend to be on the longer side; we’re sorry about that. Or maybe
we should say “You’re welcome” in keeping with the “more is better” philosophy. Just
dog-ear the pages, write notes in the margins, and perhaps even update the topology
illustrations with something more akin to your own fiefdom. We hope you’ll make this
copy your own.

What Is JUNOS Enterprise Switching?
The idea of switched networks is definitely not a new concept. LANs and Ethernet
networks have been around since the 1970s, and some of you reading this book may
actually remember the days of vampire taps and Thicknet cabling! Like the Atari 2600,
those stories are great to relate and are actually quite amazing in their own technology
light, but thankfully, technology advances. Now a LAN is synonymous with Ethernet;
people know that if they plug their laptop’s network port into the wall, they will wind
up on an Ethernet network.

Switching had historically been a fairly simple process, which allowed bridges to out-
perform routers of the same era. After the MAC address table was built, a simple fil-
tering and forwarding process was all that was needed. Intelligence and switches were
never used in the same sentence. If forwarding intelligence was needed, it was slow,
and it was often reserved for higher OSI layers.

However, as technology improved, intelligence was no longer a compromise for speed.
That was the premise of Juniper Networks’ “speed without compromise” routers that
brought Juniper into the networking space against the big giant, Cisco—a dangerous
place littered with the remnants of all the other companies that had failed before. Some
may argue about how successful Juniper has been, but nobody can argue that Juniper
will remain a player for many years to come, as evidenced by the large deployed base
of its products and the much-loved JUNOS software that is its foundation.

As technology evolved, so did Juniper, as did its historic focus on routing within service
provider networks. Juniper set its sights squarely on the enterprise, a market that was
still being dominated by Cisco, and it saw a place where it could leverage the experience
and reliability of JUNOS. The first “Layer-2-aware” device that Juniper Networks
released was the MX Series. Although it was well received, the MX platforms were
targeted at service providers and were really seen as routers with dense Ethernet con-

xviii | Preface

nectivity but that also happened to offer some Layer 2 services. The first true Ethernet
LAN switch is the EX Series, the basis of this book.

Will Juniper displace Cisco in the enterprise switching market? Only time will tell. So
far, the EX platforms have been well received in the industry (and don’t forget, they
have JUNOS going for them). The purpose of this book is to provide details on the
product’s capabilities, and to show examples of its deployment and operation in sup-
port of those features. This book is not designed to sell boxes, or to convince you to
use one vendor over another. We believe that after reading the material you will be able
to make an informed decision as to what products work best for your needs. In all
probability, the Juniper EX was not even an option the last time you shopped for LAN
switching gear. We think you will want to keep the EX in mind the next time.

So, come join us in the exciting new world of enterprise switching and JUNOS on the
new EX Series of high-performance LAN switches. With all the excitement in the air it
seems like 1998 and the release of Juniper’s first router, the M40, all over again.

The Juniper Networks Technical Certification Program (JNTCP)
This book is an official study guide for the JNTCP Enterprise tracks. For the most
current information on Juniper Networks’ Enterprise certification tracks, visit the
JNTCP website at http://www.juniper.net/certification. We’ve included lots of questions
at the end of each chapter to help with your cert plans.

How to Use This Book
We are assuming a certain level of knowledge from the reader. This is important because
if you and the book don’t match that assumption level, you’ll feel off-track right from
the get-go. So, we are assuming you have knowledge of the following:

Basic networking
This book is about LANs and LAN interconnection. The introduction chapter
provides a good overview of networks, TCP/IP, and LAN interconnection. How-
ever, it’s assumed that the reader has basic familiarity with data communications
and LANs; otherwise, it may be a fast ride.

Computers
What can we say? We assume the reader owns at least one and is familiar with
some of its networking operations, such as web browser use.

What’s in This Book?
The ultimate purpose of this book is to be the single most complete source for working
knowledge related to Juniper Networks enterprise switching on the EX platform. Al-
though you won’t find much focus on actual packet formats and fields, topics for which

Preface | xix

http://www.juniper.net/certification

there is already plentiful coverage on the Internet and in bookstores, you will find
information on how to effectively deploy JUNOS switching technology in your
network.

Here’s a short summary of the chapters and what you’ll find inside:

Chapter 1, LAN and Internetworking Overview
Here you will find a detailed, condensed, and somewhat irreverent breakdown of
how we got to where we are; the popularity of Ethernet, TCP/IP, and the demise
of OSI; and basic LAN interconnect terminology and concepts. Nothing earth-
shattering, but all good information and things we think you should be familiar
with before jumping into the more specific chapters that follow.

Chapter 2, EX Platform Overview
This chapter details EX platform capabilities and options. This includes several
day in the life of a frame processing examples designed to help you understand
internal operations so that you can better appreciate the platform’s performance
and capabilities. How many PoE ports are available? What uplink options are pos-
sible? What is the name of the management interface? Find out the answers to these
questions, and many more, here.

Chapter 3, Initial Configuration and Maintenance
This chapter begins by examining the steps you need to take once you have your
brand-new, shiny switch in your hands. It starts with a factory-default configura-
tion and builds the initial configuration required for deployment. This includes
any basic interface configuration that would be necessary.

Chapter 4, EX Virtual Chassis
The EX virtual chassis (VC) is an exciting and important capability that provides
virtualization of a multichassis stack. This capability provides many performance
and reliability enhancements, such as the support of redundant routing engines.

Chapter 5, Virtual LANs and Trunking
This chapter details the concept of VLAN tagging, and how to configure VLANs
and trunking in a mixed JUNOS and IOS environment. Here we handle tricky
things such as native versus default VLANs, and current best practices for multi-
vendor interoperability.

Chapter 6, Spanning Tree Protocol
This chapter dives into the world of Spanning Tree Protocol (STP), providing first
an overview of the protocol and then the implementation specifics. The original
STP is examined as well as the updated standards for Rapid Spanning Tree Protocol
(RSTP) and Multiple Spanning Tree Protocol (MSTP). Lastly, we describe Redun-
dant Trunk Groups at the conclusion of the chapter.

Chapter 7, Routing on the EX
The EX is a switch that runs JUNOS, and can therefore route pretty darned well.
This chapter details the Routed VLAN Interface construct and how to perform

xx | Preface

inter-VLAN routing on an EX. We also cover some basic JUNOS routing concepts
along the way.

Chapter 8, Routing Policy and Firewall Filters
Routing policy and firewall filters are features that are on every box that runs
JUNOS software and, quite honestly, are most often found on routers. However,
they have their place on switches as well, and we cover them in this chapter. Those
who have already read JUNOS Enterprise Routing can probably skim this chapter,
as the policy is the same and only the firewall filters and policers are different on
the switches.

Chapter 9, Port Security and Access Control
What good is a high-performance LAN if all it does is allow you to get hacked more
quickly? This chapter details port-level security features such as MAC limits,
DHCP snooping, and ARP inspection, in addition to support for IEEE 802.1X
access control. Learn how to harden your switched network’s parameters here, and
how to perform fault isolation when things do not go as planned.

Chapter 10, IP Telephony
In this day and age, IP telephony is the deployment normal, finally displacing the
traditional PBX. This chapter looks at some of the tools that are now available for
VoIP, such as Power over Ethernet and LLDP-MED. It contains case studies on
solving problems when IP phones support these features, and when they do not.

Chapter 11, High Availability
The chapter provides an overview of the High Availability (HA) features offered
on the EX Series at the time of this writing. These features include hardware re-
dundancy, Graceful Routing Engine Switchover, Graceful Restart, Bidirectional
Forwarding Detection, Virtual Router Redundancy Protocol, and aggregated
Ethernet.

In addition, you can also use this book to attain one of the Juniper Networks certifi-
cation levels related to the Enterprise program. To that end, each chapter in the book
includes a set of review questions and exam topics covered in the chapter, all of it
designed to get you thinking about what you’ve just read and digested. If you’re not in
the certification mode, the questions will provide a mechanism for critical thinking,
potentially prompting you to locate other resources to further your knowledge.

Topology of This Book
Figure P-1 displays the topology of the book that appears beginning in Chapter 2. It
consists of six EX Series switches running JUNOS 9.1 (in a few cases, a newer software
version is used for reasons that we explain in the related material), two Cisco 3550
switches running IOS Release 12.2(44)SE3, one J Series router, one Cisco 2600 router,
some IP phones, and various hosts that are really just Cisco 2500 routers that are used
to generate some pings.

Preface | xxi

http://oreilly.com/catalog/9780596514426/

The book uses both Layer 2 and Layer 3 topologies, but the physical connectivity stays
the same. Also, Chapter 10 uses an additional Cisco switch, Cisco router, and IP
phones. Similarly, Chapter 9 uses a different test bed and test topology due to the need
for a supported client and authentication server.

Once again, you might recognize that the devices’ hostnames relate to different distilled
liquids. Recall that in the routing book, the names were based on brewed libations. As
before, we chose the names due to their international appeal and preservation of the
crops from which they are created.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values, ob-
jects, events, event handlers, XML tags, HTML tags, macros, the contents of files,
and the output from commands

Constant width bold
Shows commands and other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

xxii | Preface

Figure P-1. A typical Layer 2 topology

Preface | xxiii

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your own configuration and documentation. You do not need to contact
us for permission unless you’re reproducing a significant portion of the material. For
example, deploying a network based on actual configurations from this book does not
require permission. Selling or distributing a CD-ROM of examples from this book does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of sample con-
figurations or operational output from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “JUNOS Enterprise Switching, by Harry
Reynolds and Doug Marschke. Copyright 2009 Harry Reynolds and Doug Marschke,
978-0-596-15397-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

Comments and Questions
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596153977

xxiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596153977

or:

http://www.proteus.net

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

About Scott Morris, Lead Tech Reviewer
Scott Morris is a four-time CCIE (#4713) and JNCIE-M (#153), as well as a Juniper
Networks Certified Instructor (JNCI) for M Series and J Series routers. Scott is currently
a senior instructor for Internetwork Expert, Inc., as well as a consultant for various
service providers around the world. He has more than 23 years of experience in all
aspects of the networking industry and often tech-reviews networking books for Cisco
Press and McGraw-Hill. When not attending events around the globe, he is often at
home with his lovely wife and two beautiful daughters. He hasn’t yet taught them
binary, although that will likely happen. His home basement sports a four-rack net-
working lab that generates so much heat it requires its own air-conditioning unit—take
a peek at http://smorris.uber-geek.net/lab.htm.

Acknowledgments
The authors would like to gratefully and enthusiastically acknowledge the work of
many professionals who assisted us in developing the material for this book. Although
our names are printed on the book as authors, in reality no author works alone. There
have been many people whose contributions have made this book possible and others
who have assisted us with their technical accuracy, typographical excellence, and edi-
torial inspiration.

Many thanks are owed to the official technical editor of this material, Scott Morris.
Despite our lack of planning, he was able to adjust to our schedule and return the
chapters in a timely manner. He used his tremendous experience not only to fix tech-
nical errors, but also to encourage us to add topics we had overlooked.

We would also like to acknowledge Juniper Networks in general, and in particular
Chris Spain and Michael Banic, for the assistance provided on various fronts and for
providing much of the gear we needed to write this book. We also would like to thank
Proteus Networks for housing this gear at no cost in its data center, as well as Chris
Heffner for providing gear support.

Preface | xxv

http://www.proteus.net
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://smorris.uber-geek.net/lab.htm

And last but not least, we give special thanks to Patrick Ames for his assistance and
constant annoyance to keep the book going in the right direction. His thick skin after
bouts of anger from the authors is legendary and much appreciated.

From Doug Marschke
First, I would like to personally thank Harry Reynolds for all of his help and encour-
agement while writing this book. This is really his book, and I was just along for the
ride. Despite my obvious missed deadlines, he was patient and did not yell at me too
much throughout this process. Due to the timing of starting a new company and
changing the face of my bar, this book was difficult not from lack of motivation but
from lack of time. To that end, I must personally thank my business partners at Proteus
Networks, Joe Soricelli and Chris Heffner, and my business partner in the Taco Shop
at Underdogs, Nick Fasanella. They essentially picked up my slack as I devoted my
time to completing this book. And finally, but most importantly, I must thank Becca
Morris for her love and support that never seem to waver despite how much I mess up.
The homemade brownies and cookies also helped to sugar-infuse my late nights, and
they tasted really good.

From Harry Reynolds
I would (again) like to thank my wife, Anita, and two lovely daughters, Christina and
Marissa, for understanding and accommodating my desire to engage in this project.
Also, special thanks to my manager at Juniper Networks, Sreedhevi Sankar, for her
understanding and support. I really appreciate her willingness to accommodate the
occasional glitch in my “day-job” schedule as needed to make this book happen. Also,
thanks to the Juniper EX team, and to PLM, for providing us with gear and technical
support during the effort.

xxvi | Preface

CHAPTER 1

LAN and Internetworking Overview

Over the years, the importance of data communication has closely paralleled that of
computing. In fact, most individuals are completely unaware of just how often data
communications networks affect and enable our daily lives. Network technologies are
ubiquitous to the point where a modern car has more processing power than a 1960s-
era mainframe, along with several communications networks that control everything
about the vehicle’s operation, from its chipped key ignition security, engine fuel/air
mixture, and transmission shift points to the sensing and reporting of low tire pressure.

The modern world is hooked on computing, and in this addiction data networks are
like a drug in the sense that most PC users find their machines rather dull and bordering
on boring when their Internet access is down.

In fact, given the easy access we all have to nearly the sum of man’s knowledge (typically
for free), the Internet and its World Wide Web make activities such as writing tech-
nology books seem rather old hat. But the amount of background information regarding
general data communications concepts, local area network (LAN) technologies, and
the TCP/IP protocol suite, which makes all of humankind’s knowledge available and
easy to find, is still an invaluable library. It’s the library that enables the digital libraries.
And so we start right here.

The primary goal of this book is to document the application and use of Juniper Net-
works EX switches in a number of LAN and interoperation scenarios. The coverage has
already jeopardized our editor’s budgeted page count, which leaves us little room given
that we wrote this chapter last and we are a bit tired and in dire need of sunshine.
Therefore, we make no attempt in this chapter to re-create the “complete history of
networking and LAN technologies” wheel.

Instead, this chapter’s goal is to provide an extremely targeted review of networking
and LAN history, including internetworking principles related to LAN interconnect.
Aside from an irreverent take on history for which the authors apologize beforehand
(did we mention we saved this chapter for last?), what follows is also an extremely
focused targeting of key principles that you should understand before moving on to
the remainder of this book.

1

There aren’t a lot of pages, but it’s a fun, informative, and action-packed ride; trust us,
both you and the trees are better for it.

The topics covered in this chapter include:

• Networking and OSI overview

• Ethernet technologies

• The TCP/IP protocol suite

• LAN interconnection

What Is a Network?
A network can be defined as two or more entities with something to say that is not
already known to the intended recipients, and a channel or medium over which to
convey this information. Simple enough, right?

Network technologies, much like fashions, seem to flare in popularity and then quietly
fade away in favor of the next thing. At one point in the dark past of networking, users
were compelled to source their network gear from a single vendor, oftentimes the same
vendor that provided the data processing equipment. This was due to a lack of open
standards that resulted in vendor-proprietary solutions for both the hardware and net-
working protocols.

Although good for the vendor, a single source for anything is generally bad for eco-
nomics, and in some cases it can also hamper innovation and performance; after all, if
a vendor has you locked into its solution, there may be little motivation for the vendor
to spend money on research and development in an effort to improve the basic tech-
nology. Nope, users wanted to be able to select from best-of-breed solutions, ones that
optimize on performance or price, while still enjoying end-to-end interoperability.

What Is a Protocol?
The term protocol is bandied about all the time in this industry. The essence of a pro-
tocol is simply a mutually agreed upon set of rules and procedures that in turn govern
the behavior of the participants to help ensure orderly operation. Thus, the English
language is a protocol, as are the rules of Parliament. In both cases, a violation of pro-
tocol can cause confusion or malfunction.

Data communications networks are based on layered protocols that provide a divide-
and-conquer approach to the daunting task of getting complex information from one
source to some remote host over error-prone and unreliable communications paths, all
the while providing authentication, authorization, and in some cases actual translation
services to compensate for differences in local data representation.

Enter the Open Systems Interconnection (OSI) model, which we detail in the next
section.

2 | Chapter 1: LAN and Internetworking Overview

The OSI Model
The OSI model, and the International Organization for Standardization (ISO) suite of
protocols that were originally based on the model, failed to see much adoption. As
evidence, consider GOSIP. The Government Open Systems Interconnection Profile was
first published in 1990, and essentially stated that all U.S. government communications
networks must be OSI-compliant for consideration in networking bids. This was a big
deal, and in theory it sounded the death knell for vendor-proprietary solutions. It was
to include the U.S. Department of Defense’s (DoD) ARPANET (Advanced Research
Projects Agency Network) protocols; e.g., TCP/IP, which at the time was the de facto
multivendor interoperability solution. Given this level of backing, it is hard to under-
stand how OSI/ISO could fail. The answers are multifaceted:

The OSI protocols were slow to market/produced no products
The best ideas in the world are not very useful if they have no tangible manifestation
in reality. Many of the official OSI protocols were never fully implemented and
most were never deployed in production networks. Ironically, the OSI layers that
did have products tended to function at or below Layer 4, which is just where
existing technologies (i.e., TCP/IP) already existed and could be used as models.
Stated differently, TCP/IP has a Network layer (IP), and so did the OSI model; it
was called Connectionless Network Service (CLNS). The TCP stack does not have
a true Session or Presentation layer, and it’s in these very upper layers where it
seems the ISO bit off more than it could shove into a Layer 3 packet, so to speak.

The OSI protocols were overtly complex and suffered from a slow development velocity
The OSI protocols attempted to go above and beyond existing network function-
ality. In effect, it was a protocol for the world’s current and future needs. This was
a fine aspiration, but trying to solve every known or projected issue, all at once and
in a worldwide forum, was just too hard. The resulting standards were too com-
plicated or too incomplete to implement, especially when TCP/IP was already
working.

The IETF is too practical, and far, far too nimble
The Internet Engineering Task Force (IETF), which produces Internet RFCs and
drafts, uses a guiding principle known as “rough consensus and running code”.
The ability to move forward with working solutions without being bogged down
in international law and geopolitics means that IETF standards significantly out-
pace their international counterparts, and are typically backed by a working im-
plementation to boot! In contrast, the ITU/CCITT, which produced key ISO
standards such as X.25 and B-ISDN in I.361, would meet every four years to make
updates and solve problems. In theory, the world was supposed to patiently await
their collective wisdom; in reality, IP simply ran the whole process over and never
looked back to see what that bump in the road even was.

Basically, you could summarize all of these reasons as “The world already had a work-
able set of interoperability protocols known as TCP/IP, and the cost of waiting for

What Is a Network? | 3

http://www.ietf.org/tao.html

official standards, which in the end always seemed to lack parity with the latest IP
offerings anyway, was simply too jagged a pill to swallow.”

So, why are we (seemingly) wasting your invaluable time with a discussion of a grand
failure? The answer is because although the OSI protocol stack itself failed, the related
reference model lives on as a common way of expressing what role some networking
device performs. The OSI model sought to partition the challenges of end-to-end com-
munications among dissimilar machines into a layered approach, in which the protocol
options, roles, and responsibilities for each layer were clearly defined.

Figure 1-1 shows the venerable OSI model in all its seven-layer glory, along with some
selected protocol options for each layer. Note that upper layers were the least well
defined, and few saw any production network use.

Figure 1-1. The OSI Reference Model

Key points about the model are:

• Each layer interacts with a peer layer, which may be at the end of the link or at the
actual receiver. In practical context, this generally means that a given layer adds
some protocol header, and maybe a trailer, which is then acted upon and removed
by the remote peer layer.

4 | Chapter 1: LAN and Internetworking Overview

• Some layers have a link-level scope whereas others have an end-to-end scope. A
communications path can contain numerous independent links, but no matter how
far-flung its constituent links are, it relies on a single Transport layer entity that
exists only in the endpoints.

• Each layer provides a service to the layer above it, and receives services from the
layers below.

• There is general modularity that provides options and the ability to “mix and
match” specific technologies at a given layer. The specifics of each layer are opaque
to those above and below it, as only service semantics are defined between the
layers. This means that any LAN technology could be used to provide Link layer
services to the Network layer, and in fact the ISO Connectionless Network Layer
Service (CNLS) Network layer protocol could operate over Token Ring (802.5),
CSMA/CD (802.3), and even Token Bus (802.4).* It should be noted that each such
LAN technology typically came with its one slew of Layer 1 options, such as coaxial
cable, twinaxial cable, or unshielded twisted pair (UTP).

Layer functions

As noted previously, a layered model works by using a divide-and-conquer approach,
with each layer chipping in to do its part. The main function of each layer is as follows:

Physical layer
The Physical layer is where the bits meet the road, so to speak. All communications
systems require one. Layer 1 places bits onto the transmission medium for transmit,
and pulls them off for receipt. It cares not what those bits mean, but some Physical
layers have framing and/or Forward Error Correction (FEC) that allows them to
detect problems and in some cases act better than they really are. Bits are the
Protocol Data Units (PDUs) sent at Layer 1. EIA-232, SONET, V.32bis modems,
and 1000Base-T are examples of Layer 1 technologies.

Link layer
The Link layer deals with frames. It adds a header and trailer to frame upper-layer
traffic, and generally provides link-by-link error detection. Some Link layers also
provide error correction and multipoint addressing, as well as multiprotocol sup-
port through a type indication. Frames are the PDUs sent at Layer 2. Frame Relay
and HDLC, as well as LAN MAC frames, are examples of Layer 2 technologies.

Network layer
The Network layer is the first end-to-end layer. It can be said that a Network layer
packet passes pretty much as it was sent, all the way to the remote endpoint. The
Network layer identifies endpoints (not the next Link layer hop), and may provide
error detection/correction, protocol identification, fragmentation support, and a

* Note that IEEE 802.x standards are prefixed with an additional “8” when adopted by the relevant OSI entity,
thus ISO 8802.3 is equivalent to IEEE 802.3.

What Is a Network? | 5

Type of Service (ToS) indication. Packets (or datagrams) are the PDUs sent at Layer
3. IP is a Network layer, as is X.25.

X.25 is technically a Layer 3 packet protocol. When used to support
IP it functions more as a link between two entities. When sending
IP over X.25 it can be said that there are two Network layers, but
in this context IP is seen as the real Layer 3 as its endpoints may lie
beyond the endpoints of the X.25 connection. Much of the same
is true of other connection-oriented technologies, such as the Pub-
lic Switched Telephone Network (PSTN) in analog form and its
digital cousin, the Integrated Services Digital Network (ISDN).

Transport layer
The Transport layer deals with end-to-end error control and the identification of
the related application process through ports (sockets). This layer may also perform
connection establishment, sequencing, flow control, and congestion avoidance.
The term Service Data Unit (SDU) is often used to describe what is sent or received
when dealing with Layer 4 or higher. In the TCP/IP model, segments are the PDUs
sent at Layer 4.

Session layer
The Session layer deals with session establishment, synchronization, and recovery.
Given that we are now in the realm of things that never really happened, it’s hard
to say what this means. TCP/IP has no official Session layer, but protocols such
as Fault-Tolerant Overlay Protocol (FTOP) have a user sign-in phase.

Presentation layer
The Presentation layer deals with application-specific semantics and syntax. In
theory, this layer can convert to some machine- and application-independent
format—say, ASN.1—upon transmission, and then back into the desired format
upon reception. This is a pretty tough row to hoe, and seems much like a protocol
converter in a layer. Again, there is no real example to give, other than that TCP/
IP does use ASN.1 or HTML/XML data formats to help promote communications
between dissimilar machines.

Application layer
The Application layer is not the application. It’s the application’s interface or API
into the communication’s stack. This is akin to a Windows or Unix socket in the
TCP/IP context.

Figure 1-2 illustrates key concepts regarding layered protocol operation.

6 | Chapter 1: LAN and Internetworking Overview

Figure 1-2. The OSI model and an internetwork

Figure 1-2 shows two communicating pieces of data terminal equipment (DTE) along
with what appears to be a router-based form of interconnection, given the presence of
Layer 3 in the intermediate nodes. The lower portion details generic layer interaction.
Note that each layer communicates with a peer layer, which may be at the other end
of the link, or at the far endpoint depending on the layer’s scope. Each layer accepts
service requests from the layer above it, and in turn makes requests of the layer below.

The Network layer is the first end-to-end layer. As such, it’s technology-independent,
meaning the same Network layer packet that is sent is pretty much the one received
(minus the obligatory Time to Live [TTL] decrement designed to protect against routing
loops). In contrast, Layers 1 and 2 vary by network technology type. Stations that
communicate directly (i.e., those that share a link) must use compatible network tech-
nology. Stated differently, if the DTE on the left is running 10Base-T and is using
Ethernet v2 framing, the first hop data circuit-terminating equipment (DCE)/router
must be compatible. It may operate at 100 Mbps, given that repeaters and bridges can
adapt Ethernet speeds, but it must support IP in Ethernet v2 encapsulation for com-
munications to succeed across that link. If the connection is direct, the speed and
duplex as well as other physical parameters must also match. The link between the two

What Is a Network? | 7

routers is a different link, and therefore does not have to be compatible with either
DTE, as this link is not used for direct DTE communications.

Network Types and Communication Modes
There are many different kinds of network technologies and methods for communi-
cating information among some set of stations. Generally speaking, a network is clas-
sified as being a wide area, local area, or metropolitan area technology (i.e., WAN,
LAN, MAN). In some cases, the same technology can be used in all three environments.
At one point this was the promise of ISDN, and then B-ISDN (ATM), but now it seems
to be the domain of Ethernet, which holds more convergence promise than any other
Link layer protocol.

Simply put, a LAN describes a set of nodes that communicate over a high-speed shared
medium in a geographically confined area. A WAN can span the globe, tends to operate
at lower speeds, and is often point-to-point (P-to-P) rather than multiaccess. Some
multipoint WAN technologies are still in use; chief among them are Frame Relay and,
in less developed parts of the world, the old standby, X.25.

Communication modes

The exchange of information between endpoints can occur in one of several ways:

Point-to-point
As its name implies, this mode involves two endpoints, one as a source and the
other as the recipient. Many WAN technologies are P-to-P. Modern P-to-P tech-
nologies are full duplex (FD), which means that both ends can send and receive
simultaneously.

Multipoint
Multipoint topologies are often associated with WANs. Historically, a multipoint
technology describes a hub-and-spoke (sometimes called star) arrangement
whereby a central site can send to all remote sites at the same time, but each remote
site is allowed to send back only to the central site, à la IBM’s polled Synchronous
Data Link Control (SDLC) protocol. Multipoint also refers to virtual circuit tech-
nologies such as Frame Relay and ATM that allow a single physical interface to be
used to send to multiple destinations by using the correct circuit identifier (i.e., a
Frame Relay DLCI or ATM VCI).

Broadcast
A broadcast network uses shared media or some replication function to allow a
single transmission to be seen simultaneously by all attached receivers. LANs
always operate in a broadcast manner, making this one of their defining charac-
teristics. Note that the use of switches (bridges) or routers isolates the broadcast
domain, a technique used for both performance and security reasons.

8 | Chapter 1: LAN and Internetworking Overview

Broadcast networks can operate in simplex, half-duplex (HD), or FD mode based
on specifics.

Non-Broadcast Multiple Access (NBMA)
An NBMA network is a form of virtual-circuit-based topology that does not permit
true broadcast, but by virtue of having a virtual circuit to every other endpoint, an
NBMA network can emulate broadcast functionality by sending the same message
multiple times over each of its locally defined virtual circuits.

NBMA networks can operate in simplex, HD, or FD mode based on specifics.
Practically all modern network technologies are now FD anyway, but some distri-
bution systems are inherently simplex.

So, Where Did We LANd?
After the dust settled on the past 40 years of data networking, we may be so bold as to
say that a few key trends have emerged:

• OSI is dead, and we can only hope it’s resting peacefully, as the chip—nay, PDU—
that it bears upon its shoulder would make for one nasty ghost.

• IP is the dominant convergence technology that serves as the basis for everything
from interactive data to email to telemedicine, virtual reality, and even old-school
services such as telephony and many television distribution systems. There appears
to be no serious threat to this venerable workhorse on the near horizon, except
maybe its younger sibling, IPv6, which is creeping into more and more networks
each day.

• Ethernet rules the LANs, and most MANs, and is also being seen in long-haul
WANs as part of Layer 2 virtual private network (VPN) services (that typically ride
over IP-enabled Multiprotocol Label Switching, or MPLS, networks), or as native
Ethernet as part of a PBB or long-haul SONET/SDH transport. Ethernet keeps
getting faster (40 Gigabit Ethernet is now available) and cheaper, and updates such
as Operational Administration and Maintenance (OAM) continue to extend its
reach by providing it with some SONET-like maintenance and alarm-reporting
capabilities. Ethernet is built into every PC, and virtually all broadband access is
based on this Ethernet connection, attaching it to the DSL or cable modem used
to access the service.

The next section focuses on modern Ethernet technologies as a primer for what is to
come in the rest of this book. Today the term LAN switching is assumed to mean
Ethernet. For those with a penchant for obscurity and a bit too much money and time
on their hands, we hear you can find Token Ring Media Access Units (MAUs) on eBay
at bargain basement prices these days; just be sure to get the high-speed 16 Mbps
version. Running at 4 Mbps would look bad given that Ethernet made the 10 Mbps
leap back in 1980, when the Digital Intel Xerox (DIX) consortium published the ESPEC

What Is a Network? | 9

v1 specification. There was even a (very) short-lived 32 Mbps “FD” Token Ring MAU
available.

Ethernet Technologies
Ethernet has been around for so long, and is now so widely used, that a complete
overview would easily fill its own book. The goal here is to stay concise and to convey
only key points to clear up areas that are known to cause confusion.

A Brief Look Back
The philosopher George Santayana one stated, “Those who do not remember their past
are condemned to repeat their mistakes.” It is to him that we dedicate this section.
Well, him and everyone else who fell prey to buying into now-obsolete market failures
such as ATM, Token Ring, FDDI, Token Bus, ARCnet, TCNS, or SMDS. All sought
to solve the needs of high-speed communications over a shared medium, and all are
now only footnotes in history—a history that is penned by the victorious Ethernet.

Ethernet v2 is a de facto standard first published by the Digital, Intel, and Xerox vendor
alliance. It was based on a prototype satellite communications network called ALO-
HAnet. When Bob Metcalf later adapted the technology to run over coaxial cable in
the early 1970s, the term Ether was used to pay homage to its original use of electro-
magnetic radiation through the vacuum of space, whereby the alleged media was the
mythical luminiferous ether, a substance that the ancient Greeks believed conducted
the planets through their orbits.

When used for minicomputers, LANs were a novelty. Enter the IBM PC in the early
1980s, and suddenly LANs are a hot commodity. The official standards bodies could
not stand by and watch a vendor consortium do all the work. As a result, the IEEE 802
committee was formed to standardize LANs. The committee initially met in February
1980, hence the 80-2 Committee.

What was Ethernet became IEEE 802.3, which then branched off into various medium-
specific standards such as 10Base-5, 10Base-2, 10Base-T, 100Base-T, 1000Base-TX,
and so on. In the IEEE terminology, the number represents the bit rate, the term Base
indicates the baseband (digital) signaling (there is a 10Broad36 spec for analog use over
cable), and the last value identifies a medium, either indirectly via maximum segment
length or by type. For example, the “5” in 10Base-5 means 500-meter cable length,
which in turn indicates a thick coaxial cable medium, whereas the “T” in 10Base-T
stands for UTP.

Despite the blessing by an official standards body, the irony is that the most common
usage of Ethernet is, in fact, actually Ethernet v2 and not 802.3. The next section details
the differences so that you can speak the truth when describing your network.

10 | Chapter 1: LAN and Internetworking Overview

Ethernet or 802.3, That Is the Question
According to the OSI model, LANs operate at Layer 1 and Layer 2. Hence, they are
considered a Link-layer technology. In addition, a LAN’s Link layer is broken into two
parts, or sublayers: the Media Access Control (MAC) and Logical Link Control (LLC)
components.

The goal here was noble. LANs should be able to provide a common service and in-
terface to the upper layer (the Network layer), regardless of the fact that each LAN
technology has a unique MAC sublayer that functions to provide orderly access to the
shared medium. This makes some sense, in that a collision is unique to Ethernet LANs,
so why should the IP layer know or care at all about one, as the same IP is also run over
Frame Relay, which is a collision-free technology.

In contrast, Ethernet specifies only a MAC layer, as shown in Figure 1-3.

Figure 1-3. Ethernet versus 802.3

Although there is a notable difference in the MAC layer, given that Ethernet uses a Type
code and 802.3 redefines the field as a Length value, the real answer to the proverbial
question of Ethernet or 802.3 lies in the absence, or presence, of the Length field and
802.2/LLC. If the frame has a Type field, it’s Ethernet, plain and simple.

No magic is needed to differentiate between these two frame types because Type codes
are selected to not conflict with valid IEEE Length values. Thus, any value less than
0 × 0600 is interpreted as a Length, and a value greater than 0 × 05DC is seen as an
EtherType. In case you are doing the conversion, 0 × 05DC in hex symbolizes 1,500

Ethernet Technologies | 11

bytes in decimal. The need to preserve this compatibility with Ethernet is one reason
the IEEE 802.3 standard was never updated to support jumbo frames, which are frames
larger than 1,500 bytes.

An Ethernet frame identifies the upper layer protocol using an EtherType, where the
value 0 × 0800 indicates IP. Because there is no length indication padding, which is
needed for Ethernet as the smallest amount of user data that can be sent is 46 bytes, it
has to be performed by the upper layers.

This interlayer dependency, though long since accommodated by IP stacks, was seen
as an egregious violation of the principle of layer independence. As such, the IEEE opted
for a Length field at the MAC layer. This meant the MAC layer could now do its own
padding, which is cool and all, but there was still a need to identify what the heck was
in the frame. Enter LLC, which, from a practical perspective, pretty much functions to
replicate Type code functionality, except now using three bytes rather than two, and
you get to use fancy-sounding terms such as Service Access Point (SAP), which in the
end simply identifies the upper layer. Note that another form of LLC is defined, LLC
type 2, that provides a connection-oriented, reliable traffic exchange à la the
connection-oriented balanced exchange procedures defined in Link Access Procedure,
Balanced (LAPB). LAPB is used at Layer 2 of the X.25 model; in LANs, LLC type 2 uses
a Set Asynchronous Balanced Mode Extended (SABME) initiation command to set up
extended mode (modulus 128) sequencing, however. This LLC mode was used only in
Token Ring/Bus networks, and then typically only for protocols such as the Systems
Network Architecture (SNA) protocol. Need we say more? A third type of LLC, type
3, was never implemented. It provided a connectionless mode with acknowledgments.

We already stated that IP is the Network layer protocol of choice in the modern world.
Yes, there are standards that define how an IP datagram can be encapsulated in Ether-
net, 802.3/LLC, or 802.3 with LLC, combined with the official standards-supported
method of escape back to the use of an EtherType via the Subnetwork Access layer
Protocol (SNAP), which, as indicated, accommodates the use of the original EtherType
codes, except now conveniently buried within a SNAP header, which itself is
embedded within an LLC header. Talk about wheels within wheels....

Although this is good to know, it must be stressed that Juniper Networks switching
and routing gear running JUNOS supports only Ethernet-based encapsulations for IP.
JUNOS is known to interoperate with all networking gear of consequence, and is found
in most large IP networks and in the backbones of virtually all Tier 1 service providers.
It would seem that lack of support for IP over IEEE 802.3 is not an issue for anyone,
and this is the point that is made. Ironically, the only thing that uses 802.3 encapsulation
in JUNOS is Intermediate System to Intermediate System Level 1 (IS-IS), which is an
OSI-based routing protocol that was originally intended to support OSI’s CLNS rout-
ing. The irony is that for most JUNOS gear, actual CLNS routing is not supported;
IS-IS is used to build, and this is the rub, IP routing tables! I’m not sure why, but I can’t
help but smirk as I write this, being both an IP bigot and not myopic enough to fail to
see the bold IP writing on the wall, so to speak.

12 | Chapter 1: LAN and Internetworking Overview

These days the practical truth is that IEEE 802.3 defines updates to the Physical layer
standards and capabilities, and IP makes use of the faster speeds while choosing the
relative comfort of an Ethernet-based frame; the fiber-optic medium or wire cares not
one bit about the Type or Length field, so all is well. Unless you are specifically dis-
cussing LLC and the use of SAP, or MAC layer padding, the two terms are pretty much
interchangeable, and are often used that way. This near synonymous nature is what
often leads to confusion about the true differences, however.

The MAC Layer
There are many physical varieties of Ethernet, but generally speaking they all share the
same MAC frame format and protocol. This is one of Ethernet’s greatest strengths. Its
specification was based on bit times, not rates, making it easy to ramp up the speed
(typically by an order of magnitude), while leaving the rest untouched.

It is worth noting here that the MAC we refer to is the entire Media Access Control
layer of networking. A MAC address, which we all know and love, is merely a portion
of this. All media have both PHY (physical) and MAC characteristics. The Ethernet
MAC defines frame structure as well as the CSMA/CD shared media access procedure.

There are a few MAC characteristics that bear some extra attention, so let’s get cracking.

CSMA/CD

In its original form, Ethernet was based on a shared (not switched as is now the norm)
medium and the use of a single baseband bit rate. This meant that only one node could
actively use the cable at any time. Rather than bother with passing tokens or other
shenanigans, Ethernet’s inventors opted for an opportunistic-based MAC called Carrier
Sense Multiple Access with Collision Detection, or CSMA/CD. Sounds fancy, but hu-
mans do this all the time. We, after all, also share a medium and emit sound energy in
the same band, which means there really should be only one person speaking at any
time for maximum productivity.

In CSMA/CD, a station that wants to speak first listens to sense whether another station
is active. If so, it waits. This is the Carrier Sense part. As quiet for one is quiet for all,
there is nothing to prevent multiple stations from seizing the opportunity (a case of
carpe medium, to use yet another pun), and this would be the Multiple Access part.
When this occurs all the messages are corrupted, so the stations involved should detect
the collision so that they can start an exponentially increasing back-off timer and try
again later.

The Ethernet MAC algorithm can be summarized as “It’s nice to share, and if you have
something to say don’t wait for an invitation; if at first you don’t succeed, try and try
again, 16 consecutive times, and then give up,” as there is likely a cable fault (unter-
minated) that is causing the station’s own energy to reflect back (as a standing wave),
which in turn activates the collision detection circuitry at every transmission attempt.

Ethernet Technologies | 13

Opportunistic Versus Deterministic MAC
Token-passing proponents were always fond of raising the fact that, in theory, an
Ethernet LAN could fail to convey any useful information due to repeated occurrences
of collisions, which simply waste bandwidth and time. This is true, in theory, much
like there is a certain probability that a pot of water will freeze over a flame. Yes, it could
happen, but no, it never has.

By specification, an Ethernet LAN is permitted no more than 1,024 MAC entities. Each
time there is a consecutive collision, a station picks a wait time, at random, from a pool
that increases exponentially, until it hits 1,024 (the number of permitted nodes), and
then truncates at 1,024 for counts 11–15.

Although it’s true that some forms of Ethernet can have collisions, and that collisions
result in resource waste, there has never been a confirmed case of a properly functioning
Ethernet, with the supported number of MAC entities (1,024), ever having 16 consec-
utive collisions. Further, studies have shown that, on average, the time needed to suc-
cessfully access the medium is lower for Ethernet than for a Token Ring LAN, where
the latter wastes resources waiting around for the next token on an otherwise idle LAN.

Stated differently, with Ethernet you might have to wait, whereas with Token Ring you
know you have to wait, but when it’s your turn access is guaranteed. Think of taking
the freeway versus taking a train or plane for a 50-mile trip. The freeway may be con-
gested, slowing your progress; or it may not be, but you are allowed to enter the flow
as soon as you can wedge your car in. A plane, on the other hand, generally leaves at
some fixed time, one that I have always found myself waiting for (and all too often,
even that fixed time was less than deterministic, in my humble opinion). So, I would
choose the opportunistic system any day, and this choice is paralleled in LAN tech-
nology with the demise of all things token-based.

The widespread use of FD Ethernet, enabled by switches, has eliminated the potential
for collisions, which simply made a good thing all the better.

The shift away from shared coax, to a hub-and-spoke
(star-based) topology that was based on twisted pair, was a monumental point for
Ethernet. Although no one could have imagined it at the time, advances in technology
would shift these multiport repeaters into a bridging or switching role. Unlike a repeater,
both of these devices terminate collision domains. Because a UTP link can have only
two stations (P-to-P), and because of a separate transit and receive pair (or frequency),
there was no reason to run HD anymore.

This is significant, because in addition to doubling potential throughput by allowing
simultaneous send and receive this also eliminated the potential for collisions.

The ability to use preexisting UTP, a medium originally intended for analog telephone
use at 20 KHz, to build a high-performance and highly survivable LAN was too much
for the market to resist. Not having to deal with buying and installing coaxial cable was
advantage enough. However, the shift to P-to-P links also eliminated the single point

The shift away from shared media.

14 | Chapter 1: LAN and Internetworking Overview

of failure associated with shared media. In theory, one cable break with Thick Ethernet,
or one jabbering station that won’t shut up, could bring down the entire LAN. Now
the repeater or switch port simply partitions to isolate the malfunctioning link/node to
prevent such network-wide disruption.

The shift from a bus to a star topology was followed closely by a bump in speed from
10 Mbps to 100 Mbps via the 100Base-TX standard. Ethernet has been the dominant
LAN ever since, and is now, for all intents and practical purposes, the only LAN the
world appears to need, or want, for that matter.

MAC addressing

One part of the MAC layer specification is the shared media access method; the other
is the frame structure. An important part of the MAC frame is the MAC address. Ether-
net LANs use a 48-bit-long MAC address that is non-hierarchical or flat. Figure 1-4
details the structure of a MAC address. The Most Significant Byte (MSB) of the MAC
address is sent first and is the high-order address octet.

Figure 1-4. MAC address structure

The MAC address contains flags to indicate whether it’s a group (multicast) or an
individual (unicast) address, and whether the address is universally administered (via
the IEEE) or is a locally assigned value. The broadcast address is a special form of
multicast that uses all 1s to indicate it is intended for every station on the LAN.

The network interface card (NIC) or Ethernet port’s burned-in address (BIA) is pre-
sumed to be globally unique by virtue of a managed vendor-ID space. Vendors apply
for one or more blocks of MAC addresses, as identified by the first 24 bits, and are then
responsible for distributing MAC chips with unique addresses using the remaining 24
bits.

Ethernet Technologies | 15

The address space is said to be flat in that all 48 bits are needed to identify a station.
There is no concept of information hiding or aggregation of multiple MACs into a single
super MAC. A switch must know and learn (which means store) the complete 48-bit
MAC address for every active station in the LAN. This is a significant point, as it impacts
scalability. There is a reason that the worldwide Internet is not based on Layer 2
switching. No switch on Earth could learn and store a 48-bit address for every one of
the more than 1.8 billion machines projected to form the Internet of 2010! (Source:
http://www.clickz.com/stats/web_worldwide.)

In contrast, routers operate at Layer 3, where the addresses that are used support hi-
erarchical structuring. This allows a router to summarize (or hide) information, which
in turn allows it to scale far beyond the scope of any Layer 2 device. Consider the
common case of a single default route, which summarizes every possible IP address
(more than 4 billion are possible) into a single table entry. A core router must be able
to reach every host on the planet without relying on a default route. IP address hierarchy
currently permits this feat with a table that contains only about 280,000 entries as this
is written. Far better efficiency could be had if IP addresses were originally allocated in
a manner that better accommodates summarization—a mistake that will, ostensibly,
not be repeated with IPv6 address allocation.

Ethernet Standards Wrap-Up
Ethernet technologies continue to evolve as speeds ramp up and new functionality,
such as OAM, continues to breathe life into this venerable workhorse. Table 1-1 sum-
marizes the characteristics of widely used Ethernet Physical layer standards.

Table 1-1. Key Ethernet standards

Standard Speed/mode Topology Medium Segment length Comments

10Base-5 DIX
1980, 802.3
1983

10 Mbps/HD Bus Thick coax,
RG-8/U

500 m The original, vampire taps
and all

10Base-2
802.3A 1985

10 Mbps/HD Bus Thin coax, RG-58 185 m Bye-bye taps, hello BNC T
connectors

FOIRL 802.3D
1987

10 Mbps/FD Star Two fibers 1,000 m The beginning of star-
wired buses; P-to-P allows
FD

10Base-T
802.3I 1990

10 Mbps/FD Star Two pairs Cate-
gory 3 UTP or
better

100 m No more coax or expensive
fiber media; the beginning
of the end for other LANs

10Base-FL
802.3J, 1993

10 Mbps/FD Star Two multimode
(MM) fibers,
62.5/125 μm

2,000 m Updated FOIRL
specification

16 | Chapter 1: LAN and Internetworking Overview

http://www.clickz.com/stats/web_worldwide

Standard Speed/mode Topology Medium Segment length Comments

100Base-TX
802.3U, 1995

100 Mbps/FD Star Two pairs Cate-
gory 5 UTP or
better

100 m So much for FDDI and its ex-
pensive optics

100Base-T4,
802.3U, 1995

100 Mbps/HD Star Four pairs Cate-
gory 3 UTP or
better

100 m Uses eight wires, allows use
of installed CAT-3 for 100
Mbps

100Base-T2,
802.3Y, 1997

100 Mbps/FD Star Two pairs Cate-
gory 3 UTP or
better

100 m So much for 100Base-T4;
same speed on half as many
wires and FD

1000Base-LX,
802.3Z, 1998

1,000 Mbps (GE)/
FD

Star Two single-mode
(SM) fibers, 10
μm

Two MM fibers,
62.5/125 μm

5 KM/5,000 M

550 m

The first Gigabit Ethernet
(GE) flavor

1000Base-SX,
802.3Z, 1998

1,000 Mbps (GE)/
FD

Star Two MM fibers,
62.5/125 μm,
50/100 μm

220 m

550 m

A popular fiber flavor with
wide deployment

1000Base-LH
(SX) (non-
standard)

1,000 Mbps (GE) Star Two SM fibers, 10
μm

10–70 km Non-standard flavor of
1000Base-LX with better
optics

1000Base-T,
802.3AB, 1999

1,000 Mbps (GE)/
FD

Star Four pairs Cate-
gory 5 UTP or
better

100 m GE over UTP copper, albeit
using all eight wires with
echo cancellation for FD

10GBase-R,
802.AE, 2002

10 Gbps (10 GE)/
FD

Star LR, SM 9/125 μm

SR, MM 62.5/125
μm

10 km

26 m

First 10 GE over fiber, both
long and short reach

10GBase-T,
802.3AN, 2006

10 Gbps (10 GE)/
FD

Star Four pairs UTP 55–100 m Had to happen; 10 GE on
UTP, needs CAT-6a for max
distance

Note that the wide variety of Physical layer media options for Gigabit Ethernet (GE)
has resulted in the concept of Small Form-factor Pluggable (SFP) optics. The optics
name is somewhat of a misnomer here, as copper-based SFPs are also available. Note
that 10 GE SFPs are called XFPs, and provide the same function.

Although none too cheap, the ability to mix and match switch or NIC ports to the
physical layer du jour by simply inserting the desired module is a big advantage. XFP
support is especially important with 10 GE, given that there are at least 10 different
Physical layer standards specified! The original version of this technology was referred
to as a GE Interface Converter (GBIC). The newer SFPs have been further reduced in
size and are sometimes called mini GBICs.

Ethernet Technologies | 17

Currently the IEEE is working on standards for the next Ethernet speed overhaul, spe-
cifically 40GbE and 100GbE.

A word on auto-negotiation

Table 1-1 makes it clear that there is no shortage of Ethernet flavors to choose from.
With so many options, finding the set of mutual capabilities that yields the highest
performance between any two pairs of nodes can be daunting. Automatic selection of
the best level of compatibility is the motivation behind auto-negotiation.

The current best practice is to use auto-negotiation rather than to hardcode parameters.
Over the years, the standards have matured enough to work reliably, and manually
setting these parameters has been found to be error-prone. Figure 1-5 shows the oper-
ating mode priority, which always selects the best mode that is mutually supported, as
well as a table showing the outcome for various combinations of Ethernet auto-
negotiation pairings.

The key takeaway is that pairing one end set for auto-negotiation with another end that
is hardcoded is almost always a bad thing. The result is often a duplex mismatch, which
can be a very nasty thing, as in many cases the result is significantly diminished per-
formance that may not be detected and therefore will be allowed to remain in place,
causing long-term service degradation. The issue is that the HD end senses the remote
end’s FD operation as a collision, resulting in needless back-offs and retransmission
attempts.

Auto-negotiation has been defined in several IEEE standards, and is optional for most
flavors of Ethernet. The protocol was updated and made mandatory for 1000Base-T as
part of the GE 802.3a specification. Auto-negotiation is mandatory for normal
1000Base-T operation due to the need to determine the Master/Slave timing role for
each end’s Physical layer; this function is unique to 1000Base-T, and is determined
during the auto-negotiation process.

18 | Chapter 1: LAN and Internetworking Overview

Figure 1-5. Ethernet auto-negotiation

Ethernet Technology Summary
Ethernet won the LAN battle. Today when the three-letter acronym (TLA) LAN is used,
you can bet it regards some flavor of that tireless workhorse known as Ethernet. Al-
though there was a time when a LAN switch needed to support Ethernet and Token
Ring/FDDI ports, that time has passed. Yes, it has passed much like the proverbial

Ethernet Technologies | 19

token, on into that great sunset that awaits all mortal beings, be they LAN, WAN, or
(hu)MAN (pun intended).

Juniper Networks’ EX switches are Ethernet-based. The information in the next section
prepares the reader for upcoming deployment labs, which by matter of modern prac-
ticality are strictly Ethernet-based.

The TCP/IP Suite
Having arrived here, you likely agree that Ethernet technology is the bee’s knees, so to
speak, and is the be-all and end-all of all your local area networking needs. You have
installed your shiny new EX switch, and you now have all those network ports just
waiting for something to do.

And then it strikes you. All that revved-up LAN infrastructure is little more than a
doorstop without upper-layer protocols to drive useful data over it. A LAN, with its
Physical and Data Link layer services, provides you with a grand communications po-
tential, but you can realize this potential only when there are applications written to
operate over that technology.

There was a time when users were forced to choose one proprietary protocol suite over
another; or as needs often dictated, when they ran multiple protocol suites to serve
various user communities. Netware and its IPX/SPX had great file and print sharing,
while Banyan Vines had a really cool directory service. Unix workstations and servers
typically supported engineering communities with their Network File System (NFS),
remote r commands, and related TCP/IP-based networking support. And who can
forget AppleTalk and its DDP, often used for the graphic artist, or IBM’s SNA/SAA,
often found transporting the business’s accounting and financial applications. Oh, and
then along came Microsoft with its NetBIOS/NetBUI-enabled Windows for Work-
groups solutions, which often found their way into ad hoc networks when they were
not trying to compete with Novell. In the typical case, this litany of protocols would
run on a multiprotocol backbone in a “ships in the night” fashion, passing each other
by and never even being aware of the close encounters. Few hosts were bilingual, so
most user communities shared a cable and little else. Protocol converters (remember
those?) and application gateways were big business when users in different commun-
ities needed to interoperate.

Enter OSI
At one point, the grand saviors to this mess were—you guessed it—the OSI’s ISO
models and related ITU/CCITT standards. The plan was to have the world switch to
a standards-based open system, which would then promote wide-ranging connectivity
and, just as important, would once and for all end all the multiprotocol babble the
world of networking was mired in. Too bad OSI imploded.

20 | Chapter 1: LAN and Internetworking Overview

What was left was pretty much what folks started with, which is to say some level of
international standards that were actually in use and were intended to form the foun-
dation of the larger OSI solution. This left people with circuit technologies such as dial-
up modems, ISDN, and leased lines, and a few packet-based options such as LANs and
X.25 for WAN use. There was one new thing, however, and that was the idea of what
a widely adopted set of open standards could do. By replacing multiple stacks with one,
costs could be reduced, support was simplified, and there was greater potential for
interoperability.

Given that the OSI model was similar to the preexisting TCP/IP suite, that TCP/IP was
known to work, and that it in fact did more every day than OSI accomplished in its
whole life, a candidate came into focus. The fact that TCP/IP was well understood and
widely deployed, was already supported on most operating systems, and was generally
made available for free caused that candidate to again stand out. Once the U.S. gov-
ernment’s mandate of using only OSI protocols was exempted in the case of IP, until
such time that equivalent functionality was available in OSI protocols, the writing was
clear.

The world had its communications savior, and its name was Internet Protocol. Thus
began the mantra of IP over everything, and everything over IP.

Exit OSI, Enter IP
As we ranted earlier, while all the OSI work was moving forward at its own snail-like
pace, the fine folks at the IETF, the entity that generates Internet RFCs and drafts, kept
on doing what was needed to solve actual issues and to create new functionality in the
TCP/IP suite of protocols. A number of factors added up in IP’s favor, including the
following:

• The open nature of TCP/IP made the technology and its related specifications freely
available. In contrast, OSI specifications cost money, and so did the resulting
products, of which there were few.

• TCP/IP was derived from early work on the DoD’s ARPANET, which went online
in 1969! It was one of the first routed/packet-switched protocols ever implemented.
TCP/IP’s original purpose was to avoid issues with the connection-oriented serv-
ices of the day, which had a tendency to be disrupted every time some battle hap-
pened and bombs tore up phone lines. The TCP stack was intended to provide
robust and resilient communications in battlefield conditions, and was known to
work in this regard with a long field-proven history. I mean, who doesn’t want his
Internet surfing at Amazon or his iTunes downloading to be robust and reliable,
despite the near-battlefield conditions that comprise a modern distributed denial
of service (DDoS) attack on large portions of the Internet’s infrastructure?

• Because the U.S. government contracts were historically based on TCP/IP, and
then later when OSI was mandated by virtue of the exception, for lack of OSI
functionality, all OSs and products of any consequence had TCP/IP protocol

The TCP/IP Suite | 21

support. If it was not already built in and simply waiting to be activated, you could
certainly find a TCP stack for a given OS far more easily, and for far less money,
than some OSI stack that would at best let you use a subset of the functionality on
a far more limited set of machines.

• Sir Timothy John Berners-Lee invented the World Wide Web (WWW) applica-
tion, and suddenly every normal (non-computer-geek) person, and quite literally
his or her mother, could see a use for the Internet that they would be willing to
pay for. Things always seem to get real popular real quick whenever there’s money
to be made.

• As much as this dates me, I can remember the pre-WWW Internet. There was FTP
from a command line, and there were command-line search tools such as the FTP
site indexer Archie, which in short time begat the updated (and Gopher-based)
search capabilities of Jughead and, ultimately, Veronica. Yep, back in the day we
would walk barefoot through the snow to our 2,400 bps dial-up modems, and we
would be happy for the chance to use a command-line FTP client to download
some plain-text copy of an RFC. Nope, we did not need images, fancy multimedia,
a GUI point-and-click interface, or the ability to view the contents of our shopping
carts. Nope, back in the day, when I went shopping I had an actual shopping cart
in my hands, and I could look at its contents without any fancy click buttons (I say
in my best cranky old-man voice).

• After the web browser and HTTP/HTML, the Internet and its underlying TCP/IP
enabler became “the WWW.” It still irks me to hear news reports of “The WWW
is under attack due to <insert latest cause here>,” then in reality it’s the Internet
that is being attacked and the stupid WWW application is but one of many that
are affected. No one but us aged geeks seems to care that during these outages
we’re unable to use the finger application to determine how many cans of soda are
left in some science lab’s vending machine! The Internet is more than just the
WWW.

When the preceding points were factored, the choice was clear. The world already had
a multivendor interoperable protocol, it was known to work, and money could now be
made from it. TCP/IP became the de facto set of open standards while the official ones
faded into that great night.

Vive IP!

The IP Stack, in a Nutshell
Once again we find ourselves broaching a subject that is extremely well documented,
and found in numerous places. The wheel is not re-created here, as trees are far too
valuable. Once again we try to stick to the facts and distill the most important and
widely used set of protocols down to a few paragraphs. Wish me luck....

Figure 1-6 depicts the TCP/IP stack, along with some selected applications.

22 | Chapter 1: LAN and Internetworking Overview

Figure 1-6. The Internet Protocol stack

Figure 1-6 also shows the good old OSI model alongside the IP stack. After all, being
able to compare non-OSI things to its well-delineated layers is about the only useful
thing left of that grand effort.

The network that lies beneath

As is so often the case, things begin in the physical realm, where the bits meet the media,
so to speak. In the IP stack, both the Physical and the Link layers are combined into a
single underlying Network layer. IP, which lives at Layer 3, is well shielded from the
incredibly long list of supported technologies. For our purposes, we can place Ethernet
technology here, allowing the Physical layer to be 10Base-2, GE over optical fiber, or
whatever the current flavor of Ethernet happens to be. Likewise, the Link layer becomes
CSMA/CD and the Ethernet MAC frame structure. For some flavors of Ethernet the
MAC layer can dispense with collision detection (CD) and operate FD with no need
for carrier sensing. In other modes both are still needed, as well as the binary expo-
nential back-off algorithm used to recover from collisions.

To help drive home the significance of layering and the beauty of layer independence,
consider that in all of these cases the same IP entity operates in the same manner, albeit
sending less, or more, as the physical link speed dictates. All the details are handled by
the related layers, such that IP simply sees a datagram transmission and reception
service.

ARP me, Amadeus

Moving up, you next encounter Address Resolution Protocol (ARP). ARP is a critical
component of IP’s independence from the underlying technology. Some technologies
do not use link-level addressing, or are inherently P-to-P, and therefore do not require
any dynamic binding of a destination IP address to a Link layer hardware address. In

The TCP/IP Suite | 23

these cases, ARP is simply not used. Multipoint links, such as a LAN, represent a dif-
ferent story, as shown in Figure 1-7.

Figure 1-7. IP and ARP—they taste great together

Figure 1-7 shows two IP stations that share an Ethernet link. At step 1, the user or her
application specified an IP address as the destination for some session.†

The IP layer forms the resulting packet, but before it can be handed to the MAC layer
for transmission, the correct destination MAC address must be specified. IP looks for
a match in its ARP cache, where recent responses are stored. Here, no match is located,
forcing it to evoke ARP’s services, shown as step 2 in the figure. The ARP request is
broadcast at the MAC layer to get around the “cart before the horse” issue of needing
to talk to a station to learn its MAC address before you actually know its MAC address.

In this example, the target is alive, and it sees the ARP request is intended for its local
IP address. Its ARP reply contains its Ethernet MAC address, which completes the
process. Usually this reply is sent as unicast back to the requester, but an unsolicited

† In most cases, a Domain Name System (DNS) name is specified, but the result is an IP address, so we can
skip the IP-to-domain name binding complexity for now.

24 | Chapter 1: LAN and Internetworking Overview

ARP reply can be broadcast to prepopulate ARP tables in what is known as Gratuitous
ARP.

Layer 3 to Layer 2 address resolution is a must when there are multiple possible desti-
nations on a single medium. “Close” does not count in the networking world.

IP, freely

Next up the chain is Internet Protocol (IP) itself. IP provides a datagram service to its
upper layers. The term datagram implies a connectionless mode of operation and a
resulting unreliable transport service. IP supports:

• Identification of source and destination network addresses

• A header checksum to detect corruption of its own header (not payload)

• A ToS (Type of Service) indication

• A precedence value to influence the probability of discard during congestion

• Fields to support and control fragmentation (and later reassembly) of large data-
grams to accommodate dissimilar maximum transmission units (MTUs)

• A TTL field to limit effects of routing loops

• A Protocol field to identify the owner (the upper layer protocol) that is responsible
for the datagram’s payload

• A Length field to accommodate padding, which is needed for Ethernet

• Options, which when present alter packet handling (i.e., source routing and record
route)

A lot of functions, to be sure, but again note that IP does not provide connection setup,
flow control, payload error detection, or a simple discard response (with no retrans-
mission) in the event of IP header errors, or the inability to process for any reason (e.g.,
lack of buffers due to congestion). IP leaves those functions to the users of its service:
the upper layers. Some applications—for example, broadcast media—may not care
much about error correction as they are negatively impacted by any retransmission
attempt, whereas other applications—say, e-commerce—will be quite concerned with
error control, or at least one would hope. IP provides the same services to both and lets
the upper layers sort things out.

Note that some underlying network technologies—for example, X.25 or a Token Ring
LAN running 802.2 LLC type 2—provide their own error detection and retransmission-
based correction, which is another good reason to leave IP streamlined and built for
routing. X.25 was the only Layer 2 protocol to also offer error correction. At least until
DOCSIS came along!

The TCP/IP Suite | 25

When links are error-prone, relying on end-to-end retransmissions, as
is the case with a protocol such as Frame Relay, it quickly results in
extreme throughput degradation, even when only tens of such links are
involved. For this reason, error-correcting Link layers are still used in
support of IP when error-prone transmission links are used.

To carry the previous example of IP and underlying network technology independence
a bit further, consider that an IP packet can easily cross tens of links between endpoints.
Consider this traceroute from Juniper Networks headquarters in Sunnyvale, California,
to the official government website for the Central Asian nation of Uzbekistan:

bash-3.2$ traceroute www.gov.uz
traceroute to www.gov.uz (195.158.5.137), 30 hops max, 40 byte packets
 1 mrc2-core1-3.jnpr.net (172.24.28.2) 0.541 ms 0.517 ms 0.735 ms
 2 172.24.19.33 (172.24.19.33) 0.447 ms 0.438 ms 0.421 ms
 3 172.24.230.90 (172.24.230.90) 1.287 ms 1.274 ms 1.497 ms
 4 ns-egress-fw-vrrp.jnpr.net (172.24.254.6) 1.213 ms 1.196 ms 1.403 ms
 5 66.129.224.34 (66.129.224.34) 1.926 ms 1.911 ms 1.893 ms
 6 POS2-1.GW5.SJC2.ALTER.NET (208.214.142.9) 1.873 ms 1.675 ms 1.659 ms
 7 161.ATM4-0.XR2.SJC2.ALTER.NET (152.63.48.82) 2.325 ms 2.311 ms 2.293 ms
 8 0.so-1-0-0.XL2.SJC2.ALTER.NET (152.63.56.141) 2.391 ms 2.376 ms 2.357 ms
 9 0.ge-3-0-0.XT2.SCL2.ALTER.NET (152.63.49.110) 3.363 ms 3.324 ms 3.555 ms
10 sl-crs2-sj-0-1-0-1.sprintlink.net (144.232.9.1) 4.744 ms 4.733 ms 4.710 ms
11 sl-crs1-rly-0-4-2-0.sprintlink.net (144.232.20.187) 74.735 ms 70.007 ms
73.500 ms
12 sl-crs1-dc-0-8-0-0.sprintlink.net (144.232.19.213) 69.516 ms sl-crs1-dc-0-12-
2-0.sprintlink.net (144.232.19.223) 69.208 ms sl-crs1-dc-0-8-0-0.sprintlink.net
(144.232.19.213) 69.481 ms
13 sl-bb20-par-1-0-0.sprintlink.net (144.232.19.147) 159.589 ms 158.893 ms
159.475 ms
14 sl-bb21-fra-13-0-0.sprintlink.net (213.206.129.66) 159.159 ms 159.999 ms
159.981 ms
15 sl-gw10-fra-15-0-0.sprintlink.net (217.147.96.42) 174.860 ms 174.846 ms
174.828 ms
16 sl-MTU-I-278357-0.sprintlink.net (217.151.254.134) 160.784 ms 161.635 ms
160.751 ms
17 bor-cr01-po3.spb.stream-internet.net (195.34.53.101) 220.050 ms 220.278 ms
219.633 ms
18 m9-cr01-po4.msk.stream-internet.net (195.34.53.125) 210.818 ms 211.339 ms
210.590 ms
19 m9-cr02-po1.msk.stream-internet.net (195.34.59.54) 213.698 ms 213.475 ms
214.951 ms
20 synterra-m9.msk.stream-internet.net (195.34.38.38) 213.879 ms 213.869 ms
214.622 ms
21 83.229.225.243 (83.229.225.243) 230.080 ms 229.762 ms 229.750 ms
22 83.229.243.98 (83.229.243.98) 259.745 ms 260.105 ms 259.709 ms
23 195.69.188.148 (195.69.188.148) 282.930 ms 282.916 ms 283.508 ms
24 195.69.188.2 (195.69.188.2) 276.545 ms 276.534 ms 276.887 ms
25 84.54.64.66 (84.54.64.66) 277.306 ms 278.145 ms 278.347 ms
26 firewall.uzpak.uz (195.158.0.155) 283.783 ms 283.323 ms 282.876 ms
27 ta144-p86.uzpak.uz (195.158.10.181) 278.743 ms 276.536 ms 277.146 ms
28 195.158.4.42 (195.158.4.42) 276.802 ms 277.392 ms 276.766 ms
29 195.158.5.137 (195.158.5.137) 284.062 ms !X 284.042 ms !X 283.711 ms !X

26 | Chapter 1: LAN and Internetworking Overview

Here, the results show that a fair number of hops are needed to reach the target site.
As an upside, the presence of .uz domains near the target indicates that at least the
website resides in a faraway and exotic land, as opposed to being hosted in some Silicon
Valley-based company.

A key aspect of IP internetworking, and of routers in general, is that on each such link
a completely different type of network and transmission technology can be used. The
packet’s first hop might be over a modern LAN in sunny California, whereas a subse-
quent link may involve a jaunt in a Frame Relay frame transported via a trans-Atlantic
SONET link that runs Point-to-Point Protocol (PPP). And later yet, as the IP packet
nears its final hop and, likely, middle age, given that its TTL field has been decremented
at each hop, the packet could jump into an X.25 packet, where it’s well protected for
its arduous journey over an error-prone analog leased line the recipient uses for Internet
access.

In summary, IP is a lot like the U.S. postal service, or any non-registered mail system
for that matter. Your envelope indicates who the letter is from and where it’s going,
using hierarchical addressing that permits information hiding, whereby more and more
of the address becomes significant as the letter winds its way to the destination. Here,
all the stuff up to and including the street address is like the IP address, and the recip-
ient’s name is like a protocol identifier. You can have multiple protocols at the same
IP, just as multiple people can dwell at the same address. You can pay more for airmail,
or save with bulk, which is a reasonable analogy to IP’s ToS indication. There is some
weight/size limit, and if in excess of this limit the package may have to be split into
smaller parts (fragmentation). Although no doubt diligent in the face of snow and all
that, regular mail is a connectionless service that is only a best effort. You do not need
permission to send someone a letter (no connection establishment), and simply drop-
ping a letter in the mailbox is no guarantee that it will be delivered successfully, but in
most cases it will. All of this sounds exactly like what IP does, except that IP deals with
packets and not packages.

IP addressing

IP addressing is a topic that is well covered in numerous other places. Technically, this
being an Ethernet-based LAN switching book and all, it could be argued that anything
above Layer 2 is beyond the scope of this book.

Yes, this could be said. But to do so would ignore the truth that virtually all new net-
works are IP-based, and each day some multiprotocol LAN gets closer to pure IP nirvana
as one more of its legacy protocols is decommissioned in favor of IP transport. As such,
a thorough understanding of IP addressing is critical for anyone dealing with LAN
switching in the modern context. So, the packet stops here, to use yet another poor
pun, and we pause to take a very condensed tour of what matters in IP addressing. It’s
only 32 bits. How bad can it be?

The TCP/IP Suite | 27

This is nothing but a fancy way of saying an IP address has more than one
part. Here, we mean it has both a network and a host portion. This is significant, and
to a large degree it is what allows a router to scale to a worldwide Internet while a bridge
would melt under the “load” of all those MACs.

The takeaway: routers route to networks, not hosts. The host portion of IP is of concern
only to the last hop router when it attempts direct delivery. In fact, because routing is
based on a longest match, it’s likely that remote routers are even ignoring parts of the
network portion because of supernetting, which is also called route summarization. In
the end, the router only needs to direct the packet out a sane interface, one that gets it
one step closer to its destination on a path that is not a loop. You do not need to examine
30 bits of network address to do this; trust me.

In fact, some non-core routers may use a default route, which is the ultimate in infor-
mation hiding. The 0/0 route by definition says the router should try to match zero
bits. Matching against nothing always succeeds, and is always the least specific match
possible, but it’s a match nonetheless. Using a default means that in effect, the packet
is routed not by virtue of matching its destination address particulars, but quite the
opposite: by virtue of matching none. Hence a low-end router can still forward to each
of the 4 billion possible IPv4 addresses with a single default route entry, along with its
directly connected network. If the router has two egress interfaces, two default routes
in the form of a 0/1 and a 128/1, each pointing to a different interface, of course, this
provides pretty decent load balancing to all possible destination IPs. Not bad, huh? I’d
like to see you do that with a bridge.

When first envisioned, IP addresses were
class-based. Figure 1-8 shows the original IP address class breakdown along with a
binary-to-hex-to-dotted decimal conversion example.

Figure 1-8 has a lot of information, and all of it is important. The left side shows the
original IP address class breakdown. The address class is determined by the setting of
the high-order bits. For example, a Class B address always begins with a 10 pattern, as
shown. Behind this plan was the perception that computers were special-purpose ma-
chines and that the Internet would remain an academic/military community, so the
early Internet architects saw a need for a few very large networks (Class A), a good
number of medium-size networks (Class B), and a larger number of small networks
(Class C). The figure shows that for each class, there is some number of supported
networks, and each such network in turn supports some number of host computers.
The box on the upper right shows the net effect in the form of how many networks are
available in each class (126 for Class A), along with how many hosts each such network
class supports. The math is a function of 2 to the power of the address space (7 and 24
for Class A networks and hosts, respectively), and then subtracting 2 for the combina-
tions of all 0s and all 1s, which are generally reserved for indicating this and all,
respectively.

Hierarchical.

Classless is the norm (or, how we learned to subnet).

28 | Chapter 1: LAN and Internetworking Overview

Figure 1-8. “Classy” IP addressing

To be effective with IP addressing, you must understand binary, hexadecimal, and the
more human-friendly dotted decimal format, as all are needed at various times when
working with IP. Remember when working with hexadecimal that you break each byte
into two nibbles of four bits each. The resulting values therefore range from 0 to 15,
but in hex 10–15 are coded as the letters A–F, respectively. In contrast, when working
on the decimal value, all eight bits of the byte are grouped to yield a value from 0 to 255.

The dashed box on the lower right of the figure provides an example of this conversion
process. This busy little box also shows the IP network byte order, which has the most
significant bit of the MSB sent first, from left to right. Stated again, bit 0 is the most
significant of the 32 bits that make up the IP address, and it’s the first bit sent. The low-
order octet also shows a power-of-10 breakdown for each of the eight bits in the octet.
In this example all are set to 0, hence the value shown in Figure 1-8. A setting of
11000000 codes (128 + 64), or 192, as it has the bits for both 128 and 64 set. In hex
this would be a C, given that 1100 0000 codes (8 + 4) = 12.

The class-based scheme was a fine plan, but as things worked out, classful addressing
is far less than ideal. The updated IPv6 protocol has no such concept, and in all prac-
ticality, neither do modern IPv4 networks. The problem is basic inefficiency. It’s great
that a single Class A network can support more than 16 million machines and all, but

The TCP/IP Suite | 29

that many machines on one logical subnet is preposterous (from a performance and
reliability design perspective). Heck, even a single Class C, with its support for 254
hosts, is generally wasted in a routed environment.

LAN-based routed networks tend to have tens, rather than hundreds, let alone thou-
sands, of machines. In the end, what people wanted was more networks, each with
fewer hosts. As noted, the issue is that a recipient of a single Class A network would be
hard-pressed to go back to his regional numbering authority to ask for yet more network
numbers, when it was shown that he was using only a small fraction of the host space
available in the Class A allocation he already had.

So, what does it mean that nearly the first command everyone enters on
an IOS-based router is ip classless, which provides support for IP
subnetting (and supernetting)? No such command is needed in JUNOS,
so that’s one less command for you to type.

Classless IP routing simply means that for each IP address (prefix) there is an associated
network mask. In contrast, with classful routing the address’s class is used to derive a
presumed network mask. Having an explicit mask allows the user to define what portion
of the 32-bit address identifies the network; once the network portion is known the
remainder is considered to be host addresses.

Subnetting is the process of extending the mask, making it longer so as to extend net-
work numbering into the host field. Thus, more networks are gained, at the cost of
fewer hosts on each network. Supernetting is the opposite, and creates fewer networks
by reducing network mask length. Supernetting is an important concept behind Class-
less Inter-Domain Routing (CIDR), which is an effort to summarize networks into fewer
routing entries, wherever possible. This is done to try to keep the size of Internet routing
tables from growing at a pace that outstrips computer processing power, a real threat
that at one point genuinely jeopardized global Internet stability!

Figure 1-9 shows classless IP routing at work.

An often misunderstood aspect of CIDR is the fact that different network masks are
used, at different places, to route the same packet! The network mask does not have to
be the same length, except for the collection of hosts that attach to the same logical IP
subnet/network. As a result, a core router may use a default (class-based) network mask
to direct traffic to a customer’s network attachment point. In Figure 1-9, a Class B
address is assigned, resulting in a /16 mask, which is also represented in the pre-CIDR
notation format of 255.255.0.0. Within the customer’s network, the single Class B
address has been subnetted, in this example to provide some 254 additional subnets
through a /24 (or 255.255.255.0) network mask.

30 | Chapter 1: LAN and Internetworking Overview

Figure 1-9. Subnetting and supernetting

Subnetting and supernetting are now old news in IP. Their widespread use is doing
much to forestall the predicted demise of available IP addressing space, as well as the
meltdown of core routers due to impractical routing table size, several times over.

VLSM and Discontiguous Subnets
Variable Length Subnet Masking (VLSM) refers to the ability to assign network masks
of varying lengths to different portions of a network to maximize the proverbial bang
for the IP addressing buck. For example, /30s, /31s, or even /32s might be used on
P-to-P links, whereas /26 might be assigned to a LAN. There is no magic here, as IP
routers always route to the most specific, or longest, match. The key is in having a
routing protocol that supports the conveyance of a network mask along with the IP
prefix. Older protocols such as Routing Information Protocol (RIP) v1, or Cisco’s IGRP,
lack this capability, which forces you to use the same mask length each time a given
(major/class-based) address is assigned. This is because the lack of network masks in
routing updates forces the local router to assume that major/classful prefixes that match
a local address assignment must use the same mask length as that assigned to the in-
terface on which it was received. When VLSM is used, these assumptions are not valid
and routing problems can surface.

Problems with discontiguous subnets are also related to routing protocols that do not
convey a network mask. The issue is when some network address—say, a Class B
172.16—is subnetted on two routers that are separated by a link with a different major

The TCP/IP Suite | 31

network (not a 172.16) address. In this case, protocols that do not support a mask
perform auto-summarization to the classful network, resulting in both ends sending
and receiving the same 172.16/16 update. The result is the loss of subnet routing for
the discontiguous subnets. Using a routing protocol such as Open Shortest Path First
(OSPF), IS-IS, or RIP v2, solves both issues through inclusion of an explicit network
mask along with each network prefix.

ICMP, the bad news protocol

Moving up the stack in Figure 1-6 we next hit the Internet Control Message Protocol
(ICMP). ICMP is classified as a sublayer. ICMP is an official part of IP, but is itself
encapsulated inside IP and is therefore shown above it. ICMP is often used to report
errors when handling IP datagrams, hence the not-so-funny title of this section. Com-
mon errors are Destination Unreachable, TTL Expired, Options Handling Issue, and
Fragmentation Needed But Not Permitted. ICMP messages can also be used to provide
information such as reporting a timestamp or the local link’s subnet mask. ICMP is the
mechanism behind the echo request and response functionality affectionately referred
to as ping.

UDP, multiplexing, and not much else

User Datagram Protocol (UDP) provides a best-effort connectionless Transport layer
service. Recall that Layer 4 is the first end-to-end layer, and is therefore processed only
by the destination machine. Given that IP is also a best-effort protocol, it can be said
that UDP does not add much in the way of reliability. UDP offers no error correction
or flow control; it does provide error detection (with silent discard) against the UDP
header and payload.

UDP’s most important function is the notion of ports. The port abstract is similar to a
Unix socket, and provides multiplexing among multiple processes that each share the
same IP address. Recall that the IP layer’s Protocol field identified the owner of its
payload, which may be UDP. IP then hands its payload to the UDP process, where the
first step is error detection. If all is well, the UDP header is stripped and the destination
port is used to direct the packet’s payload to the appropriate process. Port values below
1023 are standardized for use by well-known (server) processes. Clients pick their port
at random, selecting some unused value in the ephemeral range of 1,024 to 65,535. In
most cases, services that can use multiple transport protocols, that is, either TCP or
UDP, use the same port values; the Protocol field at the IP layer ensures there is no
ambiguity in such cases.

The connectionless nature of UDP makes it well suited to point-to-multipoint appli-
cations (multicast) and short-lived transactional services such as DNS queries.

32 | Chapter 1: LAN and Internetworking Overview

TCP, a transport for all seasons

Transmission Control Protocol (TCP) provides reliable, connection-oriented services.
TCP supports ports for the same reasons as UDP, but in addition, TCP has:

• Connection setup, maintenance, and teardown phases that ensure that both ends
agree regarding connection state. Traffic can be sent only when connected.

• Flow control, which prevents data loss due to lack of a buffer in the connection
endpoints (not at the IP layer).

• Error detection based on a header/payload checksum, as well as through sequenced
exchanges. This provides detection for corrupted data, in addition to lost or
duplicated data, the latter being conditions that often occur given the datagram
operation of the underlying IP.

• Retransmission-based error correction based on sophisticated congestion avoid-
ance and recovery mechanisms that attempt to optimize communications among
endpoints with greatly dissimilar processing capabilities, and to intelligently mon-
itor and adapt to current end-to-end transmission delays.

Given that everything from Layer 3 down is often switched in datagram fashion (con-
nectionless), a method of operation that’s officially classified as unreliable, it’s obvious
how important TCP is to the world. When data integrity matters, and when you need
to move a lot of information, TCP is likely your protocol of choice. The connection-
oriented nature of TCP means that in some cases, more traffic is sent to set up and tear
down a connection than is actually sent over the connection, and that a given TCP
connection can connect only two endpoints.

What’s this Internet thing for again, eh, sonny?

In the IP suite, applications are found directly above the Transport layer; there is no
discrete Presentation or Application layer, but some IP applications provide these types
of services. Some applications—for example, ICMP, or OSPF routing—make direct
use of IP. Other routing options, such as RIP and Border Gateway Protocol (BGP),
make use of UDP or TCP, respectively. More end-user-focused applications such as
Telnet allow terminal emulation, or file transfer via FTP.

And then there is HTTP, the grand enabler of the modern Internet. Combined with the
HTML specification, this is the only application that most people will ever use (to the
extent that the Internet has become synonymous with the WWW, much to the irrita-
tion of this author). The Internet existed long before the WWW, and was quite useful
to those with some level of .clue. The WWW allowed the great unwashed masses to
rush in and make immediate productive and commercial use of the Internet. Although
this killer app single-handedly ended the old geeks’ club that was the academic- and
research-focused Internet, it also did a lot to boost router sales, which for me is reason
enough to welcome HTTP into the IP suite.

The TCP/IP Suite | 33

From email to telemedicine, e-commerce to games, you can bet your last packet there’s
an IP application written to support it.

IP encapsulation example

Figure 1-10 shows the TCP/IP stack at work, with an example of IP encapsulation
within an Ethernet frame.

Figure 1-10. TCP/IP-over-Ethernet encapsulation example

This example begins with a TCP acknowledgment segment that needs to be sent. Al-
though user data can be piggybacked onto such an ACK segment, this assumes that some
user data is pending, and that’s obviously not always the case; the lack of user data
does not exempt the TCP entity from having to ACK traffic received from the remote
end. If we assume no TCP options (in many cases, options such as a maximum segment
size or a timestamp are present), then a 20-byte TCP segment, the minimum size of its
header, is passed to the IP layer. Along with the data are internal semantics (primitives
in OSI-speak) that convey variables such as the destination IP address, and special ToS
values, and so forth.

The IP layer accepts its duty and builds the needed header. Again, assuming no options,
that’s another 20 bytes, for a total of 40 when the TCP header is also factored. Ethernet
has maintained the need for a minimum frame size, which relates to ensuring reliable
collision detection as a function of a frame’s minimum transmission time versus the
maximum allowed propagation delay; basically, the station should still be sending by
the time its signal has propagated to the far end and any resulting collision has had time

34 | Chapter 1: LAN and Internetworking Overview

to make it back. The result is a need for four bytes of padding, which is added by IP
and accounted for via the Length field. Any data outside the datagram’s total length is
assumed to be padding and is discarded by the far end. As is so often the case, the PDU
rolls downhill only to darken Ethernet’s door. The service request also tells Ethernet
to set the Type field to 0x0800, IP’s EtherType, and in our case, we can assume a
successful ARP cache hit so that the next hop’s MAC address is also passed along.

Direct Versus Indirect Delivery
IP is all about routing. One of the most basic aspects of IP datagram forwarding is a
routing decision in the form of whether the destination address is on the sending ma-
chine’s local subnet. If it is, direct delivery is performed and the ARP and subsequent
packet are sent out over the interface with that direct route.

When the target subnet does not match a local subnet, indirect delivery is needed. This
simply means that one or more intermediate stations will need to forward the packet
on the local station’s behalf. Forwarding other people’s traffic is what routers are all
about, so here the next hop would be to a device with at least two network connections,
and with a willingness to forward traffic between those interfaces—in other words, a
router. Usually an end station uses a default route to direct all non-local traffic to its
default gateway (router). From there the packet typically picks up more intelligent for-
warding that is based on least-cost routes that are dynamically learned via routing pro-
tocols that operate between the routers.

An important point about indirect delivery is that a packet that’s intended for a remote
machine is sent to the MAC address of the local subnet’s default router. The router
takes notice, strips the frame, and performs a longest-match lookup against the desti-
nation address, only to find that, alas, once again it’s not the intended recipient (routers
get lonely, too). After stiffening its lip and decrementing the TTL, the same IP packet
is then reframed and sent out of a different interface to the next forwarding hop, where
the process repeats until either the packet arrives at the target host (in which case you
have a /32 match, which is as long as it gets, baby), or the packet’s TTL expires and
it’s ignominiously discarded, with nary but an ICMP (TTL expired) error message that
suffices as its death knell.

Ethernet constructs its frame, populates the destination MAC and the Type field with
the value provided by IP along with the service request, and goes about the dirty work
of successfully placing the frame upon the wire. At the remote end, a reversal of this
process occurs, ending with the remote TCP receiving its ACK and flushing its retransmit
buffer of the related data, resting in what it knows is a job well done.

Internet Protocol Summary
IPv4: it made the Internet what it is today, and what it will be tomorrow. It’s the OSI
that worked, and it’s here to stay, so we deal with it. Each time the protocol is predicted
to have met its natural limit, due to a lack of addresses, a need for class of service (CoS),

The TCP/IP Suite | 35

VPNs, encryptions, or something else, some bright engineers find a good workaround.
For example, Network Address Translation/Port Address Translation (NAT/PAT) has
done much to extend IP’s useful life by allowing use of a private network addressing
space within a private network, which is then translated and effectively hidden behind
a lesser number of real IP addresses. As another example, IP Security (IPSec) was orig-
inally planned to be inherent to IPv6 but was backported to its predecessor, providing
one less compelling reason to change what is still working.

With all of that said, IPv6 is making headway into today’s networks. Many mobile
devices are IPv6-enabled, and believe it or not, we are heading into a world where we
will be surrounded by IP-addressable entities, be it your refrigerator, washing machine,
or cable TV box. IPv6, with its 128-bit addressing space, combined with what we
learned from IPv4 address allocation mistakes, promises that future generations will
be free from having to worry about the Internet running out of addresses every few
years. This is good, as it seems they will have plenty more to worry about, but that is
another story and one best not told here.

IP is the convergence technology of choice in today’s networks. It rides over every type
of transport, and if it can be digitized, it likely rides inside IP. IP over everything and
everything over IP. Learn it. Live it. Love it.

LAN Interconnection
Or: Repeaters, Bridges, and Routers, Oh My!

This section focuses on terminology and technology surrounding modern LAN inter-
connection. Given the qualifier, you can safely presume there will be no discussion of
Source Route Bridging (SRB), translational bridging, or multiprotocol routing. When
you’re bridging in a purely Ethernet environment there is no need to translate, and SRB
is but a part of the dark Token Ring past that surfaces only to haunt humanity in the
occasional bad dream.

Figure 1-11 shows the relationship of LAN interconnect devices to the OSI model.

Once again the OSI model shows its remaining utility. One simple figure makes it clear
that repeaters operate at Layer 1, bridges at Layer 2, and routers at Layer 3. This means
that repeaters spit bits, bridges frames, and routers packets. You cannot get to a packet
without first dealing with the frame in which it was encapsulated. Thus, Figure 1-11
shows that routers process the Link and Physical layers. However, unlike a repeater or
bridge, a router terminates both in its bid to obtain access to the inner Network layer
packets, which are reframed and sent on the egress link.

Some key characteristics of each device are described in the following subsections.

36 | Chapter 1: LAN and Internetworking Overview

Figure 1-11. LAN interconnect and the OSI

Repeaters
As noted, a repeater is a Physical layer device that regenerates the signal to compensate
for transmission losses and distortion. There was a time when repeaters were very
common, as bridges and routers had not yet been invented, or were very slow store-
and-forward-style boxes that were expensive in terms of both money and performance
impact.

10Base-T and its related hubs were initially multiport repeaters. Such a repeater was
sometimes call a bus in a box, given that it extended the collision domain and provided
no filtering. Besides extending distance, repeaters also improved reliability through
their partitioning functions. This feature would logically disconnect a segment that had
a continuous carrier, a condition that could otherwise lock out the entire LAN.

Repeaters were associated with the handy 5 4 3 rule of thumb that indicates the max-
imum size of an Ethernet CD should consist of no more than five segments intercon-
nected by four repeaters, of which only three of those segments can be multipoint; the
remaining two are supposed to be repeater-only P-to-P links. These limits were intended
to prevent issues with repeaters robbing bits from frames to the point where they would
be deemed corrupted, and the added delays of longer transmission paths that impacted
CD as a function of minimum transmission time. Repeaters propagate collisions, and
therefore prevent FD operation.

LAN Interconnection | 37

The widespread use, and therefore low cost, of Ethernet switching has made the re-
peater a thing of the past. Who wants a bus in a box when you can get a switch in a
box for the same price?

Bridges
A bridge is a device that operates at Layer 2 and provides a filtering and forwarding
function. Historically, bridges were store and forward, which meant the entire frame
had to be received before it could be processed; the result was high latency and low
packets per second (pps) rates. Modern bridges operate in a cut-through mode, which
means they can begin processing and even forwarding a frame while it’s still being
received.

At one point, the higher performance of cut-through was something to brag about, so
vendors called such devices switches. Advances in silicon and design mean that now
everything is switched, making the term switched somewhat ambiguous. Because rout-
ers and other devices can also operate in cut-through mode, it’s best to qualify such
statements with the layer in question, as in “I have a Layer 3 switch” when referring to
a router.

Ethernet bridging is transparent. This means that end stations are not aware of the
bridge, and therefore they take no special steps to go from their local segment to a
remote one. The bridge listens to all traffic, learns the source MAC addresses, and then
filters and forwards based on the destination MAC address. The result is that known
unicast traffic is only sent out of the port that leads to that device. Other stations do
not see this traffic, which allows them to make their own transmissions at the same
time, thereby increasing overall throughput.

Bridges used to be expensive; historically, they tended to offer only a few ports, and
only some offered WAN interface support to offer remote bridging. Bridges terminate
collision domains, which is what makes FD Ethernet, and remote bridging, possible.
Because multiple stations can simultaneously transmit on different bridged segments,
a bridge can also dramatically improve performance. In theory, a two-port bridge takes
one big segment from 10 Mbps to two smaller ones, each with 10 Mbps.

Protocol-agnostic

Bridges operate at Layer 2. A bridge can support Ethernet, or Token Ring, or both in
some manner or another. There is no such thing as an IP bridge. IP is inside a frame,
and bridges do not make it that far. In similar fashion, there is no such thing as an
Ethernet router. Ethernet, with its flat MAC addressing, is not routable and never will
be. Figure 1-12 shows a bridge in operation.

38 | Chapter 1: LAN and Internetworking Overview

Figure 1-12. Bridging

Key in Figure 1-12 is the conveyance of entire frames, based on a MAC address
database. Note that the payload can be any Upper Layer Protocol (ULP) and is not
processed or inspected in the act of bridging. Also of note is that being transparent, the
end stations are not aware of the bridge. As such, all stations believe they are on the
same network from a Layer 3 perspective. This is shown by virtue of the same IP network
192.168.0.0/24 appearing on both sides of the bridge.

Loops are bad, really, really bad

Given that the bridge bases its forwarding decisions on the MAC address, and that
unknown MACs are flooded, or sent over all links except the link on which the frame
was received, there is a definite issue with redundant/parallel links in a bridge’s envi-
ronment. If both links are forwarding, such flooded traffic repeatedly ping-pongs back
and forth. This is bad enough at Layer 3, but given that Layer 2 has no TTL mechanism
to limit the number of iterations, the entire Layer 2 network can crash as a result of a
broadcast storm.

Given the fatal result of a loop, it’s clear that transparent bridging, by its nature, must
operate across a set of links that are known to be loop-free. To ensure that this was
always the case a specific protocol known as Spanning Tree was invented. Spanning
Tree Protocol (STP) operates between bridges and uses a number of parameters to

LAN Interconnection | 39

guarantee that only one forwarding path is operational between all endpoints (we cover
STP in detail in Chapter 6). STP is optional, but most bridges use it. STP simply blocks
redundant links. If there is no redundancy there is nothing for STP to do, and it’s
therefore not needed.

This section describes the basic operation of a transparent
bridge. We cover most of these processing actions in more depth in subsequent chap-
ters. Our goal here is to provide you with a big-picture overview to ensure that you
keep sight of the forest despite all those trees.

Listening
An STP-capable bridge first listens to determine the presence of other STP entities,
and to determine whether, based on their parameters, the local port should be
blocked or should transition to the learning state.

Blocking
Based on the exchange of STP messages the port may be blocked. In the blocked
state it does not learn, or forward. It continues to listen for STP messages to catch
the case where a change in topology allows the local port to become unblocked.

Learning
After leaving the listening or blocking state, a bridge port spends some time cram-
ming for its big test by learning as many MAC addresses as it can. Bridges learn by
promiscuously monitoring all traffic, and inspecting the Source MAC (SMAC) of
each frame it sees. The goal of the learning delay is to prevent the flooding that
occurs when a bridge has to forward an unknown MAC address. Learning is an
ongoing process, and is also used to catch MAC moves, which is when an SMAC
is found to ingress on a different interface.

Filtering and forwarding
After building its MAC address table through promiscuous monitoring of all traffic,
the bridge then filters and forwards traffic based on the Destination MAC (DMAC)
address. The bridge inspects the DMAC of each frame it sees. When the DMAC is
associated with a learned SMAC entry on the same port, the frame is filtered, as
the target station should already have a copy. When the DMAC of the received
frame is associated with a learned SMAC on a different port, the frame is forwarded
out of that port only. When the DMAC is unknown, the bridge has to flood the
frame, which is the act of sending a copy out of all ports, except the ingress. Ongoing
flooding can impact network performance. The assumption is that as a result of
the flood, the target station will reply, which then allows its SMAC to be learned
so that subsequent traffic can be filtered and forwarded. This is often referred as
transparent bridging.

Books on bridging usually walk through the transparent bridging and source route
bridging models. In today’s networks, switches generally implement transparent bridg-
ing, as source route bridging was usually reserved for Token Ring networks, which you
will have a hard time finding these days.

Bridge processing in detail.

40 | Chapter 1: LAN and Internetworking Overview

The rule of thumb used to be that a well-designed LAN had 80%
of its traffic local to that segment/CD, and the other 20% switched to a remote location.
The goal was to avoid the painful performance hit associated with bridges back in the
day.

A modern star-wired Ethernet uses a switch with P-to-P-oriented link types to form a
star-wired LAN. The effect is a shift to a 0/100 rule, and the switched rather than
repeated nature means that each station is offered dedicated throughput based on its
access speed. Thus, a 24-port GE switch can, in theory, offer each attached device a
dedicated FD GE transmission link, and the aggregate throughput of the switch could
be 48 Gbps! (That’s 24 Gig × 2 for FD.) I’m not trying to sound cranky, but back before
the Great War we were happy with a shared 10 Mbps of HD throughput, and that
wasn’t even guaranteed, given that collisions could bring that to zero if a large number
of stations were attached.

Routers
Folks started shifting from repeaters to bridges as the technology matured. A few prob-
lems began to surface with large bridged internetworks. Some of these were:

• No tolerance for loops and poor use of redundancy as only one path can be active.

• No TTL mechanism, making loops fatal and causing a need for loop restriction.

• No traceroute or ping. Troubleshooting a Layer 2 network is difficult, as things
either work end to end, or they don’t. Transparency is great, until something is
broken.

• Not well suited to dissimilar network types/no fragmentation support.

• No explicit CoS mechanism (until 802.1p), and then not finely grained.

• No IP layer processing, and therefore no firewall filters or IP services such as IPSec
or NAT.

• Poor performance when there’s a lot of Broadcast, Unknown, or Multicast (BUM)
traffic, flooded over all ports, much like a (slow) repeater.

Routers operate at Layer 3 and were seen as a solution to the aforementioned issues.
The fact that routers are specific to each Network layer protocol created the need for
Multiprotocol Routing (MPR) when more than one Network layer protocol was in use.
Some protocol stacks were unroutable, as they either had no network layer, or in the
case of SNA were connection-oriented and therefore had endpoint addressing present
only during connection setup.

Figure 1-13 shows a router at work.

So much for the 80/20 rule.

LAN Interconnection | 41

Figure 1-13. Routing

Key in Figure 1-13 is the fact that the same network packet is passed through the router,
and that the router attaches to different networks. The Link layer is used to get packets
to and from the router; at ingress the frame is stripped, and at egress a new one is built.
The IP packet is processed by the router, but that packet flows all the way to the end-
point. The only change at the IP layer is a decremented TTL field, and the resulting
updated header checksum.

Note that in the routed model the frame’s MAC layer always identifies a next hop on
the local link. As a result, the frame on the first hop identifies the router’s MAC address,
rather than that of the target station. ARP is not routable, and as such a station never
attempts to ARP a remote destination. Note that if Figure 1-13 were based on bridges
rather than routers, the two stations would be on the same network by definition. As
such, the ARP exchange would pass through the bridge and operate end to end between
the IP endpoints.

Multi-Protocol Routing

As routers began to get faster, the benefits of routing began to take their toll on bridging.
The mantra Route when you can, bridge when you must developed to show this senti-
ment. In some cases, you had to bridge due to lack of routing support for that protocol
on that router, or because the protocol itself was unroutable. The trend was to keep
unroutable protocols local, to provide workgroup types of connectivity, and to only
route across the WAN for backbone connectivity. Although this required more work
to configure and set up, routers simply had too many advantages over bridges when all
was said and done, especially at a large scale or in complex types of connectivity.

42 | Chapter 1: LAN and Internetworking Overview

Routed Versus Routing
There is often confusion between a routed protocol such as IP and a routing protocol
such as RIP. The former involves packets that transit routers based on a longest match
against their destination address. In contrast, the routing protocol populates the
router’s routing table based on the dynamic exchange of routing protocol messages.
Most IP routing protocols actually ride inside IP, but generally speaking they are not
themselves routed in that they are sent only to the next neighboring router. Thus, a
router uses its directly connected links to learn how to reach directly connected neigh-
bors, and with this reachability a routing protocol then exchanges messages to convey
knowledge about remote destinations. The routers select what they feel is the best path
for each destination and install that entry in their routing table. You can still route IP
without an IP routing protocol; you just need a single router such that everything is
directly connected, or the administrative burden of trying to maintain full and logical
connectivity using static routes.

MPR became a drag, and even more so with the addition of
each new routable protocol to an existing backbone. Although technically feasible, the
world’s shift to IP transport did not come quickly enough to spare some from the
resulting torment. Can anyone remember running Cisco’s EIGRP to simultaneously
support IP, IPCX, and DDP? Or how about the alternative that had you run IP RIP, IPX
RIP, and AppleTalk’s RTMP simultaneously to achieve the same thing (three separate
routing tables, one for each protocol)?

The need to route AppleTalk is gone, and IBM’s SAA is now based on IP transport.
Their respective applications live on, but they’re now provided via an IP infrastructure.
The result is a renewed focus on all things IP, both in the routing and in the LAN
switching fronts.

The migration to an IP-based world has led to some interesting side effects, such as
bridges that are IP-aware. Such a device can inspect the IP payload of certain traffic to
perform a service, such as validating an ARP request based on a previous Dynamic Host
Configuration Protocol (DHCP) exchange. Although a violation of the layer principle,
such capabilities are common for devices that can process at both Layer 2 and Layer 3,
such as is the case with the Juniper EXs. You should avoid the temptation to refer to
such a device as an L Brouter, however. The world already went there once, and it
wasn’t fun. Many set off on the quest to find the definitive definition of that mythical
beast; most have yet to return.

LAN Interconnect Summary
The modern state of LAN interconnect is all about IP routing over wide areas and
Ethernet-based switching in the campus or workgroup. Most IP switches are also ca-
pable of IP routing. This gives you the freedom to bridge when you want and to route
when you want, using the same device and in some cases the same interfaces. Talk

One protocol to rule them all.

LAN Interconnection | 43

about the best of all worlds: high-performance switching with IP-enabled features in
the workgroup, with a high-performance routed IP backbone for communications with
remote groups.

Conclusion
The world has a long history with LANs and the resulting desire to interconnect LANs
over both local and remote areas. Many a failed technology is strewn along the roadside,
but we seem to have arrived at a good place.

IP is the internetworking protocol of choice. Ethernet is the LAN technology of choice.
Bridging and routing allow you to interconnect at the Ethernet or IP layers, as your
needs dictate.

This section provided a review of Ethernet and IP technology, as well as that of LAN
interconnect, with more than a bit of cranky commentary along the way as to how we
got there. You should now be well prepared to launch into the remainder of this book,
which is focused on the use of Juniper Networks’ EX LAN switches in a Layer 2
environment.

Chapter Review Questions
1. Which is true regarding 802.3?

a. Uses a Length field and LLC

b. Uses a Type field and LLC

c. Does not use LLC

d. Defines a Token Ring LAN

2. What is the first layer with end-to-end flow?

a. Layer 1

b. Layer 2

c. Layer 3

d. Layer 4

3. True or False: a bridge extends a LAN’s collision domain.

4. What is the role of ARP?

a. Permits Layer 2 and Layer 3 address independence

b. Is used in Ethernet only

c. ARP is not required in a bridged network

d. All of the above

44 | Chapter 1: LAN and Internetworking Overview

5. How many networks and how many hosts can you address with a 200.0.0.0/30
address?

a. 1/2

b. 2/2

c. 10/10

d. 200/200

6. What class is the IP address 128.69.0.0/24?

a. Class B with a Class B mask

b. Class B with a Class C mask

c. Class A with a default mask

d. Class C with a default mask

7. What type of media is common in a star-wired bus?

a. Thick coax

b. Thin coax

c. UTP

d. Fiber

e. Both C and D

8. In the indirect delivery model, the source station sends an ARP for which of the
following?

a. The target host

b. The next hop, which is a default gateway

c. The next hop, which is a bridge

d. None of the above; ARP is not needed for indirect communications

9. What protocol provides a reliable transfer service?

a. IP

b. ICMP

c. UDP

d. TCP

10. What type of error message does a bridge send when it needs to fragment but is
unable to do so?

a. An ICMP fragment needed error

b. An ICMP destination unreachable error

c. An IGMP fragment needed error

d. None of the above; it does silent discard and cannot generate any errors

Chapter Review Questions | 45

11. Which author wrote this chapter?

a. Opinionated “Hot-Head Harry”

b. Just-the-facts “Diplomatic Doug”

Chapter Review Answers
1. Answer: A. 802.3 LANs use both a length code to provide padding at the MAC

layer, and LLC to identify the upper layer.

2. Answer: C. IP, a Network layer protocol, is the first with end-to-end scope.
Although it is end to end, IP is acted upon at each routed hop. TCP, a Transport
layer protocol, goes end to end and is generally processed only by the endpoints.

3. Answer: False. Unlike a repeater, a bridge terminates the CD.

4. Answer: A. ARP is used in all LANs and some WANs, as well. It’s needed because
of the independence between Layer 2 and Layer 3.

5. Answer: B. The address provided is a network address, so only one network can
be addressed as 200.0.0.0/30. On that network you can have a host 1 and a host
2, given there are two host bits to work with. The combinations of all 0s and all 1s
are generally not permitted. You could use VLSM to further subnet—say, to a /32,
which would yield two networks with the same number of hosts, assuming there
is support for /31 addressing on that device.

6. Answer: B. The 128 in the high-order octet indicates that this is a Class B address.
Such an address has a default network mask of /16 or 255.255.0.0. This is a sub-
netted Class B that is using a Class C mask. As the whole notion of classes is gone,
it’s best to just say this is a prefix with a 24-bit mask.

7. Answer: E. Coax cable was rarely used P-to-P, and was a true multipoint bus. UTP
and fiber mandate P-to-P-type links, on the other hand.

8. Answer: B. ARP is always used for IP over LANs. In indirect delivery, the next hop
is the router/default gateway, so that is the MAC address that is resolved via ARP.

9. Answer: D. Of the others listed, only UDP is a Transport layer, and it provides
best-effort service.

10. Answer: D. This is a trick question, perhaps. Ethernet bridges are transparent. If
it were to send an error message, it might blow its cover.

11. Answer: A. Yes, it was Harry. But he is old enough to have formed such opinions,
being one of the few who actually spent time learning OSI and writing classes on
Token Ring. If anyone is interested, he can sell you all of his OSI and Token Ring/
SRB materials cheap.

46 | Chapter 1: LAN and Internetworking Overview

CHAPTER 2

EX Platform Overview

Juniper Networks’ long-awaited entry into the Ethernet switching market began on
March 31, 2008, with the release of the EX3200 and EX4200 Ethernet switching plat-
forms. To date, Juniper Networks has been notable for its wide range of high-
performance IP routing platforms that share a common JUNOS Software code base.
Although Juniper’s hardware and application-specific integrated circuit (ASIC) design
prowess should not be underestimated, many consider JUNOS to be the real mojo
behind the company’s success. JUNOS software has been field-tested and proven ro-
bust in the largest service provider networks on the planet. Add in its unique usability
features and the benefits of a single code train and you can begin to understand why
JUNOS enjoys such brand loyalty among its users.

This chapter details the hardware design and general capability of the EX platforms,
and introduces foundation concepts of JUNOS software and the associated command-
line interface (CLI). A detailed discussion of Juniper’s routing platforms and IP routing
in general is beyond the scope of this book. Readers interested in these topics can
consult product documentation, training materials, or any of the numerous books
published on the subject, including this book’s companion volume, JUNOS Enterprise
Routing, by Doug Marschke and Harry Reynolds (O’Reilly). For information on general
routing in a JUNOS software environment, check out the JNCIA-M, JNCIS-M, JNCIP-
M, and JNCIE-M study guides, which are currently available from Juniper Networks
in PDF format as a free download at http://www.juniper.net/training/certification/books
.html.

To help put the EX product line into perspective, here is an overview of the current
JUNOS-based routing and switching product lines:

J Series routers to include the J2300, J2320, J2350, J4350, and J6350
The J Series routers are software-based platforms that offer predictable high per-
formance and a variety of flexible interfaces that deliver secure, reliable network
connectivity to remote, branch, and regional offices.

M Series routers to include the M7i, M10i, M40e, M120, and M320
The M Series multiservice edge routing platforms provide advanced IP/Multipro-
tocol Label Switching (MPLS) edge routing services at scale. These ASIC-based

47

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/
http://www.juniper.net/training/certification/books.html
http://www.juniper.net/training/certification/books.html

platforms offer a wide range of interfaces and service capabilities with throughput
ranging from 5 to 320 Gbps.

T Series routers to include the T320, T640, TX Matrix, and T1600
The T Series core routing platforms offer ASIC-based forwarding performance, an
extensible design, and numerous carrier-class reliability features. A single T640 can
offer up to 320 Gbps of throughput (640 Gbps full duplex, or FD), and can be
upgraded to a T1600 with 1.6 Tbps of capacity, or clustered as part of a TX matrix
to scale up to 2.5 Tbps!

MX Series Ethernet routers to include the MX240, MX480, and MX960
The MX platforms are focused on Ethernet-centric services within carrier net-
works. The MX960 offers up to 960 Gbps of switching and routing capacity with
up to 480 Gigabit Ethernet ports and 48 ports of 10 Gigabit Ethernet per system.

The EX3200, EX4200, and EX8200 series Ethernet switch portfolio from Juniper Net-
works represents a new era in networking. This family of high-performance, carrier-
class networking solutions is designed to address evolving business requirements while
enabling a secure, reliable network that’s ideal for today’s converged network deploy-
ments. EX technology supports low-cost fixed configurations, and grows as you need
Virtual-Chassis options and a carrier-class Terabit Chassis model. The EX switches run
the same JUNOS software train as found powering the world’s largest routing systems,
and with that come the ease of use and reliability for which Juniper has become famous.

As a general note, the term enterprise network is used to describe a net-
work that serves the communication needs of its owner, rather than the
needs of the network owner’s customers, such as is the case in a service
provider’s network. Although it’s safe to assume that a typical service
provider’s network is both large and complex, such assumptions prove
troublesome in the case of the enterprise network. Here we could be
dealing with scales that range from a PC and printer interconnected via
local cabling, all the way to a multinational entity whose network may
exceed the node count and general complexity of a Tier 1 service pro-
vider’s network.

Juniper currently positions the J Series and the M7i/M10i platforms as enterprise-level
devices, but a large enterprise network could justify the performance of a T Series plat-
form. In fact, the reverse is also true in that a traditional service provider network may
find an appropriate need and use for platforms designated as low-end enterprise gear—
for example, as part of a managed CPE service or in a performance monitoring or route-
server role. In a similar fashion, the new EX Series of switches, both in the smallest
fixed configuration or as part of a large Virtual Chassis (VC), are expected to be found
in both provider and enterprise networks alike. Given the ever-increasing popularity
of all things Ethernet, and the seemingly endless need for increased connectivity and
applications with larger bandwidth demands, the future seems bright for high-
performance switching gear.

48 | Chapter 2: EX Platform Overview

So, whether you operate a modest enterprise or a gargantuan service provider network,
the chances are good that sooner or later you will be exposed to Juniper’s routing and
switching equipment, and likely on several different hardware platforms. The saving
grace is that JUNOS software is pulled from a single train of code with a common
feature base that is largely shared across all platforms. So, regardless of your actual
hardware platform, there is a single version of software code to load, and perhaps more
importantly, to learn. Having a single code train has lots of hidden benefits, such as
stability, ease of expandability, and lower operational costs. Once you get used to a
consistent set of features and configuration syntax across a multitude of platforms, it’s
hard to go back. Especially when that single code base has more than 10 years of proven,
rock-steady performance in the largest IP networks ever deployed.

The topics covered in this chapter include:

• EX platform overview and general capabilities

• Hardware architecture and packet flow

• JUNOS software overview

• CLI overview

• Other cool CLI features and capabilities

EX Hardware Overview
Juniper Networks entered the switching market with the release of the EX3200 and
EX4200 platforms. Both switches offer up to forty-eight 10/100/1,000 Gigabit Ethernet
ports and support for an optional 4× Gigabit Ethernet/2×10 Gigabit Ethernet uplink
module. The EX3200 supports a field-replaceable power supply unit (PSU) and a fan
tray with a single blower. You can also use an optional remote power supply (RPS) to
provide redundant power.

The EX3200 is typically deployed in the access layer or for small-scale LAN deploy-
ments, but still packs some serious forwarding performance: the 24-port models offer
88 Gbps of throughput and forward Layer 2 traffic at wire rate, on all ports, clocking
in at a respectable 65 Mpps. The 48-port version bumps these numbers up to 136 Gbps
and 101 Mpps!

Figure 2-1 shows the EX3200 chassis front and rear panel connectors.

The EX4200 platform adds carrier-class reliability and VC clustering capabilities, al-
lowing it to scale up to 480 Gigabit Ethernet and twenty 10 Gigabit Ethernet ports,
while consuming only 10 rack units (RUs) and providing the ease of management as-
sociated with a single network entity. Each standalone EX4200 supports redundant
load-sharing PSUs and a multiblower fan module, both of which can be hot-swapped
in the field. As with the EX3200, the remote PSU option is also supported on the
EX4200.

EX Hardware Overview | 49

Figure 2-1. The EX3200 chassis

When part of a VC, each chassis is linked by a virtual backplane that supports a ring
topology that allows survival of single-backbone cable faults. The VC backbone can
operate at up to 128 Gbps (64 Gbps FD). In addition to the standalone redundancy
features, a VC configuration supports redundant routing engines (REs) with 1:N re-
dundancy. This is because any EX4200 chassis in a VC can become a backup (and
therefore could be elected as the master) RE, such that in a three-chassis VC there will
be a master and a backup RE, as well as one chassis functioning as a Line Card (LC)
that is awaiting its chance to become the backup RE, in the event of a failure of the
current master or backup RE.

When the platform redundancy and VC features are coupled with JUNOS software
capabilities such as Graceful Routing Engine Switchover (GRES), In-Service Software
Upgrades (ISSU), Graceful Restart (GR), and Non-Stop Routing (NSR), it’s easy to see
that the availability of a VC (or redundant 8200 series) can approach “five 9s.” EX
support for High Availability (HA) features in the JUNOS Software 9.2 release, along
with general design principles, is detailed in Chapter 11. Complete details on EX VC
technology are provided in Chapter 4.

50 | Chapter 2: EX Platform Overview

Several significant JUNOS HA features are not supported for EX
switches in the 9.2 release. For example, NSR is not supported, and by
extension neither is ISSU. Currently, EX HA software features include
GR for Layer 3 routing protocols (Border Gateway Protocol [BGP],
Open Shortest Path First [OSPF], and Intermediate System to Inter-
mediate System [IS-IS]) only. GRES is supported in a VC or with an
EX8000 series with redundant REs.

The EX4200 is often deployed in the distribution layer of large-scale LAN designs. In
this capacity, it terminates multiple feeds from access layer switches and aggregates
them onto high-speed uplinks for transmission into the core. The EX4200 provides the
same wire-rate throughput and switching capacity as the EX3200, but also includes
two 54 Gbps Virtual Chassis Port (VCP) ports for switching over a VC. When in a VC,
each member switch is still capable of local switching at wire speed. The result is that
a 10-member VC in which all traffic is locally switched provides a total switching ca-
pacity of 1.36 Tbps (10 × 136 Gbps), with an aggregate throughput of 1.01 billion
packets per second!

Figure 2-2 shows the EX4200 chassis front and rear panel connectors.

Figure 2-2. The EX4200 chassis

Both fixed-configuration switches offer high port density, full or partial Power over
Ethernet (PoE), a rich set of Layer 2 bridging capabilities, robust IP routing, and hard-
ware-based Layer 2/Layer 3 security features built into the base software license. When
coupled with its industry-leading wire-rate forwarding performance and the proven

EX Hardware Overview | 51

track record of JUNOS software, it would seem that Juniper was serious about its entry
into the Ethernet switching market.

It’s worth noting that both the EX3200 and EX4200 chassis support the same uplink
and PSU part numbers, which greatly simplifies sparing. It’s suggested that when PoE
is used anywhere in the network, all spare PSUs should be sized according to the largest
need. You can always install a 930-watt supply in a chassis that does not require that
much power, with no ill effects. Later, when the failed supply is repaired, the higher-
capacity PSU can be returned to the spare pool. In contrast, inserting a power supply
with insufficient wattage results in deactivation of PoE on as many ports as needed to
remain within the switch’s available power budget.

You can mix AC and DC PSUs on the EX4200. However, currently the DC PSU cannot
provide power to PoE ports. This capability may change in the future and is based on
the belief that DC power is typically used within a service provider’s network, or in
data centers, where PoE for end-user devices is not generally required.

The EX8200 Series
Not wanting to rest on its laurels, Juniper soon followed this one-two EX punch with
the high-performance, fully redundant, chassis-based EX8200 series. The 8200 series
represents some serious switching iron designed for the most intense data center and
high-capacity backbone environments. The EX8200 is expected to ship with JUNOS
Software 9.4.

The 8208 offers eight 200 Gbps I/O slots in a 14-RU footprint, while the 8216 doubles
that number in only 21 RUs of space. Note that in FD terms, each I/O slot represents
100 Gbps of FD capacity. As such, both models are 100 Gigabit Ethernet ready, with
the EX8208 supporting 384/64 1 GE/10 GE ports and the EX8216 sporting up to
768/128 1 GE/10 GE ports. The 8200 series switches are normally deployed in the core
of a large-scale LAN deployment. The 8200 series EX switches are based on a 1.2 GHz
PowerPC platform and ship with 1 GB of flash memory that can be upgraded to 4 GB.

Figure 2-3 shows the front of an EX8216 switch.

The EX8208 has eight dedicated LC slots, two switch fabric/RE slots, and one switch
fabric-only slot on the front panel. The EX8208 uses a single fan tray that provides side-
to-side airflow, and six power supply bays located on the front of the chassis base. The
base model ships with two PSUs, one switch fabric/RE module, and one fabric-only
module. A fully redundant configuration adds a second switch fabric/RE module, and
fully loads all six power supply bays.

The EX8216 has 16 dedicated LC slots, 2 route engine slots on the front of the chassis,
and 8 switch fabric slots at the rear of the chassis. The 8216 incorporates two fan trays
(side-to-side airflow), and six power supply bays at the front base of the chassis.

52 | Chapter 2: EX Platform Overview

Figure 2-3. The EX8216 chassis

The EX8200 series switches offer fully redundant REs, switching fabric, power supplies,
and cooling to maximize reliability and uptime. And, as already mentioned, all EX
switching platforms run the same JUNOS software to provide consistent configuration
and capabilities across the entire switching line, and given the single JUNOS software
train, EX switches are also consistent with much of the routing line as well!

In the initial offering, the EX8200 series does not provide PoE options. This is in keeping
with its targeted market of data centers and service provider networks where PoE is
typically not required. Future versions may support PoE as customer needs dictate.

Figure 2-4 provides a typical campus network that is based on current best practices
for both scalability and reliability.

EX Hardware Overview | 53

Figure 2-4. Best practice campus design

54 | Chapter 2: EX Platform Overview

The important thing to notice in Figure 2-4 is the presence of three distinct network
partitions in the form of access, distribution, and core. Within each partition, specific
hardware and protocols are deployed to optimize performance and reliability, while
also reducing costs.

The access layer is often based on a Layer 2 solution using low-end switches with limited
redundancy. Layer 2 access control, user authentication, flow-based rate limiting/
policing, and class of service (CoS) functionality are typically performed at the network
edge.

The distribution layer provides intra-access switching and aggregation of traffic into
the core. Distribution devices often integrate Layer 2 and Layer 3 functionality, pro-
viding switching for the access layer and routing toward the core. This is a key point
given that routed networks, although more complicated, have many advantages over
a pure Layer 2 design; this design keeps the edge simple and adds Layer 3 complexities
where maximum benefit is achieved. The distribution layer is typically tasked with
Layer 3 security and services, that is, firewall filters and Network Address Translation
(NAT), as well as CoS-aware high-speed switching between the access and core layers.

The core layer is typically based on high-speed Layer 3 routing between distribution
layer devices, and to external network attachments. In most designs, the core layer is
not responsible for securing or policing individual flows, as these functions are best
suited to edge layer devices. Core devices tend to act on aggregate bundles, or traffic
classes, with regard to policing or CoS-related processing actions.

Both the core and distribution layer devices need to have HA given their critical role in
the network. Generally speaking, network HA is influenced by hardware and software
reliability/redundancy within each node, and the presence of redundant network con-
nections between these nodes.

Separate Control and Forwarding: It’s a Good Thing
As with other Juniper Networks routers, EX platforms share the same design philoso-
phy of a clean separation between the control and forwarding planes. Such a design
provides protection from unanticipated loads in either plane, and also accommodates
technology-specific solutions for the equally difficult but orthogonally opposed prob-
lems associated with running modern, complex signaling and routing protocols (con-
trol plane), while simultaneously forwarding and oftentimes touching (i.e., altering a
packet’s CoS marking) large numbers of packets (data plane).

EX platforms facilitate this divide in software through a mix of built-in rate limiting
and access control lists (ACLs), an approach that has proven successful in the J Series
product line. This virtual separation helps to ensure that devices continue to function
and are reachable for corrective actions, even during abnormal levels of control or data
plane activity, whether the result of a network malfunction or configuration error, or

EX Hardware Overview | 55

due to an intentional denial of service (DoS) attack. Figure 2-5 shows the general design
of Juniper Networks routers and switches.

Figure 2-5. The separation of control and forwarding

As with Juniper routing platforms, in the EX Series the control plane is instantiated by
an RE running JUNOS software, while the forwarding plane is an ASIC-based entity
referred to as the EX Packet Forwarding Engine (EX-PFE).

Figure 2-5 shows how the RE runs JUNOS software, which provides the CLI and
general management access and troubleshooting tools (ping, traceroute, etc.), and
maintains the master copy of the routing/switching table, which is built through static
configuration or by dynamic Layer 2/Layer 3 bridging/routing protocols. The RE also
maintains and monitors the PFE, and keeps its copy of the routing/switching table
current as network conditions change.

Meanwhile, the PFE lives to forward frames (or packets when operating in Layer 3
mode) as fast as it can. It faithfully accepts the next hop forwarding instructions and
performs the required binary searches to quickly locate the Media Access Control
(MAC) address or longest-match IP address, so packets may be quickly dispatched
toward their networking fate. In keeping with the “Performance Without Compro-
mise” slogan touted for Juniper’s routers, the EX switches implement security and CoS-
related services in PFE hardware at wire speeds.

56 | Chapter 2: EX Platform Overview

This design means that the RE is never directly involved in packet forwarding (i.e., there
is no process switching), which ensures that sufficient resources are available for actual
control functions such as processing a Spanning Tree Protocol (STP) or OSPF routing
update. Traffic that is received by the PFE, but that needs to be processed by the RE,
is termed exception traffic, in that it must be sent to the RE for additional processing.
Exception traffic is subjected to rate-limiting and access-control features that ensure
that the RE and its communications link to the PFE are not overrun during periods of
excessive exception traffic, such as might result from a DoS attack, or by unintended
address learning churn resulting from a Layer 2 loop.

As a practical example, consider the ability to issue the equivalent of a debug all com-
mand in a production network, without actually degrading transit and local processing
performance!

On some vendors’ gear, such a command could easily lead to additional network dis-
ruption stemming from the local device’s inability to maintain forwarding rates, given
the added processing burden imposed by packet debug. Adding a new problem never
makes troubleshooting the original issue any easier, and is why the user is often warned
against using such debug commands in production routers. A tool that you cannot risk
using due to unpredictable impact to network operation is a tool not worth owning.
This situation does not arise on Juniper switches, which is what the separation of con-
trol and forwarding is all about, and why no such admonitions exist in the EX docu-
mentation regarding traceoptions, which is equivalent to debug in the JUNOS world.

Just because you can does not mean you should. Best practice dictates
that no device should be unnecessarily burdened with superfluous pro-
cessing. Besides making sense, this helps to guard against the camel’s
back syndrome, in which each added processing burden has no ill effect,
until the camel’s back finally breaks, spilling packets all over the desert
sand.

Although you can trace all protocol activity in a production network
given JUNOS safeguards and design characteristics, this does not mean
you should leave such tracing in effect after it’s no longer needed. The
rule of thumb here is to jump in, set up tracing, figure out what is wrong,
fix it, confirm the fix, and then remove the now unneeded tracing.

EX Hardware: The Numbers
The previous section provided a general description and overview of the EX switching
line. This section summarizes the system feeds, speeds, and general capabilities of each
EX model.

We begin with Table 2-1, which details supported port types, counts, and related power
draw with and without PoE for the EX3200 and EX4200 switches.

EX Hardware Overview | 57

Table 2-1. EX3200 and EX4200 ports and power draw

Switch Ports Port type PoE ports Max power (with PoE) Uplink option

EX3200 24 10/100/1000Base-T 8 190 (320) W 4-port Gigabit Ethernet (GbE) (SFP)

2-port 10 GbE (XFP)

 24 10/100/1000Base-T 24 190 (600) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

 48 10/100/1000Base-T 8 190 (320) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

 48 10/100/1000Base-T 48 190 (930) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

EX4200 24 10/100/1000Base-T 8 190 (320) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

 24 10/100/1000Base-T 24 190 (600) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

 24 100Base-FX/
1000Base-X

N/A 190 (no PoE) 4-port GbE (SFP)

2-port 10 GbE (XFP)

 48 10/100/1000Base-T 8 190 (320) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

 48 10/100/1000Base-T 48 190 (930) W 4-port GbE (SFP)

2-port 10 GbE (XFP)

The key takeaway from Table 2-1 is that the EX3200 and EX4200 switches come in 24-
and 48-port varieties, and support either partial or full PoE. The number of PoE ports
in turn determines the wattage demands placed on the power supply. Table 2-1 assumes
a worst-case maximum PoE power draw of 15.4 watts per PoE port.

The EX3200 and EX4200 support the same power supply options.
However, the number of PoE ports is a fixed parameter that cannot be
increased with a larger power supply. This means there is little point in
permanently installing a 930-watt power supply in an eight-PoE port
chassis, given that the additional power budget does not increase the
number of PoE ports, which remains fixed at eight.

EX switches disable PoE ports when the pool of available power is
insufficient. This means that installing a smaller power supply in a full
PoE chassis will reduce the total number of PoE-enabled ports.

The EX4200 has two rear-panel 64 Gbps (FD) VCP connectors used to form VC clusters
with 128 Gbps of interchassis bandwidth. The EX4200 also offers an all-SFP-based (all

58 | Chapter 2: EX Platform Overview

Small Form-factor Pluggable-based) 100/1,000 Mbps Ethernet chassis option intended
for environments with preexisting fiber, or when maximum distances are required. On
the EX4200, the uplink module can also be used to form a VC over extended distances.

Here are the performance details for supported optics:

Gigabit Ethernet SFP

• 1,000Base-T SFP (copper)

• 100 FX: 1310 nm, 2 km

• SX: 850 nm, 220 m on 62.5 μ FDDI-grade fiber; 550 m on 50 μ multimode fiber

• LX: 1,310 nm, 550 m on multimode fiber; 10 km on single-mode fiber

• LH: 1,550 nm, 70–80 km on single-mode fiber

10 Gigabit Ethernet Small Form-Factor Pluggable (XFP)

• SR: 850 nm, 300 m reach

• LR: 1310 nm, 10 km

• ER: 1,550 nm, 40 km

• ZR: 1,550 nm, 80 km

As with other Juniper products, third-party optics modules should work, but these will
not be supported in the event of problems. This is in contrast to some vendors that
intentionally disable a port when their branded (and often highly priced) optics module
is not correctly sensed.

Table 2-2 details the port breakdown for the 8200 series switches.

Table 2-2. EX8200 speeds and feeds

Switch 200 Gbps slots Module type Max ports Type

EX8208 8, 1.6 Tbps 48-port 10/100/1000Base-T 384 RJ-45 (copper)

 48-port 100Base-FX/1000Base-X 384 SFP

 8-port 10 GbE 64 SFP+

EX8216 16, 3.2 Tbps 48-port 10/100/1000Base-T 768 RJ-45 (copper)

 48-port 100Base-FX/1000Base-X 768 SFP

 8-port 10 GbE 128 SFP+

In the initial release, the EX8200 series does not provide PoE options, but this func-
tionality may be added at a later time.

Table 2-3 details hardware redundancy features for the EX switches and indicates
whether a component is considered a Field Replaceable Unit (FRU). When FRU is not
indicated, the entire chassis must be replaced or repaired to regain functionality.

EX Hardware Overview | 59

Table 2-3. EX Series redundancy features

Component EX3200 EX4200 EX8200

RE No. Yes, when in a VC. Yes, as an FRU.

Switch fabric No. Yes, when part of a VC. A VC ring can survive a
single VC trunk failure.

Yes, N+1 supported as an FRU.

PSU Yes, when remote PSU
option is in effect. PSU
is an FRU.

Yes, redundant hot-swappable PSUs as an FRU;
also supports remote PSU option.

Yes, redundant hot-swappable
PSUs as an FRU.

Fan No. Single-blower fan
tray is an FRU.

No, but FRU fan tray has three blowers and
should survive failure of one blower up to am-
bient temperature of 40°C/104°F.

Yes, as an FRU. Each fan tray has
three blowers.

Both the EX8208 and EX8216 can hold up to six AC power supplies. The EX8208
switch offers 3+3 redundancy at maximum power consumption, meaning that each of
the three active PSUs can have a spare. The EX8216 offers 5+1 redundancy at maximum
power consumption, which is to say that five active PSUs are backed up by a single
spare unit.

For all EX chassis types, the failure of a fan module will generate a chassis alarm, but
does not result in operational impact until an excessive temperature threshold is
reached. At this point, the switches will power themselves down to avoid ASIC damage.
In the case of the 8200, the fan can operate at variable speeds, and will ramp up its
speed in an effort to avoid an over-temp-induced shutdown.

Use the CLI to Monitor Environment
Although we have not yet officially covered the CLI and its usage, it’s appropriate to
point out that you can display the current chassis environment and the yellow/red alarm
temperature thresholds using CLI commands, as shown here:

lab@Rum> show chassis environment
Class Item Status Measurement
Power FPC 0 Power Supply 0 OK
 FPC 0 Power Supply 1 Absent
Temp FPC 0 CPU OK 39 degrees C / 102 degrees F
 FPC 0 EX-PFE1 OK 42 degrees C / 107 degrees F
 FPC 0 GEPHY Front Left OK 29 degrees C / 84 degrees F
 FPC 0 GEPHY Front Right OK 28 degrees C / 82 degrees F
 FPC 0 Uplink Conn OK 29 degrees C / 84 degrees F
Fans FPC 0 Fan 1 OK Spinning at normal speed

lab@Rum> show chassis temperature-thresholds
 Fan speed Yellow alarm Red alarm
Item Normal High Normal Bad fan Normal Bad fan
FPC 0 CPU 60 70 80 70 95 85
FPC 0 EX-PFE1 60 70 80 70 95 85
FPC 0 GEPHY Front Left 60 70 80 70 95 85
FPC 0 GEPHY Front Right 60 70 80 70 95 85
FPC 0 Uplink Conn 60 70 80 70 95 85

60 | Chapter 2: EX Platform Overview

Table 2-4 summarizes important hardware capabilities and general platform scaling
limits. These numbers can change as the platforms evolve; it’s always best to check the
latest documentation.

Table 2-4. EX capabilities and scaling limits

Feature EX3200/EX4200 series EX8200 series Comment

Throughput/PPS 24 ports: 88 Gbps/65 Mpps

48 ports: 1.6 Gbps/101 Mpps

8208: 1.26 Tbps/960
Mpps

8216: 2.56 Tbps/1,920
Mpps

Wire rate on all ports, overbooking possible
on VC trunk ports. Throughput cited for the
8200 series is based on 10 GE ports.

Jumbo frames Up to 9,216 bytes Up to 9,216 bytes Enabled per port.

Queues per
scheduler

8 8 Queuing supported per port (not per
Interface Logical Unit [ifl]. Policing can
be used to shape at the virtual LAN (VLAN)
level.

Port and VLAN/inet
policers

512/512 1,024/1,024 Port/VLAN level and Internet family (Layer
3) policers to limit interface bandwidth;
ingress only.

MAC address table 32,000 64,000 Stores learned MAC addresses.

IPv4 unicast/
multicast routes

16,000/2,000 512,000/256,000 Forwarding table entries for IPv4, routing
table is limited by RAM.

IPv6 unicast/
multicast routes

4,000/512,000 128,000/64,000 Forwarding table entries for IPv6, routing
table is limited by RAM.

Security ACLs 14,000 64,000 Firewall filters for Layer 2 or Layer 3.

Generic Routing En-
capsulation (GRE)
tunnels initiated/
terminated

2,000 2,000 Used for IP tunneling and remote port
mirroring.

Port mirroring
sessions

One local, one remote Seven local, seven
remote

Switched Port Analyzer (SPAN)-like
function for wiretap/traffic analysis.

Processor/flash 600/1 GHz, 512/1 GB 1.2 GHz/1 GB (upgrade-
able to 4 GB)

PowerPC-based, processor-based.

LAG groups/
members

32/8, 64/8 256/12 On an EX4200 VC, a link aggregation group
(LAG) can span member switches.

EX Feature Support
As with all JUNOS software-based products, you can expect rapid feature velocity for
the EX Series, based on the standard three-month JUNOS release cycle. The tables in
this section characterize initial EX Series Layer 2 and Layer 3 feature support. You
should always check the current software release documentation set for the latest in
features and functionality.

EX Hardware Overview | 61

Note that at the time of this writing, EX switches support a soft licensing model for
advanced features, as described shortly. Licenses are sold per chassis, and only two
licenses are required in a VC or redundant RE 8200 series system (i.e., a license is needed
on both the active and backup REs, but not on LCs). The soft model results in warnings
displayed/logged at commit time, and comments that a license is needed when viewing
the related portion of the configuration. Despite the warnings, the licensed feature is
expected to work with no restrictions, other than the side effects of your guilty con-
science and lack of JTAC support on that feature, should any issues arise later. In the
initial release, a single license is available that unlocks all licensed features.

Layer 2 features

Table 2-5 summarizes base Layer 2 functionality currently supported by the EX Series.
Subsequent chapters detail what all of this means, and provide configuration and trou-
bleshooting examples. So, for now, consider this a heads-up as to what is coming down
the road for you in this book.

Table 2-5. Layer 2 base feature support

Feature EX platform Comment

Spanning tree All Standard, multiple instance, and rapid STP supported (802.1D, 802.1s,
802.1w)

Redundant Trunk Group (RTG) All Provides primary/backup port redundancy with no STP

802.1Q All VLAN tagging, support for 4,094 user-assignable VLANs per EX-PFE

802.1X All Standards framework for Layer 2 access security; supports port, multi, and
VLAN assignment modes

802.3ad, 802.3X flow control,
and link aggregation maxi-
mum groups/members

3200, 4200,
8200

Link aggregation, dynamic via LACP or static:

EX3200 32/8

EX4200 64/8

EX8200 64/12

Layer 2 multicast All Internet Group Management Protocol (IGMP) snooping support allows
switches to reduce multicast flooding when there are no group members

Dynamic ARP inspection (DAI)
and Dynamic Host Configura-
tion Protocol (DHCP) snooping

All Monitors DHCP exchanges to prevent spoofing, using this information to
prevent Address Resolution Protocol (ARP) spoofing by enforcing DHCP
IP-MAC binding to ARP exchanges

Generic VLAN Registration
Protocol (GVRP)

All Protocol used to manage VLAN across switches

LLDP, LLDP-MED All Link Layer Discovery Protocol, Media Endpoint Discovery; part of unified
communication to auto-sense devices (e.g., IP phones)

62 | Chapter 2: EX Platform Overview

Layer 3 and general system features

Table 2-6 summarizes general EX system capabilities and Layer 3 feature support. As
before, subsequent chapters detail what all of this means, so for now consider this
another heads-up. Note that some features are considered advanced and require a li-
cense for legitimate usage. Items marked with an * were not included in the initial 9.0
release. Many of the Layer 3 features are JUNOS-enabled, which helps to drive home
a key benefit of the single code train model.

Table 2-6. Layer 3 base and advanced feature support

Feature Platform Base/advanced Comment

Basic IPv4 routing: Static,
RIP v1/v2, OSPF v2

All Base Significant routing support in base feature set

Policy-based routing* All Base Leverages JUNOS policy and firewall to provide policy rather
than longest-match DA-based routing

VRRP, BFD All Base HA features

IPv4 multicast—IGMP,
PIM SM, PIM DM

All Base Software (RE)-based tunnel services for Protocol Inde-
pendent Multicast in Sparse mode (PIM SM) and Dense
mode (PIM DM)Protocol Independent Multicast in Sparse
mode (PIM SM encapsulation and de-encapsulation
functions

Non-Stop Routing (NSR)* EX4200 in a
VC, EX8200
series

Base Allows failover to a redundant RE with stateful protocol
replication, no control or data plane disturbance

Graceful Restart (GR) All Base Allows an RE reboot or routing daemon restart without
incurring loss in the data plane; protocol sessions are
disrupted

In-Service Software
Updates (ISSU)*

EX4200 in a
VC, EX8200

Base Allows the upgrade of a dual RE machine without incurring
a control or data plane hit; based on NSR functionality

Secure device manage-
ment via J-Web, CLI

All Base SSH and OpenSSL support

Device management inter-
face (DMI)

All Base Accommodates integration with third-party network
management

Centralized management All Base Leverages the Network and Security Manager product to
centralize configuration management

BGP routing All Advanced World-class BGP, on a switch!

IS-IS routing All Advanced Not too common in today’s enterprise; IS-IS in support of
IPv4 routing, not CNLS/CNLP (OSI)

MPLS* All Advanced Not too common in today’s enterprise; traffic engineering
support

IPv6 routing* All Advanced Unicast and multicast support, OSPF v3/IS-IS

Enhanced GRE tunnel
support*

All Advanced Support for more than seven GRE tunnels

EX Hardware Overview | 63

EX Hardware Summary
This section provided a general overview of the EX3200, EX4200, and EX8200 hard-
ware and software capabilities. The EX3200 has limited hardware redundancy and does
not support clustering in a VC. This makes it a good choice for access layer deployments
in non-mission-critical environments. The EX4200 provides redundancy enhance-
ments, most notably the ability to cluster up to 10 EX4200s into a single VC. A VC is
highly reliable in that it supports redundant REs, PSUs, and VC switch fabric using a
ring topology. The 8200 chassis-based switches offer redundant REs, switch fabric,
PSUs, and in the case of the EX8216, redundant fan modules.

The high-performance EX hardware is backed up with an impressive range of Layer 2
and Layer 3 base features, perhaps the best of which is the fact that EX hardware runs
the venerable JUNOS software, which brings numerous reliability, performance, and
stability advantages to the game.

The next section explores the hardware architecture of the EX3200 and EX4200, and
provides a packet walk-through showing the processing steps involved with packet
switching/routing.

EX Series Architecture
This section provides a high-level overview of typical EX Series platforms to prepare
the reader for upcoming detailed discussions of packet flow in this chapter, as well as
in Chapters 4 and 11.

The EX-PFE ASIC
The heart of the EX platform is the EX-PFE ASIC. This Juniper-developed chip offers
extreme network and VCP/fabric flexibility, which allows it to be used in a number of
different modes within a particular switch model. As with other Juniper designs, this
PFE mechanism can be replicated as needed to provide increased switch capacity
through a multichip PFE complex. For example, an EX3200-24 is based on a single PFE
ASIC, whereas the EX4200-48 uses three. Meanwhile, a single 8200 series LC uses four
PFE chips to support 8 × 10 GE front panel ports, along with the necessary switch fabric
connections. Each EX-PFE chip can forward more than 102 Mpps at wire rate, whether
all Layer 2, all Layer 3, or any mix.

64 | Chapter 2: EX Platform Overview

EX-PFE effectively offers some 88 Gbps of switching/communications capacity, which
can be carved up and delegated to 1 × GE, 10 × GE, or VCP/fabric ports as each hard-
ware application requires. For example, each EX-PFE can provide 24 × 1 Gigabit ports
+ 2 VCP ports, or alternatively can provide 24 × 1 Gigabit + 1 × 10 Gigabit + 1 VCP
port, or in yet another application, 2 × 10 Gigabit + 2 VCP ports.

We highlight the flexibility of the EX-PFE ASIC in the next section, where you can see
it operating in a number of the aforementioned modes.

EX3200 Architecture
Our hardware architecture discussion begins with the EX3200 switch, as the rest of the
EX Series shares many common aspects of its design. Figure 2-6 illustrates the primary
processing stages of an EX3200-48.

The bottom-left portion of Figure 2-6 shows where the CPU components are housed.
The 8 MB boot flash gets the JUNOS kernel going so that the JUNOS image, which is
stored on the 1 GB main flash, can load into and run from the 512 MB of RAM memory.
The 600 MHz PowerPC-based CPU is protected by non-user-configurable ACL/rate
limiting, and has interconnections to other components, such as the LCD status display
and EX-PFE ASICs for control and communications purposes. The built-in and non-
user-alterable ACL function is provided by the JUNOS kernel and includes connection
number and connection rate limits, in addition to traffic policers that ensure network
control is not locked out during periods of protocol churn, or during a DoS attack that
bombards the router with ping or other types of exception traffic.

The EX3200 supports 512 MB of DRAM, and a rear panel USB that can be used to
expand flash memory. None of the built-in memory is considered upgradeable, and is
therefore not classified as an FRU. The CPU also drives the 1 Gbps em0 Out of Band
(OoB) management interface, in addition to the EIA-232-based console.

The 48-port EX3200 uses two EX-PFE chips in the arrangement shown; because the
EX3200 does not support a VC, each EX-PFE chip is tasked with providing 24 × 1 GE,
+ 1 × 10 GE, + 1 fabric port. In contrast, the 24-port version of the EX3200 makes use
of a single EX-PFE chip configured in a 24 × 1 GE + 2 × 10 GE arrangement.

EX Series Architecture | 65

Figure 2-6. The EX3200-48 block diagram

In both the 24- and 48-port versions, the four highest-numbered Gigabit Ethernet ports
(i.e., ge-0/0/20–ge-0/0/23 on the 24-port model) are shared between the corresponding
network ports and the optional 4 × 1 GE uplink module. Built-in logic senses when a
4 × 1 GE uplink is installed and automatically disables the corresponding network in-
terface ports. Use of the 2 × 10 GE uplink module option allows you to regain use of
the high-order 4 GE ports. An EX3200-24 contains a single EX-PFE ASIC, and the
EX3200-48 uses two PFE chips. As detailed in the next section, the EX4200s make use
of an extra EX-PFE to eliminate this restriction.

Figure 2-6 also shows the EX3200’s single PSU, which can be either AC or DC, in
addition to support for an optional RPS.

EX4200 Architecture
The hardware architecture of the VC-capable EX4200 is based on the same EX-PFE
technology found in the lower-end EX3200, but using more PFE ASICs. The EX4200-24
uses two EX-PFEs (the 24-port EX3200 uses only one), and the EX4200-48 makes use
of three PFE chips. The extra PFE capability is used to drive the EX4200’s rear-panel
VCP ports, and allows simultaneous use of all uplink and front-panel GE ports. Fig-
ure 2-7 illustrates the major hardware components of an EX4200-48.

66 | Chapter 2: EX Platform Overview

Figure 2-7. The EX4200 architecture

The EX4200 shares many of the same design characteristics found on the EX3200, so
the focus here is on the delta. The primary difference is the presence of three EX-PFEs,
and how the work is divided among them. In this switch, each PFE provides some
aspect of front-panel network connectivity, as well as some portion of the VCP/switch
fabric functionality. For example, the first and last PFEs each drive one of the 24 × 1
GE arrays, and each provides one 64 Gbps (FD) VCP port for VC use. The first PFE
also provides one of the 10 GE uplink ports. Meanwhile, the second PFE drives two
switch fabric ports (128 Gbps FD), provides one 10 GE uplink module, and also drives
the 4 × 1 GE uplink ports. Due to this arrangement, the 4 × 1 GE uplink ports and the
highest-numbered 1 GE ports are no longer shared, and can therefore be used at the
same time.

The EX4200 is based on 1 GB of DRAM and a 1 GHz PowerPC processor. Like the
EX3200, it’s equipped with 8 MB/1 GB of boot/main flash, as well as support for a rear-
panel USB flash extension; the built-in memory is not upgradeable. Figure 2-7 also
shows the EX4200’s support for redundant PSUs or an optional RPS.

EX Series Architecture | 67

Front-panel LEDs

EX switches provide two LEDs that indicate each port’s operational and traffic status.
A complete description of each possible state is available at http://www.juniper.net/
techpubs/en_US/release-independent/junos/topics/reference/specifications/network-port
-leds-ex-series.html.

The LED to the left of the port indicates link status and link activity, and the LED to
the right indicates the port’s administrative status, duplex mode, PoE status, and speed,
depending on the LCD display mode. You use the Enter button on the LCD panel to
toggle between the ADM, DPX, PoE, and SPD indicators. The default mode displays
port speed using a specific number of blinks:

One blink per second—10 Mbps
Two blinks per second—100 Mbps
Three blinks per second—1,000 Mbps

A Day in the Life of a Packet
This section explores the main areas of EX-PFE processing as a frame (or packet) is
received, processed, switched (or routed), and ultimately dispatched toward its final
destination. The PFE processing steps vary based on whether the EX is operating in
Layer 2 mode as a switch, or in Layer 3 mode as a router. Both modes are analyzed.

Layer 2 switching

Figure 2-8 shows the processing stages for traffic received on an interface that is con-
figured for Layer 2 operation. This is to say that a given logical unit is configured with
family bridging rather than family inet.

We begin with the reception of an Ethernet frame at step 1. This header extraction stage
strips the frame’s header and writes the original packet into a shared-memory-based
switch fabric. As with other Juniper PFE designs, transit traffic is written into the shared
memory switch fabric once. As a result of the switching/routing process, that same
frame may then be read from that memory location multiple times at egress, as needed
for multicast replication functions. Meanwhile, what’s actually being processed in sub-
sequent stages is a notification message, the essence of which is all that header good
stuff, which in addition to Layer 2 also includes the Layer 3 IP/IPv6 header, as well as
Layer 4 port info, assuming, of course, that IP is actually present in the frame. This
information accommodates the various Layer 2/Layer 3 security checks, switching/
routing, and CoS functions that may occur in subsequent processing stages.

68 | Chapter 2: EX Platform Overview

http://www.juniper.net/techpubs/en_US/release-independent/junos/topics/reference/specifications/network-port-leds-ex-series.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/topics/reference/specifications/network-port-leds-ex-series.html
http://www.juniper.net/techpubs/en_US/release-independent/junos/topics/reference/specifications/network-port-leds-ex-series.html

Figure 2-8. EX-PFE Layer 2 switching

EX Series Architecture | 69

The VLAN is extracted at step 2 by the VLAN classification stage. This is accomplished
using an explicit header tag, the incoming interface index, or the source MAC address,
depending on the operating mode of the logical interface. Each EX-PFE ASIC can index
a total of 4,096 VLANs, but VLAN assignment is limited to 1 to 4,094 inclusive. This
is because VLAN ID 0 is considered the untagged, or native, VLAN, whereas VLAN ID
4095 (0×FFF) is reserved for implementation-specific functions.

Depending on the configuration and results of previous processing, the packet is now
subjected to either a port or a VLAN-level firewall filter. These filters can match on a
variety of Layer 2/Layer 3 fields for security, telemetry tracking (counting), policing,
forwarding class assignment, and so forth. Layer 3-related firewall checks are per-
formed in the Layer 3 processing stages, which we’ll discuss shortly.

We cover firewall filters and security in detail in Chapter 9. Note that JUNOS firewall
filter is analogous to ACL in Cisco terminology. Currently, each EX-PFE ASIC supports
up to 2,000 port-level, 2,000 VLAN-level, and 1,000 router-based ACLs, for a total of
5,000 ingress ACL-related functions. Because these filters are executed in hardware,
there is usually very little impact to forwarding rate with or without filtering actions in
effect.

Policing is supported only in the ingress direction on the EX platform.
This applies to port-level, VLAN-level, and Layer 3 (IPv4) policers.

If the packet is not dropped during firewall processing, step 4 kicks in to subject the
packet to an STP state check. In this case, transit traffic is dropped if the corresponding
port is not found in the forwarding state. We provide details on STP operation in
Chapter 6. Note that well-known MAC addresses, such as those used for STP control
messages, are recognized as such and are redirected to the control plane as exception
traffic when received on an STP-enabled port that is in a non-forwarding state.

Step 5 deals with MAC address learning functions. Here the packet’s source MAC
address is matched against the list of learned MACs by the bridging engine. If a match
is found, the timeout is updated and the incoming interface is compared to the existing
state (in case the MAC address has moved). The bridging function redirects the packet
to the control plane for MAC learning when no entry is found, or when the interface
association needs to be refreshed in the case of a MAC move. At step 5a, the packet’s
destination MAC address is compared to the switches’ own MAC address; if a match
is found the traffic is redirected to the Layer 3/Route stage, which is detailed next.
Traffic that is not addressed to the switches’ MAC is subjected to the Layer 2 switching
function, which begins our tale of output processing stages.

Note that currently each EX-PFE chip can retain 24,000 learned MAC addresses. MAC
addresses that have not been learned, or that had to be forgotten due to exhaustion of
MAC learning table size or age-out, results in flooding of that traffic out all ports in the

70 | Chapter 2: EX Platform Overview

same bridging instance. The large number of MACs that can be learned by the EX-PFE
prevents the inefficiencies of ongoing flooding due to insufficient MAC table size.

Output processing: Layer 2 switching

The first step in the Layer 2 switching function’s output process is shown in step 6 of
Figure 2-8. This stage replicates Layer 2 traffic that needs to be sent out multiple logical
interfaces, such as is the case in a broadcast/multicast Destination MAC (DMAC) ad-
dress, or for a unicast DMAC that has not yet been learned (e.g., a Source MAC [SMAC]
address that has not been seen on that VLAN/bridging instance as the source of any
traffic). In these cases, the rules of Layer 2 switching state that the frame must be flooded
out to all ports that are in a forwarding state, except, of course, the port on which the
packet arrived. Note that what is actually replicated here is a pointer to the copy of the
packet that was written into memory way back at step 1.

At step 7, the egress traffic is subjected to CoS processing, which includes queue se-
lection (a total of eight queues are supported per port), priority scheduling, and drop
prioritization. Note that per-VLAN (logical interface level) queuing is not supported.
And, as you likely surmised, EX Series CoS is covered in detail in Chapter 10, but it’s
covered much more broadly in our companion book, JUNOS Enterprise Routing.

Step 8 of output processing involves marker rewrite, also known as header rewrite. This
stage is often associated with Layer 3 functionality involving IP Precedence/DiffServ
Type of Service (ToS) field remarking, but can also be used for Layer 2 rewrite involving
the 802.1p priority bits.

Step 9 provides Layer 2 egress firewall filter functionality. Currently, only VLAN-based
(and router/Layer 3, as applicable) filter actions are supported at egress. Port-based
egress filters are currently not supported, nor is egress policing of any type. A total of
2,000 egress filters (both Layer 2 VLAN-based and Layer 3) can be defined per EX-PFE
chip. Layer 2 frames can be dropped, counted, or policed as they transit this stage.

The final egress stage re-forms the Layer 2 frame, which may have had its header re-
marked at step 8; recalculates the CRC; and transmits the frame onto the medium.
Note that as a result of the Layer 2 replication actions at step 6 (replication can also
occur in the Layer 3 processing flow) there can be a one-to-many relationship between
ingress and egress traffic.

Layer 3 routing

Figure 2-9 details the processing stages for traffic that is subjected to Layer 3 processing.
Layer 3 processing is performed on traffic received on a Layer 3-enabled logical inter-
face, or for traffic received on a Layer 2 interface, but for which the destination MAC
address matched the address owned by the switch. The example shown is based on the
latter case, but the primary concepts and packet processing are similar for packets
received on Layer 3 interfaces. Each EX-PFE supports up to 1,000 Layer 3 interfaces,
which can operate as a native IP interface or as a Routed VLAN Interface (RVI).

EX Series Architecture | 71

http://oreilly.com/catalog/9780596514426/

Figure 2-9. EX-PFE Layer 3 processing stages

Things begin in Figure 2-9 at step 1, where the packet (well, technically, its header
fields, along with some other magic sauce in the guise of a notification message) is
subjected to router/Layer 3 firewall filters. These ACLs operate at the IP and Transport
layers (TCP/UDP), and provide similar security, policy, ingress policing, and account-
ing functionality as those available at Layer 2.

The actual route lookup is performed at step 2, unless, of course, the packet fails to
pass muster and is dropped back at step 1. Here, a longest-match lookup is performed
against the destination IP address to determine the outgoing interface/next hop or
egress firewall action that should be performed. When the destination IP address rep-
resents a multicast group address, additional processing is done at step 3 to facilitate
IP packet replication and selection of the list of outgoing interfaces to which copies of
the packet should be sent. Packets whose longest match is against a locally owned IP
address, or that were sent to a multicast group for which the local switch is an active
member, are shunted out of the PFE for processing by the RE. These may be locally
destined traffic, such as a ping or Telnet session, or a routing update, such as RIP or
OSPF.

At step 4, packets whose lookup resulted in a firewall filter next hop are so processed,
or else they are handed back to the Layer 2 engine, where they’re subjected to Layer 2
egress processing and ultimately transmitted, assuming they are not dropped by the
CoS stage or filtered by an egress Layer 2 filter action.

EX Series Architecture Summary
This section provided a detailed description of the hardware capabilities of the EX3200,
EX4200, and EX8200 series switches. The varying levels of redundancy and switching
capacities, and the ability to grow a VC in an incremental manner as needs dictate,
mean that virtually any organization can find an EX platform that meets its design
needs.

The next section shifts the focus from EX hardware to the JUNOS software that pro-
vides the brains for all that silicon brawn. Given that the same JUNOS software runs

72 | Chapter 2: EX Platform Overview

on all of the company’s J Series, MX Series, M Series, and T Series platforms, there
could be worse things to learn.

JUNOS Software Overview
To quote from JUNOS Enterprise Routing:

JUNOS software is cool. It just is. The designers of JUNOS software put tremendous
thought into making a stable, robust, and scalable operating system that would be a
positive for the router. They were able to learn from previous vendors’ mistakes, and
create an OS that other companies will forever use as their model.

JUNOS software is cool, and the fact that the same JUNOS software that runs on the
EX platform runs on the largest router that Juniper makes, the TX Matrix, is really cool.

JUNOS software is a modular operating system that promotes stability and reliability.
The modularization is achieved through the use of software daemons that run in pro-
tected memory space. The stability stems from well-written and tested code; choosing
a well-known, open source, and stable kernel of FreeBSD on which to build JUNOS
did not hurt, of course.

The kernel and its functions are normally not directly visible to the user, but many
features of FreeBSD have been ported to the command line of JUNOS, and many that
have not are still available, albeit at the shell prompt. The kernel supports the various
user processes (daemons), maintains the forwarding table synchronization between the
RE and the PFE, and provides interface-related routing functions such as performing
ARP and installing local and direct routes in the routing table (RT).

Riding on top of the kernel are the software processes that provide JUNOS services and
the user interfaces needed to configure, monitor, and troubleshoot these services. These
include the CLI, interface control, routing, address learning, and so forth. Fig-
ure 2-10 illustrates the modular architecture of JUNOS software, listing some of the
user space processes that run on top of the kernel. Note that you can always obtain a
complete list of these processes by issuing a show system processes command. You can
also restart most daemon processes from the CLI using the restart command, as
shown here:

lab@Rum> restart ?
Possible completions:
 802.1x-protocol-daemon Port based Network Access Control
 adaptive-services Adaptive services process
 audit-process Audit process
 cfm Connectivity fault management process
 chassis-control Chassis control process
 chassis-manager Chassis Manager
 class-of-service Class-of-service process
 dhcp Dynamic Host Configuration Protocol process
 dynamic-flow-capture Dynamic flow capture service
 ecc-error-logging ECC parity errors logging process
 ethernet-link-fault-management Ethernet OAM Link-Fault-Management process

JUNOS Software Overview | 73

http://oreilly.com/catalog/9780596514426/

 ethernet-switching Ethernet Switching Process
 event-processing Event processing process
 firewall Firewall process
 general-authentication-service General authentication process
 gracefully Gracefully restart the process
 immediately Immediately restart (SIGKILL) the process
 interface-control Interface control process
 ip-demux Demux Interface Daemon
 ipsec-key-management IPSec Key Management daemon
 l2-learning Layer 2 address flooding and learning process
 lacp Link Aggregation Control Protocol process
 license-service Feature license management process
 link-management Link management process
 lldpd-service Link Layer Discovery Protocol
 mib-process Management Information Base II process
 mountd-service Service for NFS mounts requests
 mspd Multiservice Daemon
 nfsd-service Remote NFS server
 pgcp-service Packet gateway service process
 pgm Pragmatic General Multicast process
 ppp PPP process
 pppoe Point-to-Point Protocol over Ethernet process
 redundancy-interface-process Redundancy interface management process
 remote-operations Remote operations process
 routing Routing protocol process
 sdk-service SDK Service Daemon
 service-deployment Service Deployment System (SDX) process
 sflow-service Flow Sampling (Sflow) Daemon
 snmp Simple Network Management Protocol process
 soft Soft reset (SIGHUP) the process
 virtual-chassis-control Virtual Chassis Control Protocol
 vrrp Virtual Router Redundancy Protocol process
 web-management Web management process
lab@Rum> restart

A description of each process’s function is beyond the scope of this book. You can find
some additional information on JUNOS processes in the technical documentation at
http://www.juniper.net/techpubs/software/nog/nog-baseline/frameset.htm. Note that a
large chunk of the documentation is bundled with the software running on your switch.
A later section demonstrates use of the embedded documentation.

Each software process is fully independent, so a failure of one process does not affect
the others. For example, Figure 2-10 shows how the Simple Network Management
Protocol (SNMP) process pulls information from the interface, chassis, and routing
processes. If the SNMP process fails for any reason, it affects only that process and not
the others, and in most cases can be restarted and returned to service. This is a major
shift from other routing vendors that operated monolithic code in which one change
in the interface code could affect just about anything, seemingly without rhyme or
reason.

74 | Chapter 2: EX Platform Overview

http://www.juniper.net/techpubs/software/nog/nog-baseline/frameset.htm

Figure 2-10. The JUNOS software architecture

As previously noted, the J Series, M Series, MX Series, and TX routing platforms all run
JUNOS, which is built from a common code base. Note, however, that having the same
code base is not the same as running the same binary image. The EX platforms run an
EX-specific binary image that is built from the common JUNOS code base. Although
some features are platform-dependent, JUNOS is JUNOS, and the general rule is a
common configuration and operational mode syntax, and a high degree of feature par-
ity across all platforms. The first time you need to upgrade the software on your EX
switch, this point and its immediate benefits are driven home. There’s no need for a
fancy feature calculator to (hopefully) find an image with the desired feature that ac-
tually runs on your hardware. Nope; just find the latest EX release (there are four major
releases each year), download it, load it, and go play with the new feature.

The major difference in the EX image versus the image running on, say, an M Series
router, is the successful porting to a RISC-based PowerPC platform, and the inclusion
of Layer 2-specific functions performed by the Ethernet switching daemon (eswd), such
as Layer 2 address learning and STP. Inclusion of the LLDP daemon provides a Cisco
Discovery Protocol (CDP)-like functionality, which also includes the LLDP-MED ex-
tensions used to support IP telephony devices.

JUNOS Software Summary
This section provided an overview of the JUNOS software architecture, detailing how
the modular software process runs atop a hardened BSD-based kernel on a variety of
hardware platforms. The key takeaway here is the common JUNOS base that is shared
across a huge portion of the company’s product line and that has been proven stable
in the largest service provider networks for more than 10 years.

JUNOS Software Overview | 75

Although the EX may be the new platform on the block, it inherits the benefits and
capabilities of the legendary JUNOS that happily runs some of the world’s largest rout-
ing systems in most of the world’s largest IP networks. And now, that same software
sits on your desktop, in the form of that new EX switch that just arrived.

Well, what are you waiting for? Are you chicken? C’mon, everyone’s doing it.... It’s
time to get started with JUNOS software!

CLI Overview
Hardcore engineers always prefer a CLI as opposed to a fancy-pants GUI web-based
frontend thingy. The odd thing is that even novice users often quickly learn to prefer
the JUNOS CLI, given that it’s one of the most user-friendly and feature-rich interfaces
ever invented.

The remainder of this chapter focuses on the CLI, but gives an honorable nod to some
slick user-friendly features as well. Generally speaking, the GUI makes things so easy,
as long as you know what you want and why it’s used, it’s a cinch to click your way
through it. Using the CLI provides direct access to all of the features of JUNOS, and it
takes much less time and page space than dealing with GUI screens. As such, biting a
bit of the CLI bullet really is the best way to learn JUNOS.

J-Web and EZSetup
When Juniper decided to reach into the Enterprise it understood that it would be en-
countering a new audience, one that is often familiar with the IOS CLI but in many
cases may be brand new to networking, with little to no CLI experience. To address
this concern, a web-based GUI interface was developed. The J-Web interface was first
released on the J Series products, and was updated and enhanced to support the EX
Series as well.

Figure 2-11 shows the main screen for the EX J-Web interface.

Yes, the J-Web interface is pretty slick.

J-Web supports both HTTP and HTTPS protocols, provides clean operational status
displays and configuration (which includes wizards that help get you up and running),
and performs common maintenance functions such as software upgrades. The built-in
DHCP server found in a factory-default configuration makes it easy to attach a PC for
quick access to the web-based EZSetup feature. Once configured, J-Web provides on-
going configuration and system management capabilities, including really cool per-
formance dashboard displays.

76 | Chapter 2: EX Platform Overview

Figure 2-11. The EX J-Web interface

EZSetup

The EZSetup feature, as its name suggests, is designed to get a brand-new switch up
and running by prompting for commonly needed configuration data (see Chapter 3 for
more details on the EZSetup feature). The web version of EZSetup is presented when
a factory-default configuration is in place. The EZSetup feature is also available via the
CLI, but only when logged into a root shell, and again a true factory-default configu-
ration must be in effect.

After loading a factory-default configuration with the load factory-
default configuration mode command, you must assign a root pass-
word before you can commit (committing actually places the
configuration into effect, as described later in this chapter). Once the
modification is committed, the result is no longer a true factory-default
configuration, which in turn blocks shell-based evocation and sup-
presses the J-Web prompt for the same.

CLI Overview | 77

The following code shows EZSetup starting from a root shell on a true factory-default
configuration:

root@% ezsetup

* EZSetup wizard *
* *
* Use the EZSetup wizard to configure the identity of the switch. *
* Once you complete EZSetup, the switch can be accessed over the network. *
* *
* To exit the EZSetup wizard press CTRL+C. *
* *
* In the wizard, default values are provided for some options. *
* Press ENTER key to accept the default values. *
* *
* Prompts that contain [Optional] denotes that the option is not mandatory. *
* Press ENTER key to ingore the option and continue. *
* *

EZSetup Initializing..done.

Initial Setup Configuration

Enter System hostname [Optional]:

CLI Operational Modes and General Features
The CLI has two modes: operational and configuration. Operational mode is where you
troubleshoot and monitor the router hardware and software, as well as its network
connectivity and protocol operation. Configuration mode is where the actual config-
uration statements for interfaces, routing protocols, and everything else, for that matter,
are specified.

Every command that can be run in operational mode can also be used
in configuration mode with the additional keyword run. For example,
if the command show route is issued in operational mode, it can be
issued as run show route in configuration mode. This is similar to IOS’s
do command, except it works all the time and in all configuration mode
contexts.

Operational mode

When a non-root user first enters the router via Telnet, SSH, or direct console access,
the user will see a login prompt. After entering the correct username and password, the
user will be placed directly into operational mode. Operational mode is designated by
the > (chevron) character at the router prompt of username@hostname. As shown in the
following code, user lab logs into a switch called Rum:

78 | Chapter 2: EX Platform Overview

login: lab
Password:

--- JUNOS 9.0R2.10 built 2008-03-06 10:31:45 UTC
lab@Rum>

An exception to being automatically placed into operational mode is when logging in
as the root user. In this case, the user is placed directly into a shell (designated by the
percent [%] sign) and must start the CLI process manually:

Rum (ttyd0)

login: root
Password:

--- JUNOS 9.0R2.10 built 2008-03-06 10:31:45 UTC
root@Rum% cli
root@Rum>

Most of the commands that you will run in operational mode are show commands,
which allow you to gather information about the switches’ hardware, software, and
general protocol operation. The ping, traceroute, telnet, and ssh utilities are also avail-
able in operational mode, as are clear commands that are used to reset counters, learn
MAC/ARP entries, or reset protocol adjacencies.

In addition, there are some very JUNOS-specific operational mode commands such
as request, restart, and test. The request commands perform systemwide functions
such as rebooting, upgrading, and shutting down the box. The restart commands are
similar to the Unix-style kill commands, allowing you to restart various software pro-
cesses. The test commands allow verification of saved configuration files, proactive
testing of policies, and interface-related test functions that vary by hardware type.

The restart commands should be used with caution! Network disrup-
tion can easily result from restarting the chassis control, routing, or
switching processes, for example. Generally, you restart a process under
guidance from technical support, when fault analysis indicates that the
process is hung or generally misbehaving.

The next section examines some additional CLI features that you will not want to live
without.

Command completion

The command completion feature saves you lots of time and energy, and it provides
syntax checking as you type. Gone are the days when you type a command on a line
and after you press Enter the command is either invalid or not supported on that version
of software. Any error or ambiguity will be detected early, and the switch will present
a list of valid completions for the current command. You can disable command

CLI Overview | 79

completion on a per-login basis by modifying the CLI environment with an operational
mode set cli command:

lab@Rum> set cli ?
Possible completions:
 complete-on-space Set whether typing space completes current word
 directory Set working directory
 idle-timeout Set maximum idle time before login session ends
 prompt Set CLI command prompt string
 restart-on-upgrade Set whether CLI prompts to restart after software upgrade
 screen-length Set number of lines on screen
 screen-width Set number of characters on a line
 terminal Set terminal type
 timestamp Timestamp CLI output

But a good reason to do so has not yet been noted.

You can evoke command completion by using either the space bar or the Tab key. Note
that the Tab key also completes user-assigned variables such as interface names, IP
addresses, firewall filters, and filenames. For example, you use the show configuration
firewall command to view that portion of the configuration from an operational mode
prompt. The example makes use of both space and tab completion for commands and
variables, respectively, and also uses the family and filter switches to display a subset
of the firewall stanza in the form of a specific filter named test_L3_filter:

root@Rum> sh<space>ow conf<space>iguration fire<space>wall family i<space>net
filter ?
Possible completions:
 <filter-name> Filter name
 test_L3_filter Filter name
root@Rum> show configuration firewall family inet filter t<Tab>est_L3_filter
<enter>
term 1 {
 from {
 protocol icmp;
 }
 then count icmp_counter;
}
term 2 {
 then accept;
}

Notice that the space bar is used until a variable is reached, at which time the Tab key
is used to auto-complete the user variable for the filter name of test_L3_filter. The
example also shows the CLI’s context-sensitive help function, which is evoked with
the ? key. The context-sensitive help function provides valid completions for both
standard commands and user-defined variables. Pretty slick, eh?

In the previous example, the syntax checker went word by word each time the space
bar or Tab key was pressed, and the minimum characters were typed to avoid ambi-
guity. When a command is ambiguous, the CLI states the issue and lists the possible
completions:

80 | Chapter 2: EX Platform Overview

root@Rum> show e
 ^
'e' is ambiguous.
Possible completions:
 esis Show end system-to-intermediate system information
 ethernet-switching Show Ethernet-switching information
 event-options Show event-options information
root@Rum> show e

Here, the command show e cannot be completed as typed, so the CLI prompts the user
for further clarification as to which value, ethernet-switching or event-options, should
be displayed. The CLI then repaints the ambiguous command, patiently awaiting
disambiguation.

The CLI is based on Emacs-style keystrokes. This allows you to quickly
position the cursor, or edit the command line, using keystroke shortcuts. Here are some
useful Emacs keystrokes:

Ctrl-b
Moves the cursor back one character. The left arrow can also be used for this
purpose when set to vt100.

Ctrl-f
Moves the cursor forward one character. The right arrow can also be used for this
purpose when set to vt100.

Ctrl-a
Moves the cursor to the beginning of the command line.

Ctrl-e
Moves the cursor to the end of the command line.

Ctrl-k
Deletes all words from the cursor to the end of the line.

Ctrl-w
Deletes an entire word to the left of the cursor.

Ctrl-x
Deletes or clears the entire line.

Ctrl-l
Redraws the current line.

Ctrl-p
Scrolls backward through the previously typed commands. The up arrow can also
be used for this purpose when set to vt100.

Ctrl-n
Scrolls forward through the previously typed commands. The down arrow can also
be used for this purpose when set to vt100.

Ctrl-r
Searches the previous CLI history for a search string.

Emacs keys.

CLI Overview | 81

Ctrl-u
Erases the current line.

As noted, when the terminal type is set to vt100, you can use the up and down/sideways
arrow keys for previous/next command buffer recall and cursor positioning,
respectively.

The JUNOS CLI maintains a separate command history for operational
versus configuration mode commands.

Another important CLI feature is support for piping the output of any com-
mand, whether configuration or operational, to a set of processing functions such as
count, match, and so forth.

The actual arguments supported by the pipe (|) function are constrained based on the
command’s context as either configuration or operational mode. In the following ex-
ample, the operational mode show bgp summary command is shown being piped to
the display function, but the only supported argument is xml. Again, this is because of
the operational mode context:

root@Rum> show bgp summary | display ?
Possible completions:
 xml Show output as XML tags

The same general show command syntax is now issued in configuration mode context.
And the result is a different set of options for the display argument:

[edit]
root@Rum# show | display ?
Possible completions:
 changed Tag changes with junos:changed attribute (XML only)
 commit-scripts Show data after commit scripts have been applied
 detail Show configuration data detail
 inheritance Show inherited configuration data and source group
 omit Omit configuration statements with the 'omit' option
 set Show 'set' commands that create configuration
 xml Show output as XML tags

Note that the set argument is now available for the display function. By the way, the
purpose of display set is to convert the curly-brace-delimited configuration into the
sequence of set commands that created the configuration; this is a very useful pipe
function. Note that the full configuration hierarchy is displayed for each set command
displayed:

[edit interfaces ge-0/0/4]
lab@Rum# show | display set
set interfaces ge-0/0/4 unit 0 family inet filter input test
set interfaces ge-0/0/4 unit 0 family inet address 10.5.7.5/24
set interfaces ge-0/0/4 unit 0 family inet6

The pipe.

82 | Chapter 2: EX Platform Overview

[edit interfaces ge-0/0/4]
lab@Rum#

The pipe command allows the display buffer to be massaged and displayed in various
ways. The most common applications of the pipe function are detailed here:

count
Count the output lines:

root@Rum> show interfaces terse | count
Count: 67 lines

display
Show additional data; for example, XML tags, set commands, or details about
what the config means:

[edit interfaces ge-0/0/4]
lab@Rum# show | display detail
##
Logical unit number
range: 0 .. 16385
##
unit 0 {
 ##
 ## family: Protocol family
 ## constraint: Can't configure protocol family with encapsulation ppp-over-
ether-over-atm-llc
 ## constraint: Can't configure protocol family with encapsulation ppp-over-
ether
 ##
 ##
 ## inet: IPv4 parameters
 ## alias: inet4
 ## constraint: family inet is not supported on encapsulation frame-relay-ppp
 ##
. . .

except
Omit matching lines from the output:

root@Rum> show interfaces terse | except ge-
Interface Admin Link Proto Local Remote
bme0 up up
bme0.32768 up up inet 128.0.0.1/2
 128.0.0.16/2
 128.0.0.32/2
 tnp 0x10
dsc up up
gre up up
ipip up up
lo0 up up
lo0.0 up up inet 10.10.1.5 --> 0/0
lsi up up
me0 up down
me0.0 up down

CLI Overview | 83

mtun up up
pimd up up
pime up up
tap up up
vlan up up

find
Begin the output at the specified match:

root@Rum> show interfaces ge-0/0/0 extensive | find alarm
 Active alarms : LINK
 Active defects : LINK
 MAC statistics: Receive Transmit
 Total octets 0 0
 Total packets 0 0
 Unicast packets 0 0
 Broadcast packets 0 0
 Multicast packets 0 0
 CRC/Align errors 0 0
 FIFO errors 0 0
 MAC control frames 0 0
 MAC pause frames 0 0
 Oversized frames 0
 Jabber frames 0
 Fragment frames 0
 VLAN tagged frames 0
 Code violations 0
 Filter statistics:
 Input packet count 0
 . . .

match
Display only the lines matching the specified string:

root@Rum> show log messages | match fail
Mar 11 11:50:34 Rum chas[517]: cm_pid_get_process: stat of /proc/520 failed
Mar 11 11:50:34 Rum chas[517]: failed SIGSTOP to pfem 520 - kill failed
. . .

no-more
Do not paginate the output at a more prompt:

root@Rum> show system statistics arp | no-more
arp:
 0 datagrams received
 0 ARP requests received
 0 ARP replys received
 0 resolution requests received
 0 unrestricted proxy requests
 0 received proxy requests
 0 proxy requests not proxied
 0 with bogus interface
 0 with incorrect length
 0 for non-IP protocol
 0 with unsupported op code

84 | Chapter 2: EX Platform Overview

 0 with bad protocol address length
 . . .

save
Save the output to a file in the user’s home (or specified) directory:

[edit]
root@Rum# show interfaces | save rum_interfaces_config
Wrote 157 lines of output to 'rum_interfaces_config'

Multiple pipe commands are treated as a logical AND, meaning the output must match
both of the commands listed. Consider this example, which combines the count and
match arguments to count how many interfaces are currently down:

root@Rum> show interfaces terse | match down | count
Count: 50 lines

Ouch, a lot of down interfaces, to be sure. Don’t be disheartened. It’s still early in the
book.

Here we show multiple incarnations of the same pipe argument type (match), to provide
additional filtering. Here, matching messages must have both match criteria to pass the
filter:

root@Rum> show log messages | match fail | match kill
Mar 11 11:50:34 Rum chas[517]: failed SIGSTOP to pfem 520 - kill failed
Mar 11 11:50:34 Rum chas[517]: failed SIGCONT to pfem 520 - kill failed
Mar 11 11:50:34 Rum chas[517]: failed SIGHUP to pfem 520 - kill failed
Mar 11 13:30:12 Rum chas[516]: failed SIGSTOP to pfem 519 - kill failed
. . .

Pipe commands are not limited to a logical AND, however, as a logical OR operation can
also be performed. This is done by wrapping the string in quotation marks and using
the OR operator. Here we parse the logfile for messages having either match term. Note
that CLI-based matches are not case-sensitive:

root@Rum> show log messages | match "(fail|error)"
Mar 11 11:50:34 Rum chas[517]: PFELC:Error connecting master kernel,4294967295
Mar 11 11:50:34 Rum chas[517]: cm_pid_get_process: stat of /proc/520 failed
Mar 11 11:50:34 Rum chas[517]: failed SIGSTOP to pfem 520 - kill failed
Mar 11 11:50:34 Rum chas[517]: cm_pid_get_process: stat of /proc/520 failed
Mar 11 11:50:34 Rum chas[517]: failed SIGCONT to pfem 520 - kill failed
. . . .

Configuration Mode
In the previous section, you were exposed to the CLI’s operational mode. To actually
configure a JUNOS device, you must enter the CLI’s configuration mode by entering
configure at the operational mode prompt. When in configuration mode, the router
prompt changes to the hash (#) symbol, and the user’s position in the configuration
hierarchy is displayed. Here, the top of the configuration is indicated by the [edit]
prompt:

CLI Overview | 85

root@Rum> configure
Entering configuration mode

[edit]
root@Rum#

By default, multiple users can enter the router and make changes at the same time. To
avoid any issues that may arise, you can use the configure exclusive or configure
private option. The former allows only a single user to configure the router, and the
latter allows multiple users to configure different pieces of the configuration simulta-
neously. The private mode grants users their own copy of the current candidate con-
figuration, while ensuring that each user’s changes are unique. This means that only
the changes made by a given user are activated when that user performs a commit. If
two users attempt to make the same change, such as adding an IP address to the
same interface, the change is rejected and both users must exit configuration mode and
begin again to resolve the conflict.

In contrast, with the exclusive option no other users can make changes to the config-
uration except the single user that entered configuration mode. In both the private and
exclusive cases, the CLI forces the users to either commit or discard their changes to
avoid database conflicts with another user, then enter configuration mode later:

[edit]
lab@Rum# quit
The configuration has been changed but not committed
warning: Auto rollback on exiting 'configure exclusive'
Discard uncommitted changes? [yes,no] (yes) yes

warning: discarding uncommitted changes
Exiting configuration mode

lab@Rum>

A normal configuration user can exit with unsaved changes; this is considered bad form
as others may not know how to quickly determine the nature of the changes that were
left in place (and were not yet activated with a commit):

lab@Rum> configure
Entering configuration mode

[edit]
lab@Rum# delete interfaces

[edit]
lab@Rum# quit
The configuration has been changed but not committed
Exit with uncommitted changes? [yes,no] (yes) yes

Exiting configuration mode

lab@Rum>

86 | Chapter 2: EX Platform Overview

While in configuration mode, the set command is used to place new values into the
candidate configuration. For example, to enable a Telnet server on the box, use a set
command:

[edit]
root@Rum# set system services telnet

[edit]
root@Rum#

A delete is the opposite of set, and it is used to remove portions of the configuration.
delete acts on the most specific item specified; if you are not careful, you can remove
more than you intended. Here, omission of the keyword telnet results in deletion of
all statements at the [edit system services] hierarchy, which can be a far sight more
than just Telnet!

[edit]
root@Rum# delete system services telnet

[edit]
root@Rum#

The JUNOS configuration is based on an object-oriented hierarchy. The top of the
hierarchy is called edit, and each configuration stanza is placed in a corresponding
subhierarchy. This is roughly analogous to a PC filesystem, in which C: is the root and
C:\data is a directory under the root.

The configuration hierarchies that live directly below [edit] can be viewed with a
set ? command:

[edit]
root@Rum# set ?
Possible completions:
> access Network access configuration
> access-profile Access profile for this instance
> accounting-options Accounting data configuration
> active-probe
+ apply-groups Groups from which to inherit configuration data
> chassis Chassis configuration
> class-of-service Class-of-service configuration
> dialer
> ethernet-switching-options Ethernet-switching configuration options
> event-options Event processing configuration
> firewall Define a firewall configuration
> forwarding-options Configure options to control packet forwarding
> groups Configuration groups
> interfaces Interface configuration
> multicast-snooping-options Multicast snooping option configuration
> poe Power-over-Ethernet options
> policy-options Routing policy option configuration
> protocols Routing protocol configuration
> routing-instances Routing instance configuration
> routing-options Protocol-independent routing option configuration
> security Security configuration

CLI Overview | 87

> snmp Simple Network Management Protocol configuration
> system System parameters
> vlans VLAN configuration
[edit]

Entries beginning with a > have their own subhierarchies, and so on, and so forth. We
will explore most of these hierarchies at some point in this book. Figure 2-12 shows a
partial tree of the configuration hierarchy.

Figure 2-12. A portion of the JUNOS configuration hierarchy

Figure 2-12 shows the top of the hierarchy, edit, and some of the next-level hierarchies
that lie directly below it, such as system, interfaces, and protocols. The system path
is further expanded to show that it has sublevels, one of which, the services hierarchy,
is in turn expanded to show some of the specific services available. The takeaway here
is that a configuration-related command intended to alter a system service will have
system services in its fully qualified command path, that is, the path needed when at
the [edit] root.

Although you do not need to memorize the tree structure, it is important to understand
the hierarchical structure and how it relates to configuration mode commands. For
example, the save command saves information from the current hierarchy down.
Therefore, the outcome of a save command when issued at the [edit] hierarchy is far
different from when it’s issued at a lower hierarchy, such as [edit protocols ospf area
0]. In the former case, the entire configuration is saved, whereas in the latter only the
configuration relating to OSPF area 0 is saved.

As mentioned previously, the delete command is the opposite of set. Usually the
command is used to remove a single line, but it can be used to remove an entire
hierarchy.

Be Careful Out There
JUNOS provides the operator with a long length of rope. Use caution to make sure it
does not hang you. For example, issuing a delete protocols, when you meant to delete

88 | Chapter 2: EX Platform Overview

only one interface from area 0 of OSPF—say, with a delete protocols ospf area 0
interface ge-0/0/0 command—does not result in any complaints, or even a sanity
check in the form of an “are you sure, enter y/n” dialog. Nope, the whole protocols
stanza is simply gone. Moving on to commit such a change could be disastrous. A
similar condition is true when clearing protocol neighbors in operational mode, where
a failure to identify which neighbor assumes you wish to clear them all.

There’s not much more to be said, other than to be careful. And remember that commit
confirmed and/or rollback 1 are good tricks to keep handy when making configuration
changes, as both function to restore a previous configuration that, for whatever reason,
is now deemed better than the current one. Note that if you experience a “mulligan
moment” and have not yet committed the mistake, rollback 0 is what you need; this
restores a fresh copy of the candidate configuration, which again matches the active
configuration. Just be careful next time.

Navigating the configuration hierarchy

Configuration commands such as set and delete can be issued from the top, or root
level, using a fully qualified path. Alternatively, you can park at a configuration sub-
hierarchy and issue relative commands. The edit command functions like a change
directory (cd) command in that it allows you to position yourself at a lower hierarchy.
Here, the edit function is used to park at the [edit system services] hierarchy:

[edit]
root@Rum# edit system services

[edit system services]
root@Rum# set web-management http

Note how the CLI banner changes to reflect the user’s new position in the hierarchy.
A relative set web-management http statement is then issued to enable the HTTP web
management service (J-Web). The results are confirmed with a show command, which
again is relative to the current hierarchy:

[edit system services]
root@Rum# show
telnet;
web-management {
 http;
}

Although using the edit command is not necessary, it does allow the user to issue
shorter (relative) set statements, compared to issuing the same statements from the
top level. Just like choosing a color for a new car, you can choose how you want to
configure the router, as long as the desired result is achieved. In general terms, most
users opt to park at a subhierarchy when many set commands are needed. Then again,
more experienced users avail themselves of space completion and command recall, and
can often issue multiple set statements quite rapidly; recall that Ctrl-w deletes the last

CLI Overview | 89

word, so an up arrow/Ctrl-p followed by a Ctrl-w rapidly prepares the user to enter the
next statement at the same hierarchy.

Once you are in a certain directory, there are multiple ways to navigate the directory
tree using the up, top, and exit commands. The up command moves you up one level
in the directory tree or multiple levels if a numerical value is given after the command:

[edit system services]
root@Rum# up

[edit system]
root@Rum# edit services

[edit system services]
root@Rum# up 2

[edit]
root@Rum#

You can use the top command at any hierarchy to move up to the root level of the
configuration tree. This command has the added functionality of allowing multiple
configuration statements after you issue the command, such as top edit or top set.
Here the user moves from the [edit system services] hierarchy to the top, and then
back down to the [edit protocols ospf area 0] hierarchy in one fell swoop:

[edit system services]
root@Rum# top edit protocols ospf area 0

[edit protocols ospf area 0.0.0.0]
root@Rum#

It’s always nice to be able to see your work while you’re still working on it. It’s also
nice to be able to focus only on the areas that happen to concern you at that moment.
Use the show command to view all or just selected parts of the configuration. Here the
operator uses show along with a description of which configuration hierarchy should
be displayed:

[edit]
root@Rum# show system services
telnet;
web-management {
 http;
}

[edit]
root@Rum# show interfaces ge-0/0/0
unit 0 {
 family ethernet-switching;
}

Yes, the JUNOS CLI is cool. There, I said it again.

90 | Chapter 2: EX Platform Overview

This section introduced you to the configuration hierarchy and the basic commands
used to alter a configuration by adding or deleting statements. The next section focuses
on how to activate or deactivate those changes, as operational outcome should dictate.

Active and candidate configurations, commits, and rollbacks

JUNOS uses a candidate configuration model, in which all changes are performed
against a copy of the configuration that was current at the time the user entered con-
figuration mode. As a result, the changes do not take effect until the candidate config-
uration is made active through a commit process. During this process, some sanity
checking is performed against the candidate configuration.

When problems are detected, one or more warnings may be displayed (while the new
configuration is still activated), or a commit failure can occur. When a commit failure
is declared, the candidate configuration is preserved and users are free to make addi-
tional edits to address the error so that they can try the commit again. In some cases,
a new error may be displayed when the last error is corrected because the configuration
parser is allowed to proceed further into the candidate configuration.

Pay attention to any commit-time warnings printed on the terminal, and
ensure that no warnings are being placed into the logfile (/var/log/mes-
sages) at the time of commit. This is especially true if things do not
appear to be working as they should with a new configuration.

JUNOS strives to be flexible and will permit some hardware-dependent
configuration on a platform that is currently lacking the hardware
needed for the feature to work. This is a feature, not a bug, and as such
a warning may not occur on the user’s terminal, but often a log message
is generated.

Here, a commit error is declared when a policer is applied in an output direction, which
is not currently supported on the EX platform. Note the use of commit check, which
performs only the sanity check and does not activate changes regardless of success:

[edit]
lab@Rum# commit check
[edit interfaces ge-0/0/4 unit 0 family inet]
 'filter'
 Referenced filter 'test' can not be used as policer not supported on egress
[edit]
 'interfaces'
 error parsing interfaces object
error: configuration check-out failed

When a successful commit does occur, the candidate configuration becomes the active
configuration, and the previous active configuration is archived into a file called juni-
per.conf.1.gz, which is a binary file compressed form. During this process, the previous
juniper.conf.1.gz is renamed juniper.conf.2.gz, and so on, such that a total of the pre-
vious 50 (0–49) active configurations are retained on the switch.

CLI Overview | 91

The first of these is the current active configuration; it is called juniper.conf.gz and is
stored along with the previous three configurations at /config. The remaining 46 pre-
vious configurations are stored at /var/db/config/.

You access a previous configuration by issuing a rollback n command. In this case, the
n refers to a rollback index, which can be 0 (restore current active config, that is, discard
changes and start over) through 49. A rollback command causes the current candi-
date configuration to be replaced by the previous configuration identified, causing it to
become the current candidate configuration. It must be stressed that the newly restored
configuration is the candidate until you actually perform a commit. Thus, when you
have just committed a configuration, and you realize a serious mistake was made, the
quickest recovery mechanism is typically a configure, rollback 1, commit sequence,
which assumes you left configuration mode after committing the mistake—say, by
issuing a commit and-quit, which exits from configuration mode after a successful
commit.

As mentioned earlier, you can perform a commit check at any time to run the sanity-
check routine against the candidate configuration, without actually placing any
changes into effect. One convenient use of this feature is to build some new configu-
ration, in stages, without actually committing the new configuration until all changes
are complete and you are in a maintenance window. For example, you enter configu-
ration mode and load a saved configuration file to make some edits. Before wrapping
up, you issue commit check to confirm there are no blatant errors, and then save the file
for the next editing session. You then perform a rollback 0 to regain a fresh candidate
configuration copy, and exit configuration mode with no warnings given that no
changes were ever made.

This section is for anyone who has ever been roused from sound slum-
ber to go on-site to recover a box that can no longer be remotely contacted because of
a configuration error. It’s equally for those who have experienced the sinking feeling
of pressing the Enter key on such a configuration error, only to realize too late the error
of your ways, as all contact is lost to an important piece of networking gear that happens
to be located in another country!

The confirmed option to the commit command requires that another commit be issued
within some period of time, the default being 10 minutes. If no such commit is sensed,
the box automatically performs a rollback 1, commit sequence, in effect activating the
previous configuration. This process is demonstrated in the following code, where fail-
ure to commit within one minute results in automatic restoration (and activation) of
the previous configuration:

[edit]
lab@Rum# set system host-name Mur

[edit]
lab@Rum# commit confirmed 1
commit confirmed will be automatically rolled back in 1 minutes unless confirmed
commit complete

Commit confirmed.

92 | Chapter 2: EX Platform Overview

lab@Rum# quit
Exiting configuration mode

commit confirmed will be rolled back in 0 minutes
. . .
Broadcast Message from root@Rum
 (no tty) at 15:28 UTC...

Commit was not confirmed; automatic rollback complete.

lab@Rum> configure
Entering configuration mode

[edit]
lab@Rum# show system host-name
host-name Rum;

You have to disconnect and log back into the router to actually see a
hostname change take effect with JUNOS software. In this example, the
user does not disconnect, which explains why the system continues to
display the old hostname.

Confirmed commits are a real lifesaver and should always be considered when per-
forming remote operations.

We just covered some very important JUNOS capabilities, so a bit of review is in order.
When you enter configuration mode, a copy of the current configuration is forked off
to become the candidate configuration. No changes in switch operation occur until you
activate all changes in the candidate through the commit process, which activates the
candidate configuration.

At this time, the previous active configuration becomes accessible as rollback 1. At the
second commit, the precious active configuration becomes rollback 1 and the previous
rollback 1 becomes rollback 2, and so on. Figure 2-13 illustrates this process.

Figure 2-13. Commits, rollbacks, and saved configurations

CLI Overview | 93

Using rollback 0, which overwrites the current candidate by recopying the active con-
figuration, is a common case that is often missed by those new to JUNOS. As an ex-
ample, imagine that user lab logs into a switch, makes a few changes, and then rudely
logs out without committing the changes:

lab@Rum> configure
Entering configuration mode

[edit]
lab@Rum# set protocols rstp interface all edge

[edit]
lab@Rum# quit
The configuration has been changed but not committed
Exit with uncommitted changes? [yes,no] (yes) yes

Exiting configuration mode

lab@Rum> exit

Rum (ttyu0)

login:

Now, a new user logs into the router and upon entering configuration mode is warned
of the stale changes:

root@Rum% cli
root@Rum> configure
Entering configuration mode
The configuration has been changed but not committed

[edit]
root@Rum#

Fortunately, JUNOS offers a few ways out of this predicament. In this example, the
pipe function is used to quickly compare the candidate and active configurations. This
allows the user to make an intelligent decision as to what she should do next:

[edit]
root@Rum# show | compare
[edit protocols]
+ rstp {
+ interface all {
+ edge;
+ }
+ }

The output clearly shows the configuration delta, and makes it obvious that committing
this change could have a significant impact on the network’s operation. Although you
could parse the logs to determine who made the change, and attempt to track them
down for clarity, you could also perform a rollback 0 to replace the adulterated can-
didate with a fresh copy of the active configuration:

94 | Chapter 2: EX Platform Overview

[edit]
root@Rum# rollback 0
load complete

[edit]
root@Rum# show | compare

[edit]
root@Rum#

The (lack of) output shows the earlier change has been eliminated, leaving you free to
make your edits without having to worry about unintended consequences stemming
from someone else’s changes. Note that JUNOS is very flexible. You could have used
the save command to save a copy of the candidate before you did the rollback so that
the uncommitted changes would not be lost should someone later confess to having
made them. Alternatively, you could mandate use of exclusive configurations, which,
as noted previously, prevents users from exiting configuration mode with uncommitted
changes in the first place.

Loading and saving configurations

When in configuration mode, you use the save command to save all or part of a can-
didate configuration to local or network storage. To save an active rather than candidate
configuration, issue a show configuration command and pipe the results to save when
in operational mode, or perform a rollback 0 if in configuration mode to ensure that
the active and candidate configurations are in sync.

Recall that save begins from the current hierarchy. To save the entire candidate con-
figuration, make sure you are positioned at the top of the configuration hierarchy. In
the following example, only eight lines of the configuration are saved, and all are related
to OSPF area 0:

[edit protocols ospf area 0.0.0.0]
lab@Rum# save test
Wrote 8 lines of configuration to 'test'

In the next example, the addition of top ensures that the whole configuration is cap-
tured, resulting in 86 lines being written:

[edit protocols ospf area 0.0.0.0]
lab@Rum# top save test
Wrote 86 lines of configuration to 'test'

[edit protocols ospf area 0.0.0.0]
lab@Rum#

Sometimes it is not desirable to save the entire configuration; to save some portion of
a configuration, simply navigate into the desired hierarchy. For instance, if every router
in your network has the same system login information, you may want to save only
that portion to load into other routers later, so a save is issued at the [edit system
login] hierarchy:

CLI Overview | 95

[edit system login]
lab@Rum# save only_system_login
Wrote 12 lines of configuration to 'only_system_login'

The automatic system archival feature eliminates the need to manually save and then
transfer your configuration files (using the file copy command); the feature can be set
to archive upon each commit, or at preset intervals. The CLI’s help feature is used to
display some of the archival options:

lab@Rum# set system archival configuration ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> archive-sites List of archive destinations
 transfer-interval Frequency at which file transfer happens (minutes)
 transfer-on-commit Transfer after each commit

As with the save command in general, configuration snapshots can be transferred to a
remote FTP or secure copy (SCP) server based on the URL details specified under the
archival-sites hierarchy. The configuration shown here results in an FTP-based trans-
fer at each commit. The switch will authenticate to the server as user ftp with password
ftp, and the file will be uploaded to the /config/junos/Rum directory:

archival {
 configuration {
 transfer-on-commit;
 archive-sites {
 "ftp://ftp:ftp@foo.bar/config/junos/Rum";
 }

Here, a manual load and network-based file copy operation is demonstrated. Note the
use of run for the operational mode file command:

[edit]
lab@Rum# save rum_base_config
Wrote 124 lines of configuration to 'rum_base_config'

[edit]
lab@Rum# run file copy rum_base_config
ftp://instructor:training1@172.16.69.254/juniper/rum_config
ftp://instructor:training1@172.16.69.254/junip100% of 2386 B 1803 kBps

[edit]
lab@Rum#

The load command is the opposite of save. There are several important variations of
this command; all require that you issue a commit before the change is placed into effect:

[edit]
lab@Rum# load ?
Possible completions:
 factory-default Override existing configuration with factory default
 merge Merge contents with existing configuration
 override Override existing configuration
 patch Load patch file into configuration

96 | Chapter 2: EX Platform Overview

 replace Replace configuration data
 set Execute set of commands on existing configuration
 update Update existing configuration
[edit]

Most of the load options support an argument to control where the information that
is loaded actually comes from (e.g., a terminal buffer, a local file, or a network resource).

Use the override option to completely replace the current candidate configuration with
another one. Here, the contents of a file called junos_is_cool, which is located in the
user’s home directory, overrides the current candidate:

[edit]
lab@Rum# load override junos_is_cool
load complete

Use the merge option when you wish to add to, rather than replace, the candidate con-
figuration. For instance, here you add the system login configuration that was saved
previously to the current candidate, rather than replace it:

[edit]
lab@Rum# load merge only_system_login
load complete

Using a terminal buffer to cut and paste configuration data between boxes can be a real
timesaver. There are several ways to cut and paste into a JUNOS configuration. The
most common method is to use the terminal option to paste updated configuration
data. The terminal data can override, or merge, with the existing candidate, as desired:

lab@Rum# load merge terminal
[Type ^D at a new line to end input]
system {
services {
 ftp;
 ssh;
 telnet;
 }
}
^D
load complete

Although quite useful, this method can take some practice. The proper number of levels
and braces must always be present to avoid an error, because the terminal command
assumes the entire top-level hierarchy is known and all delimiting braces are present.

This is shown in the following code, where the user is at the edit hierarchy and is trying
to paste in data that relates to the [edit systems services] hierarchy. The problem is
that the loaded data is missing the system portion of the hierarchy, resulting in errors:

[edit]
lab@Rum# load merge terminal
[Type ^D at a new line to end input]
services {
 ftp;
 terminal:2:(7) syntax error: ftp

CLI Overview | 97

 [edit services]
 'ftp;'
 syntax error
 ssh;
 telnet;
}
[edit]
 'services'
 warning: statement has no contents; ignored
load complete (1 errors)

It’s times like these that using the relative switch saves the day. In this case, you first
navigate to the desired configuration hierarchy, and then load the data, which is now
understood to be relative to the current working location in the configuration:

[edit]
lab@Rum# edit system

[edit system]
lab@Rum# load merge terminal relative
[Type ^D at a new line to end input]
services {
 ftp;
 ssh;
 telnet;
}
^D
load complete

In summary, load override is used when you want to do a wholesale configuration file
swap, and load merge adds the new information to the existing configuration. By using
the update or replace option you can further control which portions of a configuration
will be added to or replaced, respectively.

Yet another option is to load a series of set commands, as they would have been typed
in configuration mode with the load set option:

lab@Rum# load set terminal
[Type ^D at a new line to end input]
set system services ftp
set system services ssh
set system services telnet
^D

load complete

Recall that a configuration mode show command (or a show configuration from opera-
tional mode) can have the results piped to set, to generate the set statements.

The JUNOS CLI Summary
This section introduced you to the JUNOS software CLI, and gave an honorable nod
to the GUI-based J-Web interface, for those so inclined.

98 | Chapter 2: EX Platform Overview

If you are new to Juniper, you have to admit its CLI is pretty slick, with features such
as space-based command completion, tab-based variable completion, context-sensitive
help, candidate configurations with basic sanity checking, rollbacks, confirmed
commits… the list just goes on and on.

The next section builds on this foundation with a look at additional CLI and JUNOS
functionality.

Advanced CLI and Other Cool Stuff
There are lots of other fantastic configuration options that can be used, and an ex-
planation of all of them would require another book. The JUNOS documentation
contains many timesaving tips, and JUNOS Cookbook by Aviva Garrett (O’Reilly) is a
great resource, too. To whet your appetite, here are three JUNOS software CLI tips.

SOS
If JUNOS is causing you problems, just ask it for help. You can do this in a few ways.
Most people are instinctively aware of the option to use the question mark (?) to display
possible command completions:

[edit]
lab@Rum# set protocols rstp ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 bridge-priority Priority of the bridge (in increments of 4k - 0,4k,8k,..60k)
 disable Disable STP
 forward-delay Time spent in listening or learning state (4..30 seconds)
 hello-time Time interval between configuration BPDUs (1..10 seconds)
> interface
 max-age Maximum age of received protocol bpdu (6..40 seconds)
> traceoptions Tracing options for debugging protocol operation
 | Pipe through a command
[edit]
lab@Rum# set protocols rstp

Note that the > character indicates a directory that contains subdirectories, and the +
indicates a command that takes multiple arguments; no symbol means the command
takes a single argument or is in fact the end statement of a command.

The help command is a secret resource of which few are aware. Sometimes a small piece
of a command is remembered but not the full statement; help apropos can aid in finding
the remaining syntax by searching through large portions of the JUNOS documentation
for string matches. For example, let’s see whether we can jog our memory on
forward-delay:

[edit]
lab@Rum# help apropos forward-delay

Advanced CLI and Other Cool Stuff | 99

http://oreilly.com/catalog/9780596100148/

set logical-routers <name> protocols stp forward-delay <forward-delay>
 Time spent in listening or learning state
set logical-routers <name> protocols rstp forward-delay <forward-delay>
 Time spent in listening or learning state
set logical-routers <name> protocols mstp forward-delay <forward-delay>
 Time spent in listening or learning state
set logical-routers <name> protocols vstp forward-delay <forward-delay>
 Time spent in listening or learning state
set protocols stp forward-delay <forward-delay>
 Time spent in listening or learning state
set protocols rstp forward-delay <forward-delay>
 Time spent in listening or learning state
set protocols mstp forward-delay <forward-delay>
 Time spent in listening or learning state
set protocols vstp forward-delay <forward-delay>
 Time spent in listening or learning state

Here, the results remind us that this is an STP parameter controlling time spent listening
and learning, and we also see at which configuration hierarchies the statement can be
applied. Even more information can be provided by issuing the help topic or help
reference command. The former will display general usage guidelines for that
command:

[edit]
lab@Rum# help topic stp ?
Possible completions:
 bridge-priority Priority to become root bridge or LAN's designated bridge
 configuration-name MSTP region name recorded in MSTP BPDUs
 cost Link cost for determining designated bridge and port
 edge Interface is edge port until BPDU is received
 extended-system-id Bridge identifier for different routing instances
 force-version Spanning tree version is original IEEE 803.1D STP
 forward-delay Time STP bridge port remains in listening, learning state
 hello-time Interval for root bridge sending configuration BPDUs
 interface Interface participating in MSTP or RSTP instance
 interface-msti Logical interface in Multiple Spanning Tree instance
 max-age Maximum expected interval between hello BPDUs
 max-hops Maximum number of hops to forward BPDU in MSTP region
 mode Link mode to identify point-to-point links
 msti Multiple Spanning Tree instance configuration
 priority Priority of interface to become root port
 protocols Protocol is Multiple STP or Rapid STP
 revision-level Revision number of MSTP configuration
 trace-example Sample tracing configuration for STP
 traceoptions Trace options for Spanning Tree Protocols
 vlan Single or range of VLAN IDs associated with MSTI
 vstp VLAN Spanning Tree Protocol instance configuration
 vstp-requirements Requirements, limitations for VLAN Spanning Tree Protocol
[edit]
lab@Rum# help topic stp forward-delay
 Configuring the Forwarding Delay

100 | Chapter 2: EX Platform Overview

 The forwarding delay timer specifies the length of time an STP bridge port
 remains in the listening and learning states before transitioning to the
 forwarding state. Setting the interval too short could cause unnecessary
 spanning-tree reconvergence. Before changing this parameter, you should
 have a thorough understanding of STP.
 To configure the forwarding delay timer, include the following statement:
 forward-delay seconds;
 You can configure this statement at the following hierarchy levels:
 * [edit protocols protocol-name]
 * [edit routing-instances routing-instance-name protocols protocol-name]
 * [edit protocols vstp vlan vlan-id]
 * [edit routing-instances routing-instance-name protocols vstp vlan
 vlan-id]

After learning what a certain command actually accomplished and when it should be
used, we can view the syntax and possible options with the help reference command:

[edit]
lab@Rum# help reference stp forward-delay
forward-delay

 Syntax

 forward-delay seconds;

 Hierarchy Level

 [edit protocols protocol-name],
 [edit routing-instances routing-instance-name protocols protocol-name],
 [edit protocols vstp vlan vlan-id],
 [edit routing-instances routing-instance-name protocols vstp vlan
 vlan-id]

 Release Information

 Statement introduced in JUNOS Release 8.4.

 Description

 Specify the length of time an STP bridge port remains in the listening
 and learning states before transitioning to the forwarding state.

 Options

 seconds--(Optional) Number of seconds the bridge port remains in the
 listening and learning states.
 Range: 4 through 30
 Default: 15 seconds

 Usage Guidelines

 See "Configuring the Forwarding Delay".

 Required Privilege Level

Advanced CLI and Other Cool Stuff | 101

 routing--To view this statement in the configuration.
 routing-control

Scheduled Commits and Wildcards
Most changes that need to be made on a router can be done at only certain times,
referred to as a maintenance window. Because these windows are often at the most
inconvenient times for those who have to make them, changes represented by commit
can actually be scheduled (comments can also be added):

[edit]
lab@Rum# commit at 19:00 comment "testing commit at feature"
configuration check succeeds
commit at will be executed at 2008-03-19 19:00:00 UTC
Exiting configuration mode

When a commit is pending, the database is locked, preventing other users from making
any modifications:

lab@Rum> configure
Entering configuration mode
Users currently editing the configuration:
 lab terminal u0 (pid 3443) on since 2008-03-19 15:28:38 UTC
 commit-at

[edit]
lab@Rum# set system host-name foo
error: configuration database locked by:
 lab terminal u0 (pid 3443) on since 2008-03-19 15:28:38 UTC
 commit at

If the system needs to be unlocked before the specified time, an operational mode
clear command can stop the timed action:

lab@Rum# run clear system commit
Pending commit cleared

[edit]
lab@Rum#

Wildcards and regular expressions

Wildcard and regex support are two features that operate together to simplify working
with large configurations. You can use wildcards in operational and configuration
modes, to display only certain values or to replace/delete matching strings, respectively.
In this example, wildcards and a regex match are used to delete a range of matching
interfaces:

[edit]
lab@Rum# wildcard delete interfaces ge-0/0/"[3-5]"
 matched: ge-0/0/3
 matched: ge-0/0/4
Delete 2 objects? [yes,no] (no) yes

102 | Chapter 2: EX Platform Overview

Note the use of quotes around the regex itself, and the handy confirmation dialog that
helps guard against the inevitable regex mistake. In this example, an operational mode
command lists the status of only matching interfaces:

[edit]
lab@Rum# run show interfaces terse ge-0/0/"[3-4]"*
Interface Admin Link Proto Local Remote
ge-0/0/3 up up
ge-0/0/3.0 up up eth-switch
ge-0/0/4 up up
ge-0/0/4.0 up up eth-switch

Lastly, common configuration changes can be made in one fell swoop with the
replace command. Any string can replace any other string, with a string defined from
a range of one character to any POSIX 1003.2 expression. The replace function is
especially useful when you need to update an IP or MAC address that is referenced in
various places, such as firewall filters, policies, protocols, and so on.

In this example, we update all instances of “200” with “201”, which in this context
refers to a VLAN tag:

[edit]
lab@Rum# replace pattern ^200$ with 201

The regex anchor characters ^ and $ are used to match only user variables that begin
and end with exactly 200, which helps to avoid trouncing on unintentional matches
such as might occur with an IP address containing the value 200. The CLI compare
function is evoked against its default target, which is rollback 0, and the output con-
firms that only the VLAN ID has changed, while the IP address remains untouched due
to the diligent use of regex matching:

[edit]
lab@Rum# show | compare
[edit interfaces ge-0/0/0 unit 0]
- vlan-id 200;
- family inet {
- address 10.3.5.5/24;
- address 200.0.0.1/24;
- }
+ vlan-id 201;
+ family inet {
+ address 10.3.5.5/24;
+ address 200.0.0.1/24;
+ }

Copying, Renaming, and Inserting
The CLI also allows you to copy portions of the configuration, to rename one value to
another, and to insert a string into an existing list of values. The latter is particularly
useful for order-sensitive processing such as with ACLs, where you can insert a new

Advanced CLI and Other Cool Stuff | 103

address at the desired location without having to clear the entire list and rebuild it from
scratch.

Here, a Layer 3 interface is copied and the rename function is used to provide it with a
unique IP address:

[edit interfaces]
lab@Rum# copy ge-0/0/4 to ge-0/0/5

[edit interfaces]
lab@Rum# edit ge-0/0/5 unit 0

[edit interfaces ge-0/0/5 unit 0]
lab@Rum# show
family inet {
 filter {
 input test;
 output test;
 }
 address 10.5.7.5/24;
}

[edit interfaces ge-0/0/5 unit 0]
lab@Rum# rename family inet address 10.5.7.5/24 to address 10.9.9.10/24

[edit interfaces ge-0/0/5 unit 0]
lab@Rum# show
family inet {
 filter {
 input test;
 output test;
 }
 address 10.9.9.10/24;
}

Conclusion
This chapter discussed EX platform models and hardware capabilities as well as typical
market applications. We also provided an overview of the initial Layer 2 and Layer 3
features, as well as a quick tour and operational guide to the JUNOS software that runs
them.

The CLI is one of the most flexible and user-friendly frontends in the entire industry,
allowing expert status to be achieved in record time. As your familiarity with the CLI
increases, you will discover even more features. Now that the groundwork has been
established, the rest of the book will dive into the specific EX switching and routing
scenarios that will afford you much CLI practice. Yes, much indeed.

104 | Chapter 2: EX Platform Overview

Chapter Review Questions
1. Which of the following Juniper Networks switches can support a VC?

a. EX4200

b. EX2300

c. EX3200

d. EX8200

2. Which hardware component provides the user CLI/management interface?

a. Packet Forwarding Engine

b. Route processor

c. System control board

d. Routing engine

3. True or false: adding a higher-wattage power supply can increase the number of
PoE ports from the value the chassis initially ships with.

4. Which commands save the entire configuration? (Choose two.)

a. [edit]
save config

b. [edit protocols]
save config

c. save running configuration

d. [edit]
show | save config

5. Which pipe argument is used to find every occurrence of the word error in some
file?

a. match error

b. find error

c. search error

d. except error

6. What is the default password to enter configuration mode on the router?

a. juniper

b. enable

c. None, a configuration password is not supported

d. root

7. Which configuration mode command is issued to navigate to the [edit protocols
ospf] directory?

a. cd protocols ospf

b. edit protocols ospf

Chapter Review Questions | 105

c. cd /edit/protocols/ospf

d. dir protocols ospf

8. Which configuration mode command activates configuration changes?

a. apply

b. copy

c. save

d. commit

9. What is the top level of the configuration tree called?

a. C:/

b. top

c. edit

d. root

10. After performing a commit, which CLI command returns to the previously acti-
vated configuration?

a. rollback 1

b. rollback 0

c. rollback active

d. rollback previous

11. Which command is used to obtain detailed information about configuring OSPF
area ranges?

a. ospf ?

b. help topic ospf area-range

c. help reference ospf area-range

d. man ospf

Chapter Review Answers
1. Answer: A. Only the EX4200 can be used as part of a VC.

2. Answer: D. The routing engine is the component in the router that controls all
management functions, including commands that would be used to debug the
router.

3. Answer: False. Installing a PSU with additional amperage does not activate any
additional PoE ports. PoE port count is determined by part number only. However,
installing an insufficient PSU will result in deactivation of PoE ports to bring the
PoE load to within that PSU’s budget.

106 | Chapter 2: EX Platform Overview

4. Answer: A and D. The save command saves the configuration from the current
hierarchy down. Displaying the configuration and piping it to the CLI’s save func-
tion has the same effect.

5. Answer: A. The pipe command match will find every occurrence of a string in the
output of the command. The find command will locate the first occurrence of
the string, search is an invalid option, and hold will hold text without exiting the
-More-- prompt.

6. Answer: C. There is no password to enter configuration mode. Users are allowed
into configuration mode based on access privileges.

7. Answer: B. Recall that in JUNOS the edit statement functions like a cd (change
directory) command. While there is no cd command, you use the edit statement
to park at some hierarchy. Once so positioned, you enter configuration statements
that are qualified by the current hierarchy, which means that only relevant syntax
is displayed with the CLI help function. In contrast, when at the top ([edit]) of
the configuration hierarchy, you can modify anything in the configuration but must
issue fully qualified statements to remove any ambiguities.

8. Answer: D. To activate changes in the switch’s configuration, issue a commit com-
mand. Of the remaining options, copy and save are valid CLI commands but are
used for configuration management.

9. Answer: C. When at the top level of the configuration tree, the CLI banner will
display the [edit] prompt.

10. Answer: A. The first archive is stored in rollback 1. rollback 0 is used to copy the
active configuration to the candidate configuration; the other options are not valid
rollback commands.

11. Answer: C. help topic commands provide a functional overview and help
reference commands detail configuration options.

Chapter Review Answers | 107

CHAPTER 3

Initial Configuration and Maintenance

Now that we have introduced you to JUNOS, it is time to get started with initial switch
configuration. This chapter walks through the configuration and hardware status
checks typically performed when installing a brand-new EX switch. A new switch is set
to a factory-default configuration, and the goal of this chapter is to teach you how to
configure the switch with the most common settings needed to get the chassis up and
running with network management and user accounts. The topics covered include:

• Factory-default configuration and EZSetup

• Initial configuration using the command-line interface (CLI)

• Secondary configuration using the CLI

• EX interfaces

• Chassis monitoring and network tools

JUNOS is a flexible operating system and there are several ways to skin the initial
configuration cat, which is not to say that any animals were harmed during production
of this material. We begin with a quick overview of the EZSetup Wizard, but the focus
rapidly shifts to the CLI, where the real work can be quickly done.

This chapter walks you through the addition of a new Juniper Networks EX4200
switch, in this case named Tequila, using both EZSetup and the CLI, and demonstrates
chassis status monitoring and validation of initial configuration services and operation.
The new switch is being integrated into a legacy switched network that comprises two
Cisco Catalyst 3550 switches named Whiskey and Gin. Figure 3-1 shows the planned
topology expansion.

109

Figure 3-1. Planned network topology expansion

The Factory-Default Configuration and EZSetup
As we discussed previously, the EX4200 switches are rack-, desk-, or wall-mountable.
In our case, the switch is rack-mounted using the mounting brackets and rubber feet
supplied with the new switch. This is primarily a spinal type of effort, and we will not
document it further here. Details on rack mounting, and other installation options, are
available in the user documentation.

Factory-Default Configuration
When the switch is installed in the rack, it contains a factory-default configuration. A
factory-default configuration is not blank; it contains the following default behavior
and settings:

• Enables Layer 2 switching mode on all ports

• Configures system logging

• Enables Link Layer Discovery Protocol (LLDP) and Rapid Spanning Tree Protocol
(RSTP) on all interfaces

• Enables Power over Ethernet (PoE) on all supported ports

• Enables Internet Group Management Protocol (IGMP) snooping

• Resets the LCD menu and any Virtual Chassis (VC) configuration on commit

The following code displays the factory-default configuration. Note that only the root
user can log in when the default configuration is active and no password is set:

root@% root
root@% OS 9.2R1.9 built 2008-08-05 07:25:22 UTC
root@% cli
root> configure
Entering configuration mode
[edit]
root# show
Last changed: 2008-08-05 11:13:01 UTC

110 | Chapter 3: Initial Configuration and Maintenance

version 9.2R1.9;system {
 syslog {
 user * {
 any emergency;
 }
 file messages {
 any notice;
 authorization info;
 }
 file interactive-commands {
 interactive-commands any;
 }
 }
 commit {
 factory-settings {
 reset-chassis-lcd-menu;
 reset-virtual-chassis-configuration;
 }
 }
 ## Warning: missing mandatory statement(s): 'root-authentication'
}
interfaces {
 ge-0/0/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/1 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/2 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/3 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/4 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/5 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/6 {
 unit 0 {
 family ethernet-switching;

The Factory-Default Configuration and EZSetup | 111

 }
 }
 ge-0/0/7 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/8 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/9 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/10 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/11 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/12 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/13 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/14 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/15 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/16 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/17 {
 unit 0 {
 family ethernet-switching;

112 | Chapter 3: Initial Configuration and Maintenance

 }
 }
 ge-0/0/18 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/19 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/20 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/21 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/22 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/23 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 xe-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/1 {
 unit 0 {
 family ethernet-switching;
 }
 }
 xe-0/1/1 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/2 {
 unit 0 {
 family ethernet-switching;

The Factory-Default Configuration and EZSetup | 113

 }
 }
 ge-0/1/3 {
 unit 0 {
 family ethernet-switching;
 }
 }
}
protocols {
 igmp-snooping {
 vlan all;
 }
 lldp {
 interface all;
 }
 lldp-med {
 interface all;
 }
 rstp;
}
poe {
 interface all;
}

Notice the existence of the ge-0/1/1 and xe-0/1/1 uplink interfaces in
the factory-default configuration. In JUNOS, interfaces are allowed to
be configured even if they do not physically exist. The factory-default
configuration takes into account that the uplink module could be either
1G or 10G, and the missing physical module will simply be ignored.

The attempt to commit with a factory default fails due to lack of a root authentication
setting. This is expected:

[edit]
root commit
[edit]
 'system'
 Missing mandatory statement: 'root-authentication'
error: commit failed: (missing statements)

[edit]
root# quit
Exiting configuration mode

root> exit

root@%

114 | Chapter 3: Initial Configuration and Maintenance

To return a switch to the factory-default configuration, issue the load
factory-default command in configuration mode or navigate the LCD
menu by clicking the Menu button and choosing “Restore to factory
default.” Note that after the configuration is loaded, it still cannot be
committed due to lack of a root password. This safety measure ensures
that this important password is set before you install the router in your
production network.

However, because such a setting alters the factory default, once the setting is committed
the EZSetup feature is no longer available. EZSetup runs only with a true, unaltered
factory default. See the warning at the end of the next section for more details.

EZSetup
The EZSetup feature is designed to walk you through the most common configuration
settings to get your switch up and running quickly. The functionality is similar to the
initial configuration dialog seen on IOS-based devices. After logging in as root you have
the choice of entering the router’s operational mode by typing cli or ezsetup. You can
also access EZSetup through the LCD menu by choosing Initial Setup or via J-Web by
connecting to either the ge-0/0/0 or the me0 interface and directing your browser to
192.168.1.1.

To access the CLI-based EZSetup feature, you must have a console con-
nection to the switch. The switch is supplied with an RJ-45 to DB-9
EIA-232 cable for this purpose.

Once activated, EZSetup prompts you for the following configuration parameters:

• Hostname

• Telnet service

• SSH service

• Switch management

• Simple Network Management Protocol (SNMP)

• Time

• Time zone

You launch EZSetup from a root shell prompt when a factory-default config is active,
as shown in the following code. In this example, various parameters such as hostname
and Out of Band (OoB) management addresses are assigned:

root@% ezsetup

* EZSetup wizard *

The Factory-Default Configuration and EZSetup | 115

* *
* Use the EZSetup wizard to configure the identity of the switch. *
* Once you complete EZSetup, the switch can be accessed over the network. *
* *
* To exit the EZSetup wizard press CTRL+C. *
* *
* In the wizard, default values are provided for some options. *
* Press ENTER key to accept the default values. *
* *
* Prompts that contain [Optional] denotes that the option is not mandatory. *
* Press ENTER key to ingore the option and continue. *
* *

EZSetup Initializing..done.

Initial Setup Configuration

Enter System hostname [Optional]:Tequila

Enter new root password:
Re-enter the new password:

Enable Telnet service? [yes|no]. Default [no]:yes

Enable SSH service? [yes|no]. Default [yes]:

Switch Management
1: Configure in-band Management [interface vlan.XX]
2: Configure out-of-band management [me0.0]
Choose Option [1 or 2], default [1]:2
Configuring me0.0
Enter Management IP address [192.168.1.1]:172.16.69.4
Enter Subnetmask [255.255.255.0]:
Enter Gateway IP address:
Invalid IP address format, expected <aa.bb.cc.dd>
Enter Gateway IP address:172.16.69.9

Configure SNMP [yes|no], default [yes]:yes
SNMP Configuration
Contact information for administrator, Enter contact [Optional]:
Community name, Enter community [Optional]:underdogs
Physical location of system, Enter location [Optional]:

Enter System Time and Date YYYY:MM:DD:hh:mm:ss [Optional]:

Time Zone [Optional], Enter "yes" to choose Timezone from list:yes
Select Timezone
Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmera

116 | Chapter 3: Initial Configuration and Maintenance

Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
...
...
....

America/Los_Angeles
America/Louisville
America/Maceio
America/Managua

Press key n to stop and any other key to continue...

Press key n to stop and any other key to continue...
Enter Timezone:America/Los_Angeles

The input configuration parameters are

System Hostname: Tequila
Root password: ******
System Telnet Service: yes
System SSH Service: yes
Management IP Address: 172.16.69.4
SubnetMask: 255.255.255.0
Gateway IP Address: 172.16.69.9
Out-of-band management: me0.0
SNMP Community: underdogs
SNMP Location:
SNMP Contact:
Time-Date:
Time-zone: America/Los_Angeles
Interfaces:

Commit the new configuration?
Choosing option "yes" will add new configuration to existing configuration.
Option "No" will allow user to come out of EZSetup wizard.

Choose option [yes|no], default [yes]:yes

Committing the new configuration, please wait.....
Commit success.
root@tequila% cli

The following code shows the updated configuration. Notice that the system was com-
mitted and the hostname was changed. The highlighted portions of the configuration
show the configuration delta that resulted from answering the EZSetup prompts, and
the rest of the configuration was inherited from the factory-default configuration:

root@tequila> show configuration
Last commit: 2008-08-05 04:41:28 PDT by root

The Factory-Default Configuration and EZSetup | 117

version 9.2R1.9;
system {
 host-name Tequila;
 time-zone America/Los_Angeles;
 root-authentication {
 encrypted-password bJOYvGXKxTdr6; ## SECRET-DATA
 }
 services {
 ssh;
 telnet;
 web-management {
 http;
 }
 }
 syslog {
 user * {
 any emergency;
 }
 file messages {
 any notice;
 authorization info;
 }
 file interactive-commands {
 interactive-commands any;
 }
 }
}
interfaces {
 ge-0/0/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/1 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/2 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/3 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/4 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/5 {
 unit 0 {

118 | Chapter 3: Initial Configuration and Maintenance

 family ethernet-switching;
 }
 }
 ge-0/0/6 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/7 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/8 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/9 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/10 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/11 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/12 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/13 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/14 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/15 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/16 {
 unit 0 {

The Factory-Default Configuration and EZSetup | 119

 family ethernet-switching;
 }
 }
 ge-0/0/17 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/18 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/19 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/20 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/21 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/22 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/0/23 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 xe-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/1 {
 unit 0 {
 family ethernet-switching;
 }
 }
 xe-0/1/1 {
 unit 0 {

120 | Chapter 3: Initial Configuration and Maintenance

 family ethernet-switching;
 }
 }
 ge-0/1/2 {
 unit 0 {
 family ethernet-switching;
 }
 }
 ge-0/1/3 {
 unit 0 {
 family ethernet-switching;
 }
 }
 me0 {
 unit 0 {
 family inet {
 address 172.16.69.4/24;
 }
 }
 }
}
snmp {
 community underdogs {
 authorization read-only;
 }
}
routing-options {
 static {
 route 0.0.0.0/0 next-hop 172.16.69.9;
 }
}
protocols {
 igmp-snooping {
 vlan all;
 }
 lldp {
 interface all;
 }
 lldp-med {
 interface all;
 }
 rstp;
}
poe {
 interface all;
}

As of JUNOS 9.2R1.9, the only way to evoke EZSetup after committing
any changes is to delete the files in the /config directory from a root shell,
and then reboot the switch to force the load of a true factory config.
Using load factory-default does not suffice; a root password must be
set before you can commit the loaded configuration, after which the
config is no longer considered factory-default enough to prompt for
EZSetup.

The Factory-Default Configuration and EZSetup | 121

Factory-Default Configuration and EZSetup Summary
When you purchase a new switch, the system is loaded with a factory-default config-
uration that enables Layer 2 switching on all interfaces as well as protocols such as
RSTP and LLDP. One way to get the initial installation into the router is to use the
EZSetup feature. A second way is to configure each statement via CLI commands. We
will examine this option next.

Initial Configuration Using the CLI
Although the EZSetup menu is, well, easy, it often does not contain all the parameters
that are needed in a specific deployment. As a result, users often bypass EZSetup and
configure the switch via the CLI. Juniper recommends that you configure the following
parameters during initial configuration. Note that with the exception of the system’s
domain name, all parameters can be configured via EZSetup, when desired.

This section begins by showing the commands that you would type to offer the equiv-
alent functionality to EZSetup. We won’t go into a detailed explanation here, as we
discuss each command and topic in detail later in this chapter.

Hostname
Sets the switch’s name:

root# set system host-name Tequila

Root password
Sets the password for user root:

root# set system root-authentication plain-text-password
New password:
Retype new password:

Remote access protocols
Connects to the router without a physical connection:

root# set system services ssh
root# set system services telnet

Default VLAN management (EZSetup option only)
Uses the default virtual LAN (VLAN) or a new VLAN for management. If you select
the New VLAN option, you are prompted to specify the VLAN name, VLAN ID,
management IP address, and default gateway. Select the ports that must be part of
this VLAN. See Chapter 5 for VLAN details.

OoB management IP
Uses the dedicated OoB management interface:

root# set interfaces me0 unit 0 family inet address 172.16.69.8/24

122 | Chapter 3: Initial Configuration and Maintenance

OoB default route
Creates a default route for the OoB network and ensures, via the no-export tag,
that this route is never redistributed into any protocols:

root# set routing-options static route 0.0.0.0/0 next-hop 172.16.69.9 no-export

Domain name
Sets the Domain Name System (DNS) entry:

root# set system domain-name ietraining.net

SNMP contact and community information
Adds contact information:

root# set snmp community underdogs authorization read-only

System time and time zone
Sets the time and time zone:

root@Tequila> set date ?
Possible completions:
 <time> New date and time (YYYYMMDDhhmm.ss)
 ntp Set system date and time using Network Time Protocol servers
root# set system time-zone America/Los_Angeles

The candidate configuration is activated to put the initial configuration into effect.
Recall that with JUNOS, “If you don’t commit, it don’t mean feces” (euphemism
inserted):

[edit]
root# commit
commit complete
[edit]
root@Tequila#

Note that after the commit, the system prompt changes to reflect the newly assigned
hostname. With the preliminary configuration committed, attention now shifts to ad-
ditional configuration that is often needed as part of the installation of a new switch.

CLI Configuration Summary
This section showed how quickly you can get a JUNOS device up and running with a
few fell strokes of the CLI interface. The next section builds upon this information with
some secondary configuration items that you should consider in any install.

Secondary Configuration
After completing the initial configuration via either the CLI or EZSetup, you will likely
need additional configuration, such as:

• Non-root-user accounts and privileges

Secondary Configuration | 123

• OoB management

• Additional remote access functionality

• Dynamic Host Configuration Protocol (DHCP) services

Customized User Accounts, Authentication, and Authorization
There are two types of users on a Juniper Networks system: non-root users and the
root user. All users must be authenticated before they can access the switch, and when
desired, various levels of authorization are possible to limit the scope of actions or
commands available to users in each class. Recall that the root user is the only prede-
fined user, and that root can log in only via the console port until SSH access is con-
figured; the root user is not permitted to remotely access the router via Telnet for
security reasons.

Non-root users can telnet to the router and su to root when authorized
if the SSH service is not running. This is not recommended, as Telnet
sends in plain text.

You must set a root password before the switch will allow you to commit a modified
factory-default configuration. As we showed previously, to set up a root password, issue
the set root-authentication statement under the [edit system] level. There are several
options:

root@Tequila# set system root-authentication ?
Possible completions:
+ apply-groups Groups from which to inherit configuration
 data
+ apply-groups-except Don't inherit configuration data from these
 groups
 encrypted-password Encrypted password string t
 load-key-file File (URL) containing one or more ssh keys
 plain-text-password Prompt for plain text password (autoencrypted)
> ssh-dsa Secure shell (ssh) DSA public key string
> ssh-rsa Secure shell (ssh) RSA public key string

The password can be a plain-text password that is encrypted automatically in the con-
figuration, an SSH key, or an encrypted string for copying and pasting between other
configurations. In this case, a password of jncie123 is supplied:

root@Tequila# set system root-authentication plain-text-password
New password:
Retype new password:

124 | Chapter 3: Initial Configuration and Maintenance

When issuing a plain-text password, JUNOS enforces default require-
ments for password length and structure to help ensure that a strong
password is used. The password must be between 6 and 128 characters
and must contain one change of case or special character. You can
modify these defaults under [edit system password].

Once the password is set, JUNOS automatically displays an encrypted value; there is
no need for a password encryption service as in IOS, and only Message Digest 5 (MD5)
is supported to prevent any reverse engineering attempts, as often occurs with Cisco
type 7 password encryption:

[edit]
root@Tequila# show system root-authentication
encrypted-password "1G8r2A1XZ$Nh0j8UP.Z3J/NGsWcBr9k0"; ## SECRET-DATA

The SECRET-DATA tag is used to prevent users who do not have authorization from even
viewing the encrypted portion of the configuration; nice and tight, just the way it should
be. The encrypted string plays an important role; it allows the root password to be
copied to an additional switch without user knowledge of the actual password. Here
the password is loaded into another new switch named Vodka:

root@Vodka# load merge terminal relative
[Type ^D at a new line to end input]
encrypted-password "1G8r2A1XZ$Nh0j8UP.Z3J/NGsWcBr9k0"; ## SECRET-DATA
load complete

[edit system root-authentication]
root@Vodka# show
encrypted-password "1G8r2A1XZ$Nh0j8UP.Z3J/NGsWcBr9k0"; ## SECRET-DATA

Now let’s move on to non-root users. These users can be defined with local user pass-
words and permissions, or an external server such as RADIUS or TACACS can be used
for authentication and authorization. Figure 3-2 demonstrates.

Figure 3-2. Server authentication and authorization

To use RADIUS or TACACS, two items must be configured: the server parameters and
the authentication order. In JUNOS software, the authentication order determines the
order in which the switch looks for a valid login attempt. For instance, the following
configuration checks the authentication criteria against the TACACS+ server first, and

Secondary Configuration | 125

if a communications (not an authentication) failure occurs, it then tries the next
method, which is local authentication via the local password database:

root@tequila# set system authentication-order [tacplus password]

The authentication order has often been misunderstood and misconfigured in JUNOS.
The most important point to remember is that the system will always try every method
listed until success is achieved. So, if you want to make sure the local database is not
consulted if the RADIUS or TACACS server returns a reject message, do not place the
password keyword in the configuration. For example:

root@tequila# set system authentication-order tacplus

If you’re betting on the fact that the local database will never be consulted, I suggest
you stay away from Las Vegas. If the specified server is not reachable, the local database
is always consulted. This default behavior is to protect you from being locked out of
the switch if access to the authentication server is lost for any reason.

When creating a user or user template, three items need to be configured:

• Username

• Authorization

• Password

These three items could be on the switch, server, or a combination of both. Several
levels of the authorization components can be configured, as shown in Figure 3-3.

Figure 3-3. User authorization hierarchy

First, each user is applied to a class that defines the permissions for that user. The class
can be predefined, as shown in Table 3-1, or user-created. A user’s class determines the
user’s overall level of permissions. If the class permissions are a bit too broad or narrow,
you can explicitly deny or allow additional commands that can be denied or allowed
from the default permission bit setting. For instance, a class with the permission setting
of reset allows a restart of all interfaces and processes. This may open up too many
opportunities for user mistakes, so a tighter lockdown may be preferred, which you
can specify via a set of deny commands with a regular expression. Similarly, you can
explicitly choose to allow commands that would otherwise be denied by a given class
with the allow keyword.

User authentication case study

In this section, we will provide a case study to illustrate some possible options associ-
ated with user definition.

126 | Chapter 3: Initial Configuration and Maintenance

Those familiar with JUNOS Enterprise Routing, by Doug Marschke and
Harry Reynolds (O’Reilly), may find this case study a bit familiar. De-
spite the authors’ apparent laziness, issuing a definition on a switch is
no different from doing so on a router, and the selected case study rep-
resents a realistic scenario. JUNOS is, after all, JUNOS.

The case study sets the following requirements:

1. Define three local users, doug, harry, and lab, and provide them with maximum
access.

2. Create a Network Operations Center (NOC) group consisting of 15 engineers.
Each NOC engineer will have his own username, but will share the same permis-
sions of read-only commands and maintenance commands for troubleshooting.

3. Create a design engineer group consisting of three engineers. This group will have
full access to all CLI commands, except for the restart and request commands.

4. All users will be authenticated using a RADIUS server with a shared secret of
ronkittle.

5. Authorization is defined on the local switch.

6. If the RADIUS server is down, only harry, lab, and doug may log in to the switch.

One user that is not explored in this case study is the remote user. This
is a user profile created for use on the switch when the authenticated
user does not have a local switch profile, or the authenticated user’s
record in the authentication server specifies a local user. You can think
of this as a default fallback account.

Each defined user must be associated with a login class, which assigns the permissions
for the user. The login class can be one of the four default classes listed in Table 3-1,
or a custom-defined class.

Table 3-1. Predefined JUNOS user classes

Class Permissions

super-user All

read-only View

operator Clear, Network, Reset, Trace, View

unauthorized None

Users harry, lab, and doug require maximum access, so it makes sense to use a prede-
fined JUNOS software class called super-user. Here we show the step-by-step process
for harry only, as the process for users doug and lab is identical:

Secondary Configuration | 127

http://oreilly.com/catalog/9780596514426/

root@Tequila# set system login user harry class super-user authentication
plain-text-password
New password:
Retype new password:

[edit]
root@Tequila# show system login
user harry {
 class super-user;
 authentication {
 encrypted-password "1oOspqmHP$jlxUul0cAgPq3j88/7WQP/";
 ## SECRET-DATA
 }
}

Next, a group of 15 NOC engineers are defined. Since configuring 15 local users will
be a pain to manage and tiresome to type, we will use a user template. A user template
allows multiple users defined on the RADIUS server with unique passwords to be
grouped to a single local Juniper user. Since a predefined class will not satisfy the au-
thorization level for the NOC engineers of read-only commands and maintenance
commands, we will define a custom class:

[edit system login]
root@Tequila# set class ops permissions [view maintenance trace]

Refer to the access-privilege technical documentation to see each com-
mand that is allowed for every permission setting.

Next, we assign the user ops the new class, also called ops:

[edit system login]
root@Tequila# set user ops class ops

[edit system login]
root@Tequila# show class ops
permissions [trace view maintenance];
root@Tequila# show user ops
uid 2000;
class ops;

The RADIUS server will then have 15 users defined that all map to the same Juniper-
local user of ops. For example, the configuration for 2 of the 15 users using a RADIUS
server would be similar to the following:

becca Auth-Type = Local, Password = "authorsgf"
 Service-Type = Login-User,
 Juniper-Local-User-Name = "ops"

calumet Auth-Type = Local, Password = "hometown!"
 Service-Type = Login-User,
 Juniper-Local-User-Name = "ops"

128 | Chapter 3: Initial Configuration and Maintenance

The design engineer group requirement will also use a template, but will make use of
special allow and deny commands that we can also define in a class. If the permission
bits that are set are too broad, we can deny individual commands within the permission
settings. (And vice versa: if we need an additional command or set of commands that
go beyond the permission setting, we can allow them.) These allow and deny statements
could be a single command or a group of commands using regular expressions. They
are also separated in allow or deny operational mode commands or configuration mode:

[edit system login]
root@Tequila# set class design ?
Possible completions:
 allow-commands Regular expression for commands to allow explicitly
 allow-configuration Regular expression for configure to allow explicitly
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 deny-commands Regular expression for commands to deny explicitly
 deny-configuration Regular expression for configure to deny explicitly
 idle-timeout Maximum idle time before logout (minutes)
 login-alarms Display system alarms when logging in
 login-tip Display tip when logging in
+ permissions Set of permitted operation categories

The design engineer’s class will have the permission bits set to all, and all commands
that start with r (request and restart) will be disallowed:

[edit system login]
root@Tequila# set class design permissions all

[edit system login]
root@Tequila# set class design deny-commands "^r.*$"

root@Tequila# set user design class design

Although regular expressions are beyond the scope of this chapter,
here’s a quick list of common operators:

• . (any character)

• * (zero or more characters)

• ^ (start of string to which the regex is applied)

• $ (end of string to which the regex is applied)

• ? (zero or one character)

As mentioned, we can define users locally on the switch or on an external server such
as RADIUS or TACACS. In this chapter’s case study, we specified a RADIUS server
earlier, in requirement 4. The RADIUS server’s IP address and secret password are
configured:

[edit system]
root@Tequila# set radius-server 10.20.130.5 secret ronkittle

Secondary Configuration | 129

For the system to use the RADIUS server, we must configure the authentication-
order statement. This indicates which order of authentication method should be used;
the default is the local switch database only. In this section of our case study, we must
decide between the following configuration choices:

1. authentication-order [radius password]

2. authentication-order [radius]

In either configuration, the local database will be consulted if the RADIUS server is
down, so the difference between the two options is evident when the RADIUS server
returns a reject. This reject could be caused by a mistyped password or a username that
is not defined in the RADIUS server. In option 1, the RADIUS server returns the reject
and the local database will be consulted. Option 2 consults the local database only if
the RADIUS server is unresponsive; processing stops if the server returns a reject mes-
sage. The requirements state that the RADIUS server should always be used when
available (as specified in option 1). If the RADIUS server is not available, users doug
and harry will be allowed to log in using the local database since they are the only users
with locally defined passwords on the switch. These users are also defined on the
RADIUS server:

doug Auth-Type = Local, Password = "reddawnrocks1"
 Service-Type = Login-User

Here is a complete system login configuration that meets all six of the criteria specified
earlier:

[edit system]
root@Tequila# show
host-name Tequila;
authentication-order radius password;
ports {
 console type vt100;
}
root-authentication {
 encrypted-password "$1$85xXcov4$fLHtgMlqxRSg24zO8Kbe81"; ##
 SECRET-DATA
}
radius-server {
 10.20.130.5 secret "9KdgW87db24aUcydsg4Dj69A0RSWLN24ZNd.5TFAt";
 ## SECRET-DATA
}
login {
 class design {
 permissions all;
 deny-commands "^r.*$";
 }
 class ops {
 permissions [trace view maintenance];
 }
 user design {
 uid 2004;
 class design;

130 | Chapter 3: Initial Configuration and Maintenance

 user harry {
 uid 2001;
 class super-user;
 authentication {
 encrypted-password "1oOspqmHP$jlxUul0cAgPq3j88/7WQP/";
 ## SECRET-DATA
 }
 }
 user lab {
 uid 2002;
 class superuser;
 authentication {
 encrypted-password " 1wD/I1Ybw$M7a/X51Gk36xaRs3XNRuQ1";
 ## SECRET-DATA
 }
 }
 user doug {
 uid 2003;
 class superuser;
 authentication {
 encrypted-password "1ocs3AXkS$JdlQW7z4ZIJblfFZD.fqH/";
 ## SECRET-DATA
 }
 }
 user ops {
 uid 2000;
 class ops;
 }
}
services {
 ftp;
 ssh;
 telnet;
}
syslog {
 user * {
 any emergency;
 }
 file messages {
 any notice;
 authorization info;
 }
 file interactive-commands {
 interactive-commands any;
 }
}

Lastly, to verify that the user has the correct permissions, log in to the switch and issue
a show cli authorization command:

design@Tequila> show cli authorization
Current user: 'design ' class 'design'
Permissions:
 admin -- Can view user accounts
 admin-control-- Can modify user accounts

Secondary Configuration | 131

 clear -- Can clear learned network information
 configure -- Can enter configuration mode
 control -- Can modify any configuration
 edit -- Can edit full files
 field -- Special for field (debug) support
 floppy -- Can read and write from the floppy
 interface -- Can view interface configuration
 interface-control-- Can modify interface configuration
 network -- Can access the network
 reset -- Can reset/restart interfaces and daemons
 routing -- Can view routing configuration
 routing-control-- Can modify routing configuration
 shell -- Can start a local shell
 snmp -- Can view SNMP configuration
 snmp-control-- Can modify SNMP configuration
 system -- Can view system configuration
 system-control-- Can modify system configuration
 trace -- Can view trace file settings
 trace-control-- Can modify trace file settings
 view -- Can view current values and statistics
 maintenance -- Can become the super-user
 firewall -- Can view firewall configuration
 firewall-control-- Can modify firewall configuration
 secret -- Can view secret configuration
 secret-control-- Can modify secret configuration
 rollback -- Can rollback to previous configurations
 security -- Can view security configuration
 security-control-- Can modify security configuration
 access -- Can view access configuration
 access-control-- Can modify access configuration
 view-configuration-- Can view all configuration (not including
 secrets)
Individual command authorization:
 Allow regular expression: none
 Deny regular expression: ^r.*$
 Allow configuration regular expression: none
 Deny configuration regular expression: none

Out of Band Network
The legacy network was deployed with an OoB management network that intercon-
nects the routers and switches to allow management access, even during periods of
network malfunction that disrupt in-band network operations. Figure 3-4 shows the
OoB network details. The management network is a 172.16.69.0/24 subnet, and phys-
ical connections go through a VLAN-aware switch.

132 | Chapter 3: Initial Configuration and Maintenance

Figure 3-4. OoB management network

The Juniper devices support a separate physical port intended strictly for OoB use; the
Cisco switches do not. To create an OoB network for these devices, the best practice
is to dedicate a physical port that is bound to a management VLAN, which separates
this interface from the rest of the interfaces and their transit network traffic. In our case,
the final port of the Cisco switches (port 48) was chosen. A VLAN ID that is not used
for any other purpose, 666, is chosen to tie the OoB port into a Switched Virtual In-
terface (SVI), which is used to support an IP-addressable interface without requiring a
Layer 3 routing license. Also, it is a best practice to always change the OoB manage-
ment VLAN on the Cisco devices, since by default all interfaces are part of that VLAN,
which could open a large security risk.

You cannot change the management VLAN on Catalyst 1900 and 2820
switches or on Catalyst 2900 switches with 4 MB of memory; VLAN 1
must be the management VLAN for these switches. You can change the
management VLAN only on switches running Cisco IOS Release 12.0(5)
XU.

Here’s the relevant Cisco configuration from Gin:

interface FastEthernet0/48
 switchport access vlan 666
 switchport mode access
!
. . .
interface Vlan1
 no ip address
 shutdown
!
interface Vlan666
 ip address 172.16.69.2 255.255.255.0

Secondary Configuration | 133

The new Juniper switch Tequila simply needs to have the me0 management interface
configured with the proper IP address. If you are confused about what the heck that
strange unit 0 piece is, please consult the interface configuration in “EX Interfa-
ces” on page 143. For now, suffice it to say that it’s a logical interface, which is akin
to a subinterface on Cisco devices. However, on the Cisco side, the management in-
terface must be a physical interface and not a subinterface:

lab@Tequila> show configuration interfaces me0
unit 0 {
 family inet {
 address 172.16.69.4/24;
 }
}

Remote Access
After the users are configured on the switch, we must decide what kind of remote access
should be provided to the switch, assuming this was not configured via EZSetup or
during the initial configuration. Remote access options include:

Finger
A protocol to get information about a user logged in to the switch. This protocol
is no longer used and should never be enabled. For giggles, here is the finger output
from the new switch:

% finger lab@172.16.69.4
[172.16.69.4]
Login: lab Name:
Directory: /var/home/lab Shell: /usr/sbin/cli
On since Mon Sep 24 00:31 (UTC) on ttyd0, idle 0:01
No Mail.
No Plan.
%

FTP
Provides file transfer services. Although FTP is a widely used protocol, it transfers
files in plain text, which can lead to security issues. When possible, you should use
secure copy (SCP), which is enabled with the SSH service.

Rlogin
The Remote login protocol, which allows remote access to the JUNOS shell and
CLI. This Unix utility has several security flaws and was used only in private en-
vironments. This utility is activated by a hidden command on the switch but, as
discussed, should never be enabled on the switch.

134 | Chapter 3: Initial Configuration and Maintenance

A hidden command is a command that does not show up when you
use ? in the CLI and does not auto-complete with the space bar.
One of the most famous hidden commands in JUNOS software is
show version and haiku. Try it yourself if you want to read some
really bad poetry!

SSH
Allows communications over an encrypted tunnel. This ensures not only availa-
bility, but also data integrity and confidentiality. When SSH is enabled, this auto-
matically enables SCP. The SSH option is available only in the domestic version of
JUNOS due to government restrictions on encryption technology. Users on the list
of permitted foreign countries can apply for the domestic version to obtain the SSH
service.

Telnet
A common protocol, developed in 1969, for remotely managing a system. Telnet
transits all data in clear text, so you should use SSH when possible.

Web management
Enables use of the J-Web GUI on the switch for management and configuration.
These can be either encrypted or unencrypted Hypertext Transfer Protocol (HTTP/
HTTPS) connections. Note that strong HTTPS encryption (128-bit) requires the
domestic version of JUNOS and that a Secure Sockets Layer (SSL) security certif-
icate be loaded.

JUNOScript server
Enables the switch to receive commands from a JUNOScript server via clear text
or SSL connections.

Netconf
The Network Configuration protocol, which is defined in RFC 4741 and uses XML
for configuration and messaging. Netconf is the Internet Engineering Task Force
(IETF) standard created as a replacement for SNMP and is based on JUNOScript.

XML Tags
JUNOScript is a tool you can use to configure and manage the switch. JUNOS output
and configuration contain XML tags that can be referenced by a JUNOScript client.
Here is an example of a configuration and an operational command that displays the
XML tags for each field:

root@Tequila> show system users | display xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/9.2R1/junos">
 <system-users-information
xmlns="http://xml.juniper.net/junos/9.2R1/junos">
 <uptime-information>
 <date-time
junos:seconds="1217955562">4:59PM</date-time>
 <up-time junos:seconds="5287">1:28</up-time>
 <active-user-count junos:format="1

Secondary Configuration | 135

user">1</active-user-count>
 <load-average-1>0.15</load-average-1>
 <load-average-5>0.09</load-average-5>
 <load-average-15>0.07</load-average-15>
 <user-table>
 <user-entry>
 <user>lab</user>
 <tty>u0</tty>
 <from>-</from>
 <login-time
junos:seconds="1217952963">4:16PM</login-time>
 <idle-time junos:seconds="0">-</idle-
time>
 <command>-cli (cli)</command>
 </user-entry>
 </user-table>
 </uptime-information>
 </system-users-information>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>
lab@tequila> show configuration routing-options |display
xml
<rpc-reply xmlns:junos="http://xml.juniper.net/junos/9.2R1/junos">
 <configuration junos:commit-seconds="1217952936"
junos:commit-localtime="2008-08-05 16:15:36 UTC"
junos:commit-user="root">
 <protocols>
 <lldp>
 <interface>
 <name>all</name>
 </interface>
 </lldp>
 <stp>
 <interface>
 <name>all</name>
 <cost>10</cost>
 </interface>
 </stp>
 </protocols>
 </configuration>
 <cli>
 <banner></banner>
 </cli>
</rpc-reply>

The most secure methods of remote access on the switch will be SSH and the transfer
of files using SCP. To enable any service, simply set it under the [edit system
services] level:

[edit system services]
root@Tequila# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration
 data
+ apply-groups-except Don't inherit configuration data from these

136 | Chapter 3: Initial Configuration and Maintenance

 groups
> dhcp Configure DHCP server
> finger Allow finger requests from remote systems
> ftp Allow FTP file transfers
> netconf Allow NETCONF connections
> service-deployment Configuration for Service Deployment (SDXD)
 management application
> ssh Allow ssh access
> telnet Allow telnet login
> web-management Web management configuration
> xnm-clear-text Allow clear text-based JUNOScript connections
> xnm-ssl Allow SSL-based JUNOScript connections

Each service typically has a variety of options, such as setting a maximum number of
connections, rate-limiting the inbound connection attempts, and choosing supported
protocol versions/options. In the case of the SSH service, we have the following options:

root@Tequila# set system services ssh ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 connection-limit Maximum number of allowed connections (1..250)
+ protocol-version Specify ssh protocol versions supported
 rate-limit Maximum number of connections per minute (1..250)
 root-login Configure root access via ssh
 | Pipe through a command

The following command enables SSH with the default parameters of 75 active sessions
and 150 connection attempts per minute:

[edit]
root@Tequila# set system services ssh

Tequila then initiates an SSH session to Gin. The first connection to a given host needs
to establish the RSA fingerprint for authentication by adding that host’s public key to
the user’s list of host keys, which, by the way, are stored in the ~/.ssh directory:

lab@Tequila> ssh 172.16.69.2
The authenticity of host '172.16.69.2 (172.16.69.2)' can't be established.
RSA key fingerprint is 39:ef:fa:64:83:a0:40:48:f0:a5:ad:f5:0b:de:a9:7a.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '172.16.69.2' (RSA) to the list of known hosts.
lab@172.16.69.2's password:

Gin>

Once Gin is added to the list of known hosts, future sessions do not require identity
confirmation:

root@Tequila> ssh 172.16.69.2
lab@172.16.69.1's password:

When SSH is enabled on the switch, it also automatically enables SCP to initiate secure
file exchanges. You can upload or download files via SCP using variations of the file

Secondary Configuration | 137

copy command. In this case, Tequila transfers a file called test to Gin. Tequila has already
added Gin to its list of known hosts files:

root@Tequila> file copy test2 lab@172.16.69.2:test2.txt
lab@172.16.69.1's password:
test 100% 9480 9.3KB/s 00:00

Dynamic Host Configuration Protocol
DHCP is a protocol used by networked devices (clients) to obtain the parameters nec-
essary for operation in an IP network. This protocol reduces system administration
workload, allowing devices to be added to the network with little or no manual con-
figuration. Without DHCP, every single client on the network would have to be con-
figured manually.

Essentially, DHCP automates the assignment of IP addresses, subnet masks, default
gateways, and other optional IP parameters such as DNS addresses. The protocol works
on a client/server model in which the server assigns a client the IP information after
seeing a request (Figure 3-5).

Figure 3-5. DHCP client/server model

DHCP consists of a four-step transfer process beginning with a broadcast DHCP dis-
covery message from the client. The second step involves a DHCP offer message from
the server to the client, which includes the IP address and mask, and DOCSIS-specific
parameters. The client then sends a DHCP request to accept the offer it received from
the server in the previous step. The DHCP server sends a DHCP response message and
removes the now-allocated address from the DHCP scope (Figure 3-6).

138 | Chapter 3: Initial Configuration and Maintenance

Figure 3-6. DHCP process

So far we have discussed DHCP requests that are on the same physical segment. DHCP
requests from a client to a server are not restricted to the physical segment, LAN, or
VLAN (discussed in Chapter 7). In this case, a relay agent is needed to pass requests
between the client and server. This eliminates the need for a dedicated DHCP server in
each LAN or VLAN environment (Figure 3-7).

Figure 3-7. DHCP relay

DHCP server configuration in JUNOS

When configuring a DHCP server in JUNOS you can set the following parameters:

DHCP subnet
To specify the subnet on which DHCP is configured

Address range
To set the lowest address and highest address that can be used from the DHCP
subnet

Secondary Configuration | 139

Exclude address(es)
To specify any addresses from the DHCP subnet that should not be used

Lease time
To set the time for which the allocated address is reserved

Server information
To set the IP address reported to the client, domain name, DNS servers, and domain
searches

Field options
To set gateway routers and WINS servers

Boot options
To specify a boot server and file from which to get configuration information

Static bindings
To specify the static mapping for the client to use, such as an IP address, hostname,
or client identifier

These options are displayed on Tequila and are configured under [edit system
services dhcp]:

lab@Tequila# set system services dhcp ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 boot-file Boot filename advertised to clients
 boot-server Boot server advertised to clients
 default-lease-time Default lease time advertised to clients (seconds)
 domain-name Domain name advertised to clients
> domain-search Domain search list used to resolve hostnames
 maximum-lease-time Maximum lease time advertised to clients (seconds)
> name-server Domain name servers available to the client
 next-server Next server that clients need to contact
> option DHCP option
> pool DHCP address pool
> router Routers advertised to clients
 server-identifier DHCP server identifier advertised to clients
> static-binding DHCP client's hardware address
> traceoptions DHCP server trace options
> wins-server NetBIOS name servers

For example, in the following code, Tequila is configured to allocate addresses out of
the 172.16.69/24 range, starting at address 172.16.69.50 and ending at address
172.16.69.75, for a total of 25 addresses. It is also assigned a one-hour lease time and
a default gateway of 172.16.69.4:

lab@Tequila# show system services dhcp
default-lease-time 3600;
router {
 172.16.69.4;
}
pool 172.16.69.0/24 {
 address-range low 172.16.69.50 high 172.16.69.75;

140 | Chapter 3: Initial Configuration and Maintenance

}

[edit]
lab@Tequila# commit and-quit

You can verify that the pool is configured properly by issuing the show system services
dhcp pool and global commands:

lab@Tequila> show system services dhcp pool
Pool name Low address High address Excluded addresses
172.16.69.0/24 172.16.69.50 172.16.69.75

lab@Tequila> show system services dhcp global
Global settings:
 BOOTP lease length infinite

DHCP lease times:
 Default lease time 1 hour
 Minimum lease time 1 minute
 Maximum lease time infinite

DHCP options:
 Name: router, Value: [172.16.69.4]

When the switch begins to allocate addresses, this can be viewed with the bind
commands:

lab@tequila> show system services dhcp binding
IP Address Hardware Address Type Lease expires at
172.16.69.50 00:a0:12:00:12:ab dynamic 2008-09-27 13:01:45 PDT
172.16.69.51 00:a0:12:00:13:02 dynamic 2008-09-27 13:01:52 PDT

Other useful commands include show system services dhcp
statistics to display packet counters and show system services dhcp
conflict to view any addresses that are found to be duplicated. Also, to
see the actual DHCP messages, traceoptions (discussed in Chapter 8)
can be configured and set to the log fud.

DHCP relay configuration in JUNOS

If the DHCP relay option is desired, this can also be configured on the EX Series switch.

Since DHCP messages are broadcast and are not sent to a specific server
or switch, the EX Series cannot function as both a DHCP server and a
relay agent at the same time.

Relay options are configured under [edit forwarding options helpers bootp]. At first
glance, the hierarchy may seem about as clear as mud, but breaking out each piece
helps to clarify the situation:

Secondary Configuration | 141

forwarding options
Specifies the inherit forwarding of the DHCP packet

helpers
Describes that the switch is providing an aid to the network by sending the packet
to a DHCP server

bootp
The original DHCP specification name (RFC 951)

Here are the most basic configuration parameters that are required:

Interface
Specifies the interface(s) that will have incoming DHCP packets that need to be
relayed

Server
Configures the server IP address toward which to forward the DHCP request

The rest of the configuration is optional, including hop counts, wait times, Time to
Live (TTL), and special relay options:

lab@Tequila# set forwarding-options helpers bootp ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 client-response-ttl IP time-to-live value to set in responses to client
 description Text description of servers
> interface Incoming BOOTP/DHCP request forwarding interface
configuration
 maximum-hop-count Maximum number of hops per packet (1..16)
 minimum-wait-time Minimum number of seconds before requests are forwarded
 relay-agent-option Use DHCP Relay Agent option in relayed BOOTP/DHCP messages
> server Server information

In the sample book topology the relay option is not used, but here is a quick example:

[edit forwarding-options helpers bootp]
user@host# show
description "Global DHCP Example";
server 172.18.24.38;
maximum-hop-count 4;
minimum-wait-time 1;
interface {
 ge-0/0/1

To monitor bootp events configure traceoptions (as discussed in Chap-
ter 8) and observe the /var/log/fud logfile.

142 | Chapter 3: Initial Configuration and Maintenance

Secondary Configuration Summary
This was a big section, and it’s a good time to take a step back and look at what we
have accomplished. From a bare-bones basic configuration, we have added users, an
OoB network, remote access, and possibly even DHCP. Now it is almost time to get
into some networking and protocols, but first let’s examine some basic interface and
switch maintenance actions and procedures that may prove helpful at any time.

EX Interfaces
This section begins with some general JUNOS interface concepts before providing EX-
specific interface configuration, operational analysis, and troubleshooting examples
typical to an initial configuration.

Historically, Juniper Networks routers contained two major categories of interfaces:
permanent and transient. Users cannot remove permanent interfaces, whereas they can
move, change, and remove transient interfaces. Transient interfaces are typically based
on modular interfaces, which in turn are based on a Flexible PIC Concentrator (FPC)
and Physical Interface Card (PIC) model, in which FPCs and PICs can be moved about
as desired in the system.

The EX3200 and EX4200 are fixed interface platforms, and therefore do not directly
support the modular interface model. However, because EX switches run JUNOS soft-
ware, it can still be said that some EX interfaces are permanent in regard to their
intended function—say, as a network management interface, or tunnel services
device—whereas others are seen as user or network interfaces, with a broader range of
network-oriented functions. The following sections detail the JUNOS-based interface
devices that often cause confusion among new users.

Permanent Interfaces
A permanent interface is any interface that is always present on the switch (it cannot
be altered). These interfaces can be management interfaces such as OoB Ethernet, or
a software-based pseudointerface such as a tunnel service device.

An EX4200 has three permanent management interfaces:

me0-
Management Ethernet 0 is the OoB management Ethernet interface. This interface
connects to the routing engine (RE) and is used for management services such as
accessing Telnet/SSH, transferring files using FTP/SCP, and sending management
messages such as syslog or SNMP traps to remote servers. The me0 interface is a
non-transit interface, which means traffic cannot enter this interface and exit via a
network interface, nor can it enter a network interface and exit through the man-
agement interface.

EX Interfaces | 143

vme0-
Virtual Management Ethernet 0 serves the same roles as the physical me0, except
in an EX4200 VC, where the virtual management interface automatically connects
to the current master RE. Use of a vme0 is optional, but you cannot currently use
both the vme0 and the me0 interfaces at the same time.

bme0-
This is an internal Gigabit Ethernet interface that links the RE to the various EX
Packet Forwarding Engine (PFE) components, the specifics of which vary by EX
model. There is never a need to directly configure this interface.

Many software pseudointerfaces are created automatically for use in a variety of
functions:

lo0-
The loopback interface that ties to the switch itself and not to any one physical
interface. A loopback interface is used to provide a stable address for management
traffic and routing protocols.

pimd-
An RE-based Protocol Independent Multicast (PIM) de-encapsulation interface
that allows a multicast rendezvous point (RP) to process PIM register messages.

pime-
An RE-based PIM encapsulation interface, used in multicast to create a unicast
PIM register message to send to the RP.

ipip-
An RE-based IP-over-IP encapsulation interface used to create IP-in-IP tunnels.

gre-
An RE-based Generic Routing Encapsulation (GRE) interface used to create GRE
tunnels.

dsc-
A discard interface that can be used to silently discard packets. This is often used
to silently dump traffic associated with a distributed denial of service (DDoS)
attack.

tap-
A virtual Ethernet interface historically used for monitoring on FreeBSD systems.
This interface could be used to monitor discarded packets on a router but is no
longer officially supported.

vlan-
A Routed VLAN Interface (RVI) used to internally route between VLANs.

vcp-
Virtual Chassis Port (VCP) interfaces, which exist on EX4200 models only.

144 | Chapter 3: Initial Configuration and Maintenance

Although used for transit traffic, the VCP protocol is not user-
configurable and simply works, so these interfaces are included here,
rather than in the network interface section. Note that using an uplink
port as a VCE results in the creation of a vcp-255/1/n device, whereas
the built-in VCPs are always vcp-0 and vcp-1.

Network Interfaces
Network interfaces, as the name implies, are the front-panel GE and 10 GE uplink ports
used for Layer 2 and Layer 3 networking functions. Although Juniper routers support
a wide variety of interface types, such as Ethernet, SONET, DS1/DS3, and ATM, among
others, on EX switches it’s pretty much Ethernet or bust, which is just fine given that
they’re intended to be used as Ethernet switches, after all.

Network interface naming

JUNOS interfaces follow a common naming convention—the interface media type ab-
breviation followed by three numbers that indicate the location of the actual interface.
The general convention is MM-F/P/T, where:

MM = media type
F = chassis FPC slot number
P = PIC slot number
T = port number

EX switches use the same naming approach, which is handy for those already familiar
with JUNOS. Just remember that in the EX context, the term FPC maps to a chassis
number, and the PIC value is always 0 for network ports and 1 for uplink module ports,
and things will go smoothly.

On the EX, the media type is either ge or xe, which denotes Gigabit Ethernet or 10G
Ethernet, respectively. Note that GE interfaces are multirate-capable and can operate
at 10 Mbps, 100 Mbps, or the full 1,000 Mbps (GE) rate. The chassis FPC number
ranges from 0 to 9. It’s always 0 on standalone EX3200s or EX4200s; non-zero values
reflect a VC member number or the Line Card (LC) slot on an EX8200 series. The PIC
slot number is 0 for all built-in network interfaces and 1 for uplink module ports. The
port number ranges from 0 to 47, and reflects the actual front-panel port being used.

Logical units

Interfaces support the notion of a logical unit, which is analogous to a subinterface in
IOS. A key difference is that in JUNOS, an operational network interface must have at
least one logical unit, whereas in IOS, explicit use of a subinterface is optional. In some
modes of operation, an interface can support multiple logical units, which can range
from 0 to 16,385, with each such unit in turn supporting one or more protocol families
and operating independently of other units that share the device.

EX Interfaces | 145

The unit number follows the period (.) in an interface name. For example,
ge-0/1/0.10 identifies a logical interface 10 on a GE interface housed in “FPC” slot 0,
“PIC” slot 1, port 0.

Ethernet interfaces support multiple units through the use of VLAN tagging in JUNOS
software. Note that an untagged Ethernet interface, which by definition can support
only a single logical unit, must be assigned unit number 0. When VLAN tagging is
enabled (for a Layer 3 interface), you can define multiple units, and each such unit is
bound to a unique VLAN tag and one or more Layer 3 protocol families. There is no
need for the unit number and VLAN tag to match, though this is the current best
practice.

EX interfaces that are operating in Layer 2 don’t support VLAN tagging, and therefore
are limited to a single logical unit (0). EX interfaces are placed into Layer 2 mode when
the ethernet-switching family is specified. Explicit tagging is not supported in this
context because these interfaces are either trunks, which support traffic with various
tags, or accesses, which generally send untagged traffic.

In system log messages, a logical unit is known as an interface logical,
or ifl, and the parent is an interface device, or ifd.

Interface Configuration
In JUNOS, network interfaces have two levels of configuration: physical properties and
logical properties. Physical properties are tied to the entire physical port, whereas logical
properties affect only that logical portion of the interface represented by unit numbers
or channel numbers. When you configure an interface, you specify physical properties
once and logical properties for each unit that is used.

Physical properties

You configure an interface’s physical properties at the [edit interfaces <interface-
name>] hierarchy. The CLI’s ? function is used to display the options available in the
9.2 release:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set ?
Possible completions:
 accounting-profile Accounting profile name
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 description Text description of interface
 disable Disable this interface
> ether-options Ethernet interface-specific options
 gratuitous-arp-reply Enable gratuitous ARP reply
> hold-time Hold time for link up and link down
 mac Hardware MAC address

146 | Chapter 3: Initial Configuration and Maintenance

 mtu Maximum transmit packet size (256..9216)
 no-gratuitous-arp-reply Don't enable gratuitous ARP reply
 no-gratuitous-arp-request Ignore gratuitous ARP request
 no-traps Don't enable SNMP notifications on state changes
> optics-options Optics options
> traceoptions Interface trace options
 traps Enable SNMP notifications on state changes
> unit Logical interface
 vlan-tagging 802.1q VLAN tagging support
{master}[edit interfaces ge-0/0/0]

Most of the keywords are self-explanatory, and we demonstrate virtually all of them at
some point in this book. Some key physical properties include:

MAC
The mac keyword is used to alter the burned-in (Media Access Control [MAC])
address (BIA). There’s rarely a need to change this, but for some testing purposes
having known values can be helpful.

MTU
The maximum transmission unit (MTU) determines the maximum size frame that
can be sent out of the interface. In JUNOS, the Ethernet MTU includes the frame’s
Source and Destination MAC addresses, and the type field, but not the 4-byte frame
check sequence (FCS). The default MTU is 1,514, which permits a 1,500-byte IP
payload. EX interfaces support an MTU from 256 all the way to a giant 9,216, but
care should be taken to avoid MTU mismatches, which are particularly nasty to
troubleshoot in a Layer 2 network.

Cisco IOS does not include any Layer 2 overhead in its Ethernet
MTU. Therefore, a Cisco Ethernet MTU of 1,500 is compatible
with the default JUNOS Ethernet MTU of 1,514. Go figure.

Hold time
The hold-time parameter is used to configure a delay for the reaction to interface
up or down events. By default, there is intentional delay, but sometimes it’s desir-
able to ride out short-lived transitions, rather than generating SNMP alarms and
destroying protocol adjacencies at each measurable blip.

Gratuitous ARP
The Gratuitous ARP statements control various Address Resolution Protocol
(ARP) behaviors. The no-gratuitous-arp-request option disables the default be-
havior of responding to a Gratuitous ARP. A Gratuitous ARP request is used for
duplicate IP address detection, and does not expect a reply, as there should be no
duplicate IP addressing. From the receiving router’s perspective, a Gratuitous ARP
request is differentiated from a real ARP request targeted at the local router, be-
cause such an ARP contains a foreign Source MAC (SMAC) while both the target
and source IP addresses match the local interface’s IP. The gratuitous-arp-reply

EX Interfaces | 147

option enables the update of the switches’ ARP cache based on the receipt of un-
solicited (gratuitous) ARP replies. Use the no form of the keyword to return to the
default behavior of ignoring such replies. A Gratuitous ARP response is usually
sent in an attempt to update the ARP cache in remote nodes—for example, after
a MAC address changes. From the local router’s perspective, such a packet consists
of an ARP reply using a broadcast Destination MAC (DMAC) address that contains
the same (non-local) IP address as both the source and the target.

Traps
The traps and no-traps keywords enable or disable SNMP trap generation upon
interface state transitions.

Ethernet-specific parameters are configured using the ether-options hierarchy. These
options control auto-negotiation, or set speed and duplex settings or IEEE 802.3ad link
aggregation. The ether-options are displayed in the following code:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set ether-options ?
Possible completions:
> 802.3ad IEEE 802.3ad
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 auto-negotiation Enable auto-negotiation
 flow-control Enable flow control
 link-mode Link duplex
 no-auto-negotiation Don't enable auto-negotiation
 no-flow-control Don't enable flow control
> speed Specify speed
{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set ether-options

We cover link aggregation in Chapter 11. The flow-control keyword causes the EX to
react to pause frames, which is the default. The use of pause is applicable only to 1,000
Mbps (GE) operation. The non-blocking nature of EX switches means they have no
need to actually generate flow control, so this option simply allows the EX to reach to
pause frames sent by a congested switch. The link and speed keywords allow you to
hardcode half duplex/full duplex (HD/FD) and the speed when needed. The auto-
negotiation options enable (the default) or disable auto-negotiation.

Juniper’s Auto-Negotiation Stance
Over the years, there has been a fair bit of discussion about whether it’s best to manually
hardcode various Ethernet parameters to ensure compatibility, or to simply enable
auto-negotiation and trust that the two devices will find their highest common ground.

Given the maturity of current Ethernet technology, JUNOS enables auto-negotiation
by default, and in the vast majority of cases, the process works as expected. Although
taking the magic out of the recipe may seem like a good idea, studies have shown that
it is common to make mistakes when manually configuring a compatible mode, and in
the case of a duplex mismatch, these mistakes can lead to a poorly performing link that
works just well enough to go unnoticed.

148 | Chapter 3: Initial Configuration and Maintenance

If there are known problems with a device’s auto-negotiation capabilities, or if auto-
negotiation is simply not supported, manual configuration makes sense.

Note that using auto-negotiation at one end and manual settings at the other end is not
recommended, as this is known to lead to problems. For example, pairing a switch that
is hardcoded to 100 Mbps FD with a Fast Ethernet network interface card (NIC) set to
auto-negotiate results in the NIC falling back to HD mode. This is due to lack of auto-
negotiation, and it causes the switch to fall back to the lowest ability of HD, which in
turn results in a duplex mismatch.

Logical properties

All network interfaces require a logical unit to send or receive traffic. As noted previ-
ously, the logical unit abstract carves a single physical interface into multiple logical
interfaces. For instance, an Ethernet interface can be subdivided into multiple VLANs,
each requiring its own logical unit.

Recall that unlike other vendors’ software, JUNOS requires a unit number and a logical
interface definition even when a single logical entity is desired; this is because logical
properties must be defined after the unit number hierarchy, and one such property is
the choice of protocol family. An interface with no protocol family cannot send or
receive anything. The most common types of logical properties include:

Protocol family
Indicates whether the interface operates in Layer 2 or Layer 3 mode, and in the
latter case, specifies what Layer 3 protocols can operate on the logical interface.
You place an interface into Layer 2 mode by adding the ethernet-switching family.
This mode permits a single logical unit, which must be 0, and does not permit
VLAN encapsulation.

When you omit the ethernet-switching family, the result is a Layer 3 interface.
Such an interface can have one or more logical units, and each unit can have one
or more protocol families. The most common of these is family inet, which ena-
bles the sending and receiving of IPv4 packets in the Transmission Control Proto-
col/Internet Protocol (TCP/IP) suite (e.g., TCP, User Datagram Protocol [UDP],
Internet Control Message Protocol [ICMP], and IP). Other common families are
inet6 (IPv6) and iso (Intermediate System to Intermediate System [IS-IS] packets).

Protocol address
Is the Layer 3 family address, such as a family inet IP address and related network
mask.

Virtual circuit ID
Is used to multiplex traffic from multiple logical units over a single interface device.
For an Ethernet-based device, the virtual circuit ID takes the form of a VLAN ID.

The current best practice, however, is to keep the circuit address the same as the unit
number for easier troubleshooting. So, if you have a VLAN ID of 40 configured on your

EX Interfaces | 149

interface, the logical interface should also be a unit of 40, although it’s not required.
Again, note that when you configure a non-VLAN tagged Ethernet, the logical unit
number must be 0. Think of this unit as a placeholder for all the logical properties that
will need to be configured on that interface.

EX Interface Configuration Examples
This section provides examples of typical EX interface configuration for both Layer 2
and Layer 3 modes of operation.

Layer 2 interface

We begin with a sample Layer 2 interface that is used for bridging and switching:

{master}
lab@Vodkila> configure
Entering configuration mode

{master}[edit]
lab@Vodkila# edit interfaces ge-0/0/0

{master}[edit interfaces ge-0/0/0]

You begin by entering configuration mode and parking yourself at the [edit interfaces
<interface-name>] hierarchy. This example configures the ge-0/0/0 interface.

Some physical properties are set and then displayed:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set ether-options speed 100m
{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set ether-options link-mode full-duplex
{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set mac 00:1f:12:3d:b4:dd
{master}[edit interfaces ge-0/0/0]
lab@Vodkila# show
mac 00:1f:12:3d:b4:dd;
ether-options {
 link-mode full-duplex;
 speed {
 100m;
 }
}

By default, all JUNOS network interfaces are administratively enabled.
If an interface needs to be administratively disabled, issue a configura-
tion mode set interfaces <interface name> disable command. To
reenable the interface, issue a delete interfaces <interface name>
disable command, or perform a rollback 1 (and commit). Although
having to delete a disable seems a bit like a double negative, if you think
about it it’s much the same as a “no shutdown” in IOS.

150 | Chapter 3: Initial Configuration and Maintenance

And now the definition of the logical unit and its binding to a (Layer 2) protocol family:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 0 family ethernet-switching

The complete Layer 2 interface definition is displayed, and committed:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# show
mac 00:1f:12:3d:b4:dd;
ether-options {
 link-mode full-duplex;
 speed {
 100m;
 }
}
unit 0 {
 family ethernet-switching;
}

The show interfaces command is used for operational status verification:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# run show interfaces ge-0/0/0 terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/0.0 up up eth-switch

The output confirms that the interface device and its logical unit are both administra-
tively and operationally up. In the case of plain Ethernet, “being up” at the Link level
simply means there are no obvious local interface faults. The lack of Ethernet keepalive,
which is performed by Bidirectional Forwarding Detection (BFD) or Operational Ad-
ministration and Maintenance (OAM), means it’s easy to have an interface that has a
status of physically up because the local end is attached to a switch—even though the
remote end of the switch link may be unplugged, thereby preventing communications.
For more detail, omit the terse switch:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# run show interfaces ge-0/0/0
Physical interface: ge-0/0/0, Enabled, Physical link is Up
 Interface index: 129, SNMP ifIndex: 110
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, MAC-REWRITE Error: None,
 Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:1f:12:3d:b4:dd, Hardware address: 00:1f:12:3d:b4:c1
 Last flapped : 2005-01-30 07:59:57 UTC (00:00:13 ago)
 Input rate : 512 bps (1 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

EX Interfaces | 151

 Logical interface ge-0/0/0.0 (Index 65) (SNMP ifIndex 111)
 Flags: SNMP-Traps Encapsulation: ENET2
 Input packets : 6
 Output packets: 1
 Protocol eth-switch, MTU: 0
 Flags: None

The highlighted sections point out various details, such as confirmation of speed, auto-
negotiation, SMAC filtering, and so on. The altered MAC address is also seen, as is a
single logical interface that supports Layer 2 switching. Use the extensive switch, or
specify the media switch, to see details on the current link properties:

lab@Vodkila# run show interfaces ge-0/0/0 media
Physical interface: ge-0/0/0, Enabled, Physical link is Up
 Interface index: 129, SNMP ifIndex: 110
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, MAC-REWRITE Error: None,
 Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:1f:12:3d:b4:dd, Hardware address: 00:1f:12:3d:b4:c1
 Last flapped : 2005-01-30 07:59:57 UTC (00:11:06 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None
 MAC statistics:
 Input bytes: 4226028, Input packets: 51477, Output bytes: 3074021,
 Output packets: 27429
 Filter statistics:
 Filtered packets: 0, Padded packets: 0, Output packet errors: 0
 Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: None, Remote fault: OK,
 Link partner Speed: 100 Mbps
 Local resolution:
 Flow control: None, Remote fault: Link OK

Layer 3 interface

This example demonstrates a Layer 3 interface that uses VLAN tagging to support two
logical interfaces, each running the IPv4 protocol, and one also running IPv6. Start by
deleting the existing Layer 2 configuration:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# delete
Delete everything under this level? [yes,no] (no) yes

Then move on to define the two logical units and related protocol family properties.
This example leaves the physical interface properties at their default values, with the
exception that specifying VLAN tagging is in effect:

152 | Chapter 3: Initial Configuration and Maintenance

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set vlan-tagging

And now the logical interface properties:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 1 family inet address 200.0.0.1/24

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 1 vlan-id 1

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 2 family inet address 10.0.0.1/16

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 2 family inet address 10.0.0.1/16 arp 10.0.0.2 mac
 00:1f:12:3d:b4:ff

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 2 family inet6 address 200::1/64

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 2 vlan-id 2

The results are displayed:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# show
vlan-tagging;
unit 1 {
 vlan-id 1;
 family inet {
 address 200.0.0.1/24;
 }
}
unit 2 {
 vlan-id 2;
 family inet {
 address 10.0.0.1/16 {
 arp 10.0.0.2 mac 00:1f:12:3d:b4:ff;
 }
 }
 family inet6 {
 address 200::1/64;
 }
}

The output confirms a VLAN tagged interface device supporting two units, each with
IPv4, and one with both IPv4 and IPv6. This example also includes a static ARP defi-
nition for the IP address 10.0.0.2 on unit 1. Note that best practice is followed here by
matching unit numbers to the Layer 2 virtual circuit ID (the VLAN tag in this case),
but such matching is not strictly required. Also note that VLAN 1 is used for the first
unit. This VLAN ID has no special significance in JUNOS, but does in IOS, as explained
in Chapter 5.

EX Interfaces | 153

Note that JUNOS takes network masks in “/” or Classless Inter-Domain Routing
(CIDR) notation only, and that failing to specify a mask results in an assumed /32 host
address. Such an address may not commit on an Ethernet interface with some versions
of JUNOS unless that version happens to support unnumbered /32 Ethernet
addressing.

The Layer 3 interface’s operational status is quickly confirmed:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# run show interfaces ge-0/0/0 terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/0.1 up up inet 200.0.0.1/24
ge-0/0/0.2 up up inet 10.0.0.1/16
 inet6 200::1/64
 fe80::21f:1200:23d:b4c1/64
ge-0/0/0.32767 up up

The display confirms a single interface with two logical units, and reflects the various
IP and IPv6 properties that were configured. The ge-0/0/0.32767 logical interface is
automatically created to support OAM when VLAN tagging is in effect. In this JUNOS
version, Ethernet OAM is not supported, but when it is, this unit will handle that traffic
separately from the Layer 3 user traffic on the other units. At this stage, you could test
Layer 3 connectivity using a ping, but this presumes the remote end of the link is also
configured, which is not yet the case here. For now, display the route table to confirm
the presence of IPv4 and IPv6 directly connected routes for the ge-0/0/0 interface:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# run show route protocol direct

inet.0: 27 destinations, 28 routes (27 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

10.0.0.0/16 *[Direct/0] 00:05:26
 > via ge-0/0/0.2
. . .

200.0.0.0/24 *[Direct/0] 00:05:26
 > via ge-0/0/0.1
. . .

inet6.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
Restart Complete
+ = Active Route, - = Last Active, * = Both

200::/64 *[Direct/0] 00:05:26
 > via ge-0/0/0.2
fe80::/64 *[Direct/0] 00:05:26
 > via ge-0/0/0.2

154 | Chapter 3: Initial Configuration and Maintenance

As expected, a direct route is present for the 10.0/16 IPv4 route pointing to the
ge-0/0/0.1 interface. Note how the 200.0.0/24 IPv4 and the 200::/64 IPv6 routes point
to unit 2 on the same interface device.

In most cases, serious interface configuration mistakes will generate an error and fail
to commit. For example, here is a combination of Layer 2 and Layer 3 protocol families
that are currently not supported on the same interface device:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# set unit 10 family ethernet-switching
{master}[edit interfaces ge-0/0/0]
lab@Vodkila# show
vlan-tagging;
unit 1 {
 vlan-id 1;
 family inet {
 address 200.0.0.1/24;
 }
}
unit 2 {
 vlan-id 2;
 family inet {
 address 10.0.0.1/16 {
 arp 10.0.0.2 mac 00:1f:12:3d:b4:ff;
 }
 }
 family inet6 {
 address 200::1/64;
 }
}
unit 10 {
 ##
 ## Warning: An interface cannot have both family ethernet-switching and vlan-
tagging configured
 ##
 family ethernet-switching;
}

Note that the CLI generates a warning for an objectionable statement when viewing
the configuration. At commit time, such problems result in an error, and therefore, no
changes are activated until the issue is corrected:

{master}[edit interfaces ge-0/0/0]
lab@Vodkila# commit check
[edit interfaces ge-0/0/0 unit 10 family]
 'ethernet-switching'
 An interface cannot have both family ethernet-switching and vlan-tagging
configured
error: configuration check-out failed: (statements constraint check failed)

EX Interfaces | 155

Interface Troubleshooting
Interfaces and links can have a variety of issues that can stem from simple misconfigu-
rations, broken hardware, or the more difficult area of vendor interoperability
problems. Listing all the possibilities would require a separate book! In fact, much
information is already available in our companion book in this series, JUNOS Enterprise
Routing. Generally speaking, Layer 3 problems are easier to isolate because of the ability
to use pings and traceroutes to locate the problem area. With Layer 2 forwarding, either
things work end to end, or they simply don’t, and gaining insight as to where the
forwarding problem is can be very difficult. In some cases, you must resort to moni-
toring packet counts until you find the node that receives more than it sends. Such a
technique is hard enough to perform in a test network, but on live networks where user
traffic cannot be controlled, packet-count-based fault isolation is all but impossible.

You will be exposed to a multitude of real-world interface (and other) troubleshooting
techniques throughout this book, in the form of various case studies or deployment
scenarios that invariably go astray. Really, it’s almost as though they were planned to
break just to afford you the benefit of the resulting exercise in fault isolation. To keep
things moving, this section highlights the primary tools available for troubleshooting
in a JUNOS environment, and leaves demonstration of those tools to later chapters.

JUNOS troubleshooting tools

JUNOS is a powerful operating system, and its Unix underpinnings provide a great
many troubleshooting tools, most of which are available through the CLI. Although
the EX product is somewhat new, JUNOS is now nearing its first decade of deployed
use. Much information is already available on general JUNOS troubleshooting, and the
single-image model means this is directly portable to EX troubleshooting in general.

Direct use of shell commands should be performed only under the
supervision of Juniper support personnel. There is a lot of rope in a root
shell, after all; if used incorrectly, the switch could be rendered
inoperable.

Here’s a list of key JUNOS fault isolation tools, in no particular order.

The system logfiles often contain explicit information about hardware or soft-
ware problems, and may also display errors for operational problems such as detection
of duplicate IP addressing. Display the messages log and filter the output based on the
interface name, or keywords such as error and fail. Monitor the syslog in real time as
you commit the changes to spot any issues early. This example searches the messages
file for instances of either error or fail:

{master}
lab@Vodkila> show log messages | match "(fail|error)"
Jan 30 01:10:03 Vodkila /kernel: RT_PFE: RT msg op 1 (PREFIX ADD) failed, err 5

Syslog.

156 | Chapter 3: Initial Configuration and Maintenance

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/

(Invalid)
. . .

This iftop-like utility quickly displays interface packet and byte
counts, and also displays any overt alarms or warnings. It’s useful when tracking data
loss or testing traffic rates/interface loads. The command can also be performed on a
logical interface to limit the statistics to just that unit:

lab@Rum> monitor interface ge-0/0/4

Rum Seconds: 6 Time: 12:00:51
 Delay: 11/0/11
Interface: ge-0/0/4, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 1000mbps
Traffic statistics: Current delta
 Input bytes: 5839292 (0 bps) [0]
 Output bytes: 9324028 (0 bps) [0]
 Input packets: 91076 (0 pps) [0]
 Output packets: 100314 (0 pps) [0]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 0 [0]
 L2 channel errors: 0 [0]
 L2 mismatch timeouts: 0 Carrier transitions [0]

Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'

This tcpdump-like command is akin to debug IP on IOS-based routers. It
works only for traffic sent to or from the local RE, however. To monitor transient traffic,
you need to configure a monitor port and direct the traffic to an external analyzer. This
example uses the detail switch for added info and shows a Spanning Tree Protocol
(STP) message being transmitted:

lab@Rum> monitor traffic interface ge-0/0/4 detail
Address resolution is ON. Use <no-resolve> to avoid any reverse lookup delay.
Address resolution timeout is 4s.
Listening on ge-0/0/4, capture size 1514 bytes

12:06:41.406162 Out STP 802.1d, Config, Flags [none], bridge-id
8000.00:19:e2:56:ee:80.8205, length 35
 message-age 0.00s, max-age 20.00s, hello-time 2.00s, forwarding-delay
15.00s
 root-id 8000.00:19:e2:56:ee:80, root-pathcost 0

There are numerous operational mode commands, gen-
erally beginning with show, that provide insight into interface or general networking/
platform problems. Commands such as show route, show interface, show chassis
alarms, show log messages, and show ethernet-switching are particularly useful.

Monitor interface.

Monitor traffic.

Operational mode show commands.

EX Interfaces | 157

Beginning with Release 9.4, EX platforms support Ethernet OAM (on
Layer 2 interfaces only) to provide fault detection for the forwarding plane between
two peers (point-to-point [P-to-P] Ethernet). Because many link or interface hardware
issues have no obvious signs, other than a lack of data/connectivity, the ability to elim-
inate the data plane from a Layer 2 protocol-agnostic point of view is a great help in
isolating faults. An in-depth discussion of OAM is outside the scope of this section. For
details, see the IEEE 802.3ah standard. For now, suffice it to say that OAM provides
an in-band heartbeat, or keepalive function, in addition to basic management functions
such as setting or clearing remote loopbacks.

Because Ethernet OAM operates in-band, which means over the same data link as the
upper-layer user traffic, if OAM shows no issues there is little point in double-checking
Physical level interface parameters, given that communication is successfully occurring
across the link. Instead, focus should be placed on mistakes in the Layer 2 configuration
or a downstream node. Currently, EX switches support interface loopbacks only
through the use of OAM, and then only a remote loopback is supported. JUNOS rout-
ing devices have a (local) loopback configuration option for Ethernet interfaces. It’s best
to perform local loopbacks with an external loopback anyway, given the fact that an
internal local loopback does not really validate all interface hardware, but such a loop-
back requires physical proximity to the port being tested. In this example, a Layer 2
interface is not running Spanning Tree, and has no user traffic flowing; as a result, the
interface traffic counters cannot be used to determine link status, given that they are 0:

[edit protocols oam]
regress# run clear interfaces statistics all

[edit protocols oam]
regress# run show interfaces ge-0/0/4 extensive
Physical interface: ge-0/0/4, Enabled, Physical link is Up
 Interface index: 133, SNMP ifIndex: 118, Generation: 136
 Link-level type: Ethernet, MTU: 1514, Speed: Auto, Duplex: Auto, BPDU Error:
None, MAC-REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled, Auto-negotiation: Enabled,
Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 00:1f:12:35:31:c4, Hardware address: 00:1f:12:35:31:c4
 Last flapped : 2009-02-17 16:42:46 UTC (1d 01:21 ago)
 Statistics last cleared: 2009-02-18 18:03:47 UTC (00:00:02 ago)
 Traffic statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0

Ethernet OAM.

158 | Chapter 3: Initial Configuration and Maintenance

 Output packets: 0
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0, L3
incompletes: 0, L2 channel errors: 0,
 L2 mismatch timeouts: 0, FIFO errors: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
FIFO errors: 0, HS link CRC errors: 0,
 MTU errors: 0, Resource errors: 0
 . . .

The display indicates that all is well with the interface, but it could just be that the local
link is up while the remote end is down. OAM is added to the link, and in this case is
combined with an action profile, which, as per its name, defines the set of actions to
take in the event that OAM thresholds are crossed:

[edit protocols oam]
regress# show
ethernet {
 link-fault-management {
 action-profile down_link {
 event {
 link-adjacency-loss;
 }
 action {
 link-down;
 }
 }
 interface ge-0/0/4.0 {
 apply-action-profile down_link;
 link-discovery active;
 negotiation-options {
 allow-remote-loopback;
 }
 }
 }
}

The results are quickly confirmed:

[edit protocols oam]
regress# run show oam ethernet link-fault-management
 Interface: ge-0/0/4.0
 Status: Running, Discovery state: Send Any
 Peer address: 00:21:59:c0:ba:c4
 Flags:Remote-Stable Remote-State-Valid Local-Stable 0x50
 Remote entity information:
 Remote MUX action: forwarding, Remote parser action: forwarding
 Discovery mode: active, Unidirectional mode: unsupported
 Remote loopback mode: supported, Link events: supported
 Variable requests: unsupported
Application profile statistics:
 Profile Name Invoked Executed
 down_link 0 0

EX Interfaces | 159

The output of the show oam ethernet link-fault-management command confirms that
the OAM neighbor relationship is operational, and that the associated down_link action
profile has not yet been triggered. The in-band operation of OAM results in traffic
activity on the interface:

regress# run show interfaces ge-0/0/4 extensive
Physical interface: ge-0/0/4, Enabled, Physical link is Up
 . . .
 Statistics last cleared: 2009-02-18 18:03:47 UTC (00:01:12 ago)
 Traffic statistics:
 Input bytes : 3012 512 bps
 Output bytes : 3524 512 bps
 Input packets: 47 1 pps
 Output packets: 55 1 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
. . .

Not wanting to let well enough alone, we test the action profile by disabling OAM on
the remote end of the link. The OAM status is again displayed:

[edit protocols oam]
regress# run show oam ethernet link-fault-management
 Interface: ge-0/0/4.0
 Status: Running, Discovery state: Active Send Local
 Peer address: 00:00:00:00:00:00
 Flags:0x8
Application profile statistics:
 Profile Name Invoked Executed
 down_link 1 1

As expected, the OAM neighbor is lost, as evidenced by a null MAC address and the
lack of remote capability and status indication. The down_link profile has been executed
once, and as a result the ge-0/0/4.0 logical interface is declared down:

[edit protocols oam]
regress# run show interfaces ge-0/0/4.0
 Logical interface ge-0/0/4.0 (Index 64) (SNMP ifIndex 119)
 Flags: Device-Down 0x0 Encapsulation: ENET2
 Input packets : 1571
 Output packets: 1769
 Protocol eth-switch
 Flags: Is-Primary

The EX platform has a built-in fault isolation wizard that you can
run from the J-Web or CLI interface. This utility includes a basic Time Domain Re-
flectometer (TDR) function that’s useful in determining the general nature and location
of cable faults. The following example is executed on a known working link, and the
results are quite informative, with details provided on overall status as well as on a
per-MDI-wire-pair basis:

lab@Rum> request diagnostics tdr start interface ge-0/0/0
Test successfully executed

Diagnostic commands.

160 | Chapter 3: Initial Configuration and Maintenance

. . .

lab@Rum> show diagnostics tdr interface ge-0/0/0

Interface TDR detail:
Interface name : ge-0/0/0
Test status : Started

The output of the show diagnostics tdr command shows that the test is still running,
so you patiently bide your time. Some things cannot be rushed, after all, and it’s good
to stop and smell life’s TDRs every now and then:

lab@Rum> show diagnostics tdr interface ge-0/0/0

Interface TDR detail:
Interface name : ge-0/0/0
Test status : Passed
Link status : UP
MDI pair : 1-2
 Cable status : Normal
 Distance fault : 0 Meters
 Polartiy swap : Normal
 Skew time : 8 ns
MDI pair : 3-6
 Cable status : Normal
 Distance fault : 0 Meters
 Polartiy swap : Normal
 Skew time : 0 ns
MDI pair : 4-5
 Cable status : Normal
 Distance fault : 0 Meters
 Polartiy swap : Normal
 Skew time : 8 ns
MDI pair : 7-8
 Cable status : Normal
 Distance fault : 0 Meters
 Polartiy swap : Normal
 Skew time : 8 ns
Channel pair : 1
 Pair swap : MDI
Channel pair : 2
 Pair swap : MDIX
Downshift : No Downshift

The completed test results confirm that all is fine and dandy with the interface and its
link.

Performing local and remote loopbacks is an invaluable technique when you
need to isolate between interface hardware/configuration and cable/link faults. You
can perform a hardwired loopback on any FD interface with an external loop plug. You
may need to attenuate the signal on optical interfaces.

Unlike M, T, MX, and J Series devices, EX switches don’t support a command-initiated
local loopback for Ethernet interfaces. On the upside, you can perform a remote

Loopbacks.

EX Interfaces | 161

loopback on Layer 2 interfaces by enabling OAM and issuing the appropriate com-
mand. Once looped, you can use link statistics or pings (as applicable) to determine
whether traffic can be sent and received. When both ends pass a local test, the link is
bad or the endpoints are misconfigured. If either end fails the local test, that interface
(or configuration) is bad.

Here’s an OAM-based Layer 2 loopback example. The OAM configuration specifies
that OAM should run on the ge-0/0/4.0 interface, and includes the allow-remote-
loopback negotiation option to allow remote initiated loopbacks. The remote-loop
back keyword is used to place the remote end into the loopback:

 [edit protocols oam]
regress# show
ethernet {
 link-fault-management {
 interface ge-0/0/4.0 {
 link-discovery active;
 remote-loopback;
 negotiation-options {
 allow-remote-loopback;
 }
 }
 }
}

EX support for Ethernet OAM started in JUNOS Release 9.4. The 9.2
release used in this test bed does not support OAM, so another pair of
switches are used.

The output of a show oam ethernet link-fault-management command confirms that the
loopback request is successful:

[edit protocols oam]
regress# run show oam ethernet link-fault-management
 Interface: ge-0/0/4.0
 Status: Running, Discovery state: Send Any
 Peer address: 00:21:59:c0:ba:c4
 Flags:Remote-Stable Remote-State-Valid Local-Stable 0x50
 Remote loopback status: Disabled on local port, Enabled on peer port
 Remote entity information:
 Remote MUX action: discarding, Remote parser action: loopback
 Discovery mode: active, Unidirectional mode: unsupported
 Remote loopback mode: supported, Link events: supported
 Variable requests: unsupported

After interface statistics are cleared, the matched send and receive count, along with a
lack of any error indications, shows that all is well with the local interface, the link, and
remote loopback circuitry at the far end of the link:

162 | Chapter 3: Initial Configuration and Maintenance

regress# run clear interfaces statistics all
. . .

[edit protocols oam]
regress# run show interfaces ge-0/0/4 extensive
Physical interface: ge-0/0/4, Enabled, Physical link is Up
 . . .
 Statistics last cleared: 2009-02-18 18:43:54 UTC (00:00:41 ago)
 Traffic statistics:
 Input bytes : 2624 512 bps
 Output bytes : 2624 512 bps
 Input packets: 41 1 pps
 Output packets: 41 1 pps
 . . .

The best way to confirm that an EX port is truly operational is to confirm
that it can actually send and receive traffic outside the port itself. Although an internal
loopback (not supported on EX ports) is convenient, it does not really confirm the
port’s external transmit and receive functions, which can result in a defective port
passing such a loopback test. This section describes how you can attach an external
loopback cable/plug to an EX switch port to truly test its ability to send and receive.
Ideally, such a loop is performed at the end of a cable that is half as long as the real
cable, as the round trip accurately simulates the loss through the real link; in most cases,
a bad port will fail even with a short length of cable, which means you can carry a small
RJ-45 jack with looped pins as part of your troubleshooting toolkit.

Here are some things to watch for when performing this type of test:

Does not work for GE on copper
GE over twisted-pair copper requires extensive Near End Cross Talk (NEXT) cir-
cuitry. This function typically prevents a successful external loopback because the
circuitry is designed to filter the local end’s transmit from the much weaker signal
that’s received from the remote end. This means you will need to configure copper
GE ports to operate at 100 Mbps, as the NEXT functionality cannot currently be
disabled on EX switches.

Requires full duplex
Any loopback requires FD. This may require a change in configuration or restart
of auto-negotiations if an interface is operating in HD mode.

Best when combined with Layer 3
By adding Layer 3 (IP) to the interface being tested, you can use utilities such as
ping to generate and confirm test traffic. This takes a bit of finesse, as we will
demonstrate shortly, but the results are true indicators of the port’s external and
PFE-facing functionality.

Figure 3-8 shows the printout of a typical Ethernet loopback plug.

Hard loops.

EX Interfaces | 163

Figure 3-8. Copper Ethernet loopback plug

All eight wires are used because the wires are cheap, and it allows usage on all flavors
of copper-based Ethernet (with the GE and NEXT caveat noted earlier).

To perform the loopback, you first configure the test interface for 100 Mbps operation.
FD is the default, so an explicit duplex setting is not needed. This example adds an IP
configuration to the interface to permit testing with IP packets:

[edit]
lab@Rum# show interfaces ge-0/0/20
ether-options {
 speed {
 100m;
 }
}
unit 0 {
 family inet {
 address 200.0.0.1/24 {
 arp 200.0.0.2 mac 00:19:e2:56:ee:95;
 }
 }
}

The static ARP entry is needed because you cannot send an IP packet out an Ethernet
interface without a next hop MAC address. Because you expect the sending interface
to also be the receiving interface, this MAC address must match the current hardware
address used by the test interface. Using the local interface’s own MAC address ensures
that the frame will make it past the selective listening of the MAC layer so that it can
be processed by the IP layer:

[edit]
lab@Rum# run show interfaces ge-0/0/20 | match hardware
 Interface flags: Hardware-Down SNMP-Traps Internal: 0x0
 Current address: 00:19:e2:56:ee:95, Hardware address: 00:19:e2:56:ee:95

164 | Chapter 3: Initial Configuration and Maintenance

With this configuration and loopback plug applied, the interface is confirmed to be in
an operational state. So far, so good:

[edit interfaces ge-0/0/20]
lab@Rum# run show interfaces ge-0/0/20
Physical interface: ge-0/0/20, Enabled, Physical link is Up
 Interface index: 149, SNMP ifIndex: 135
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, MAC-REWRITE Error: None,
 Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
 Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Current address: 00:19:e2:56:ee:95, Hardware address: 00:19:e2:56:ee:95
 Last flapped : 2008-08-29 13:11:51 UTC (00:06:05 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface ge-0/0/20.0 (Index 67) (SNMP ifIndex 149)
 Flags: SNMP-Traps 0x0 Encapsulation: ENET2
 Input packets : 516
 Output packets: 516
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 200.0.0/24, Local: 200.0.0.1, Broadcast: 200.0.0.255

The highlights confirm that no error conditions are reported; the 100 Mbps mode; the
presence of an IP address; and that no traffic is currently being sent or received. FD
mode is also verified with the media switch:

[edit interfaces ge-0/0/20]
lab@Rum# run show interfaces ge-0/0/20 media
Physical interface: ge-0/0/20, Enabled, Physical link is Up
 Interface index: 149, SNMP ifIndex: 135
. . .
 Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: None, Remote fault: OK,
 Link partner Speed: 100 Mbps
 Local resolution:
 Flow control: None, Remote fault: Link OK
. . .

The key to the upcoming Layer 3 confirmation is that you will generate a ping request
to a remote address that reflects some host on the directly connected network. Because
of the loopback plug, there is no remote host, which is part of the method to this mad-
ness. When the packet is transmitted to the fictitious remote IP address, the loopback
returns the frame to the receive circuitry of that same port. Because Layer 3 forwarding
does not have issues with loops and redundant paths, the receipt of such a packet is

EX Interfaces | 165

not considered an error, and the traffic is handled normally. This means the frame is
stripped, and a longest match is performed against the destination address of the IP
packet. As a result, the router once again transmits the packet out the same interface,
except this time with a TTL that is one less than when the packet was originally
transmitted.

This process continues until the packet’s TTL is decremented to 0, at which point an
ICMP error message is generated to report the TTL expiration. Oddly enough, it’s the
receipt of this very error message that indicates a successful loopback test! If anything
should go wrong with packet processing in any of the loopback iterations, the result is
a silent discard, given the datagram nature of IP. Such a discard results in a timeout
error, which in this case indicates packet loss. By altering the TTL value, you can control
how likely a loss is to occur on a marginal circuit/interface. For example, a TTL of 254
means the packet must be sent and received 254 times before the expected TTL expired
message is generated, whereas a TTL of 2 requires far fewer such iterations, and is
therefore that much more likely to succeed.

Before generating the test traffic, the route to the target remote IP address is confirmed
active and pointing out the looped interface:

[edit interfaces ge-0/0/20]
lab@Rum# run show route 200.0.0.2

inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

200.0.0.0/24 *[Direct/0] 00:05:06
 > via ge-0/0/20.0

In this example, any host address in the range of 2 to 254 could be used. To work, it
must not match the local IP address and it must have a static ARP assignment, however.
Two test pings are generated with an explicit TTL setting of 254, to create a more
strenuous test by overriding the default value of 64:

lab@Rum# run ping 200.0.0.2 count 2 ttl 254
PING 200.0.0.2 (200.0.0.2): 56 data bytes
36 bytes from 200.0.0.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 3e1f 0 0000 01 01 eb86 200.0.0.1 200.0.0.2

36 bytes from 200.0.0.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 3e21 0 0000 01 01 eb84 200.0.0.1 200.0.0.2

--- 200.0.0.2 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

Despite the 100% loss in the resulting output, the receipt of the TTL expired messages
confirms proper port operation. Traffic statistics on the test interface confirm that each

166 | Chapter 3: Initial Configuration and Maintenance

test packet was looped TTL times, at wire rate, which again is a very good indication
that the interface and its PFE links are operational:

[edit]
lab@Rum# run show interfaces ge-0/0/20
Physical interface: ge-0/0/20, Enabled, Physical link is Up
 Interface index: 149, SNMP ifIndex: 135
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, MAC-REWRITE Error: None,
 Loopback: Disabled, Source filtering: Disabled, Flow control: Enabled,
. . .

 Logical interface ge-0/0/20.0 (Index 67) (SNMP ifIndex 149)
 Flags: SNMP-Traps 0x0 Encapsulation: ENET2
 Input packets : 510
 Output packets: 510
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 200.0.0/24, Local: 200.0.0.1, Broadcast: 200.0.0.255

In this case, you may have expected to see a packet count of 254 × 2 (508), but instead
you observe 510. The extra two packets reflect the ICMP error message that was sent,
and received, twice, resulting in a total of four extra packets in total.

EX Interface Summary
The EX platform supports only Ethernet interface types, which greatly reduces the
scope of interface configuration and fault isolation. In JUNOS, an interface configura-
tion involves both a device and at least one logical unit. Device-level settings are placed
under the interface itself, whereas protocol families and their related properties are
specified at the logical unit level.

JUNOS software provides numerous operational and diagnostics tools to assist in fault
isolation and correction. The tools and techniques we discussed in this section are
demonstrated in later real-world networking scenarios when things do not go as
planned.

Basic Switch Maintenance
Once the switch is configured and ready for deployment, some basic checks should be
performed, and logging and recovery configuration should be considered. We begin
this section by issuing a few chassis health-check commands. We then discuss some
additional syslog, SNMP, and Network Time Protocol (NTP) configurations, which
are strongly recommended because they enhance troubleshooting and security-related
activities. Lastly, we look at some additional (and cool) JUNOS features that can save
the day, and occasionally your bacon, in cases of switch configuration deletion, mis-
takes, or just strange cosmic-ray-based corruption, as has been known to spread
through IOS networks in the past.

Basic Switch Maintenance | 167

Chassis Health Check
When the chassis powers up for the first time, issue a few basic commands to verify
that all the components are working properly. You can do this before or after the initial
configuration. First, check to see whether all the proper hardware pieces are working
and recognized by the system; you can do this by issuing the show chassis hardware
command. This is also a great command to record into your inventory sheet, as it will
list the serial and part numbers for each piece of hardware. As displayed, the new switch
is an EX4200-24T with a Gigabit Ethernet uplink module with two Small Form-factor
Pluggable (SFP) optics and a 320-watt AC power supply:

lab@Tequila > show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis BM0208269767 EX4200-24T
FPC 0 REV 11 750-021256 BM0208269767 EX4200-24T, 8 POE
 CPU BUILTIN BUILTIN FPC CPU
 PIC 0 BUILTIN BUILTIN 24x 10/100/1000 Base-T
 PIC 1 REV 03B 711-021270 AR0208163417 4x GE SFP
 Xcvr 0 REV 01 740-011613 AM0813S8Z6W SFP-SX
 Xcvr 1 REV 01 740-011613 AM0813S8Z26 SFP-SX
Power Supply 0 REV 03 740-020957 AT0508248670 PS 320W AC
Fan Tray Fan Tray

SFPs are sold separately from the uplink modules.

Verify that there are no system or chassis alarms. If there were any fan failures, power
supply failures, and so forth, they should show up in the chassis command:

lab@Tequila> show system alarms
No alarms currently active

lab@Tequila> show chassis alarms
No alarms currently active

The show system storage command is a quick way to gauge flash memory fill levels.
The flash is partitioned in various directories with the total storage size of 1 GB:

lab@Tequila > show system storage
fpc0:

Filesystem Size Used Avail Capacity Mounted on
/dev/da0s2a 184M 83M 87M 49% /
devfs 1.0K 1.0K 0B 100% /dev
devfs 1.0K 1.0K 0B 100% /dev/
/dev/md0 31M 31M 0B 100% /packages/mnt/jbase
/dev/md1 13M 13M 0B 100% /packages/mnt/jcrypto-ex-9.2R1.9
/dev/md2 4.3M 4.3M 0B 100% /packages/mnt/jdocs-ex-9.2R1.9
/dev/md3 88M 88M 0B 100% /packages/mnt/jkernel-ex-9.2R1.9

168 | Chapter 3: Initial Configuration and Maintenance

/dev/md4 13M 13M 0B 100% /packages/mnt/jpfe-ex42x-9.2R1.9
/dev/md5 33M 33M 0B 100% /packages/mnt/jroute-ex-9.2R1.9
/dev/md6 12M 12M 0B 100% /packages/mnt/jswitch-ex-9.2R1.9
/dev/md7 15M 15M 0B 100% /packages/mnt/jweb-ex-9.2R1.9
/dev/md8 63M 8.0K 58M 0% /tmp
/dev/da0s2f 123M 1.2M 112M 1% /var
/dev/da0s3e 55M 58K 51M 0% /config
/dev/da0s3d 314M 4.0K 289M 0% /var/tmp
/dev/md9 118M 8.1M 100M 7% /var/rundb
procfs 4.0K 4.0K 0B 100% /proc
/var/jail/etc 123M 1.2M 112M 1% /packages/mnt/jweb-ex-9.2R1.9/\
 jail/var/etc
/var/jail/run 123M 1.2M 112M 1% /packages/mnt/jweb-ex-9.2R1.9/\
 jail/var/run
/var/jail/tmp 123M 1.2M 112M 1% /packages/mnt/jweb-ex-9.2R1.9/\
 jail/var/tmp
/var/tmp 314M 4.0K 289M 0% /packages/mnt/jweb-ex-9.2R1.9/\
 jail/var/tmp/uploads
devfs 1.0K 1.0K 0B 100% /packages/mnt/jweb-ex-9.2R1.9/jail/

Here, the various filesystems are based on slices (partitions) of the flash memory, and
we can see that, for example, the /var filesystem has used only 1% of its 123 MB slice.
When you install or upgrade JUNOS software, the disk partitions may be resized, and
information in user home directories (/var/home/) may be lost. Where possible, JUNOS
attempts to keep SSH keys. When needed, use the request system storage cleanup
command to delete unneeded files and free up space, such as might be needed to make
room for a future software upgrade:

lab@Tequila > request system storage cleanup

List of files to delete:

 Size Date Name
 112B Sep 21 08:03 /var/log/default-log-messages.0.gz
 8639B Sep 21 08:03 /var/log/interactive-commands.0.gz
 8429B Aug 22 21:00 /var/log/interactive-commands.1.gz
 8238B Aug 18 11:00 /var/log/interactive-commands.2.gz
 8205B Aug 13 09:00 /var/log/interactive-commands.3.gz
 8155B Aug 7 22:00 /var/log/interactive-commands.4.gz
 8211B Aug 4 06:00 /var/log/interactive-commands.5.gz
 8260B Jul 31 14:00 /var/log/interactive-commands.6.gz
 8185B Jul 27 09:00 /var/log/interactive-commands.7.gz
 8569B Jul 22 10:00 /var/log/interactive-commands.8.gz
 9008B Jul 17 12:00 /var/log/interactive-commands.9.gz
 8335B Sep 21 08:03 /var/log/messages.0.gz
 14.9K Aug 24 08:00 /var/log/messages.1.gz
 12.7K Aug 1 22:00 /var/log/messages.2.gz
 27B Sep 15 04:00 /var/log/wtmp.0.gz
 4232B Aug 25 06:38 /var/log/wtmp.1.gz
 15.4K Aug 16 04:01 /var/log/wtmp.2.gz
 137B Jul 17 08:42 /var/log/wtmp.3.gz
Delete these files ? [yes,no] (no) yes

Basic Switch Maintenance | 169

Verify the software version running on the switch:

lab@Tequila > show version
fpc0:
--
Model: ex4200-24t
JUNOS Base OS boot [9.2R1.9]
JUNOS Base OS Software Suite [9.2R1.9]
JUNOS Kernel Software Suite [9.2R1.9]
JUNOS Crypto Software Suite [9.2R1.9]
JUNOS Online Documentation [9.2R1.9]
JUNOS Enterprise Software Suite [9.2R1.9]
JUNOS Packet Forwarding Engine Enterprise Software Suite [9.2R1.9]
JUNOS Routing Software Suite [9.2R1.9]
JUNOS Web Management [9.2R1.9]

Lastly, it’s a good idea to verify that the fans are working properly and temperatures
are well below alarm thresholds. Notice that only a single power supply was purchased:

lab@Tequila > show chassis environment
Class Item Status Measurement
Power FPC 0 Power Supply 0 OK
 FPC 0 Power Supply 1 Absent
Temp FPC 0 CPU OK 37 degrees C / 98 degrees F
 FPC 0 EX-PFE1 OK 46 degrees C / 114 degrees F
 FPC 0 EX-PFE2 OK 47 degrees C / 116 degrees F
 FPC 0 GEPHY Front Left OK 30 degrees C / 86 degrees F
 FPC 0 GEPHY Front Right OK 31 degrees C / 87 degrees F
 FPC 0 Uplink Conn OK 32 degrees C / 89 degrees F
Fans FPC 0 Fan 1 OK Spinning at normal speed
 FPC 0 Fan 2 OK Spinning at normal speed
 FPC 0 Fan 3 OK Spinning at normal speed

Also, for those who prefer the J-Web GUI, there is a nice dashboard that shows many
of these commands in a more graphical format. Figure 3-9 shows an example.

Syslog
Syslog was originally developed as a method to send information for the sendmail ap-
plication in BSD, but it was so useful that it was extended to other applications and
operating systems. Essentially, syslog is a standard way to send log messages across an
IP network. Syslog describes the actual transport mechanism used to send these mes-
sages, and is often used to describe the actual application that is sending these messages.
Originally, it was an “industry” standard, and was not attached to an informational
RFC until 2001, with RFC 3164, “The BSD Syslog Protocol.”

Syslog messages are sent over UDP with a destination port of 514. The IP transport
mechanism is defined and not the actual syslog content. It is left to the discretion of
the application or system coder to create an informative message for the receiver. The
message always contains a message severity level and a facility. The facility can be
defined as the type of message that is being sent, and the severity level indicates the
message’s importance. Table 3-2 defines the severity levels.

170 | Chapter 3: Initial Configuration and Maintenance

Figure 3-9. The J-Web dashboard

Table 3-2. Syslog severity levels

Numerical code Severity

0 Emergency: system is unusable

1 Alert: action must be taken immediately

2 Critical: critical conditions

3 Error: error conditions

4 Warning: warning conditions

5 Notice: normal but significant condition

6 Informational: informational messages

7 Debug: debug-level messages

Table 3-3 lists the facilities that are available in JUNOS.

Basic Switch Maintenance | 171

Table 3-3. Syslog facilities

Facility Description

Any All facilities (all messages)

Authorization Authentication and authorization attempts

Change-Log Changes to the configuration

Conflict-Log Specified configuration is invalid on the routing platform type

Daemon Actions performed or errors encountered by system processes

DFC Events related to dynamic flow capture

Firewall Packet filtering actions performed by a firewall filter

FTP Actions performed or errors encountered by the FTP process

Interactive commands Commands executed by the user interface

Kernel Actions performed or errors encountered by the JUNOS kernel

PFE Actions performed or errors encountered by the PFE

User Actions performed or errors encountered by user-space processes

The default system log is called messages, and you can view it with the show log
messages command:

root@Tequila> show log messages
Aug 5 16:14:28 Tequila chassisd[636]: CHASSISD_SNMP_TRAP7: SNMP trap generated:
FRU removal (jnxFruContentsIndex 7, jnxFruL1Index 1, jnxFruL2Index 0,jnxFruL3Index
0, jnxFruName FPC: EX4200-24T, 8 POE @ 0/*/*, jnxFruType 3,
jnxFruSlot 1)
Aug 5 16:14:29 Tequila chassisd[636]: CHASSISD_TIMER_VAL_ERR: Null timer ID
Aug 5 16:14:29 Tequila chassisd[636]: CHASSISD_SNMP_TRAP7: SNMP trap generated:
FRU insertion (jnxFruContentsIndex 7, jnxFruL1Index 1, jnxFruL2Index 0,
jnxFruL3Index 0, jnxFruName FPC: EX4200-24T, 8 POE @ 0/*/*, jnxFruType 3,
jnxFruSlot 1)
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_SNMP_TRAP10: SNMP trap generated:
FRU power on (jnxFruContentsIndex 8, jnxFruL1Index 1, jnxFruL2Index 1,
jnxFruL3Index 0, jnxFruName PIC: @ 0/0/*, jnxFruType 11, jnxFruSlot 1,
jnxFruOfflineReason 2, jnxFruLastPowerOff 243976, jnxFruLastPowerOn 250250)
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_SNMP_TRAP10: SNMP trap generated:
FRU power on (jnxFruContentsIndex 8, jnxFruL1Index 1, jnxFruL2Index 2,
jnxFruL3Index 0, jnxFruName PIC: 4x GE SFP @ 0/1/*, jnxFruType 11, jnxFruSlot 1,
jnxFruOfflineReason 2, jnxFruLastPowerOff 243976, jnxFruLastPowerOn 250250)
Aug 5 16:14:30 Tequila chas[527]: PS 0: Transitioning from empty to online
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/0
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/1
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/2
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/3
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/4

172 | Chapter 3: Initial Configuration and Maintenance

Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/5
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/6
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/7
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/8
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/9
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/10
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/11
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/12
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/13
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/14
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/15
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/16
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/17
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/18
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/19
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/20
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/21
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/22
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/0/23
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/1/0
Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/1/1
Aug 5 16:14:31 Tequila mib2d[639]: SNMP_TRAP_LINK_DOWN: ifIndex 116,
ifAdminStatus up(1), ifOperStatus down(2), ifName ge-0/0/3
Aug 5 16:14:31 Tequila mib2d[639]: SNMP_TRAP_LINK_DOWN: ifIndex 118,
ifAdminStatus up(1), ifOperStatus down(2), ifName ge-0/0/4
Aug 5 16:15:05 Tequila mgd[678]: UI_DBASE_LOGIN_EVENT: User 'root' entering
configuration mode
Aug 5 16:15:17 Tequila mgd[678]: UI_LOAD_EVENT: User 'root' is performing a
'load override'
Aug 5 16:15:30 Tequila mgd[678]: UI_COMMIT: User 'root' requested 'commit'
operation (comment: none)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(1)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(2)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(3)

Basic Switch Maintenance | 173

Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(4)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(5)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(6)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(7)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(8)
Aug 5 16:15:30 Tequila chassisd[895]: CHASSISD_IFDEV_DETACH_FPC: ifdev_detach(9)
Aug 5 16:15:33 Tequila vccp[879]: ISIS initialization complete
Aug 5 16:15:38 vccp[879]: ISIS initialization complete
Aug 5 16:15:39 vccp[879]: TASK_SCHED_SLIP: 4 sec scheduler slip, user: 0 sec 0
usec, system: 0 sec, 5694 usec
Aug 5 16:15:39 mgd[678]: UI_DBASE_LOGOUT_EVENT: User 'root' exiting
configuration mode
Aug 5 16:16:03 login: LOGIN_INFORMATION: User lab logged in from host [unknown]
on device ttyu0
Aug 5 16:16:49 LIBJNX_EXEC_WEXIT: Command exited: PID 1128, status 1, command
'/usr/bin/scp'
Aug 5 17:09:08 mgd[1125]: UI_DBASE_LOGIN_EVENT: User 'lab' entering
configuration mode
Aug 5 17:11:09 mgd[1125]: UI_DBASE_LOGOUT_EVENT: User 'lab' exiting
configuration mode

Many of the syslog messages will have headers specified in uppercase letters that you
can input into the command, specifying on which facility the message was logged, the
severity level, a description, and a recommended action. Looking at the log entry for
August 5, one such header is noted as CHASSISD_IFDEV_CREATE_NOTICE:

Aug 5 16:14:30 Tequila chassisd[636]: CHASSISD_IFDEV_CREATE_NOTICE: create_pics:
created interface device for ge-0/1/1

You can examine this message using the help syslog command, which indicates that
the chassisd software process created a new interface:

lab@Tequila> help syslog CHASSISD_IFDEV_CREATE_NOTICE
Name: CHASSISD_IFDEV_CREATE_NOTICE
Message: <function-name>: created <device-name> for <interface-name>
Help: chassisd created interface device
Description: The chassis process (chassisd) created the initial interface
 device for the indicated newly installed Physical Interface Card
 (PIC) or pseudodevice.
Type: Event: This message reports an event, not an error
Severity: notice

You can create custom logs by specifying a filename, facility, message facility, and
location to send the message. The message can be stored in a local file, sent to a syslog
server, sent to the console, or sent to a user or group of users when logged in to the
switch.

The factory-default configuration enables three system logs: two logs that are sent to a
file, and one log that is sent to any user that is logged in. Although the default system
log receives all information as specified with the any keyword, you can create other files
for easier log parsing:

syslog {
 user * {
 any emergency;

174 | Chapter 3: Initial Configuration and Maintenance

 }
 file messages {
 any any;
 authorization info;
 }
 file interactive-commands {
 interactive-commands any;
 }
}

Syslog case study

To avoid having to specify every syslog option available, let’s examine a realistic ex-
ample with specific goals. The goals are as follows:

• Increase the default size of the messages file to 1 MB and the number of archives
to 15.

• Send all messages to a syslog server with a domain name of syslog.underdogssf.com.

• Ensure that all messages sent to the syslog server are in the same format as the
Cisco switches in the network.

• Create a syslog file to log all firewall filter log information.

Each syslog file that is created on a Juniper Networks switch is stored in the file directory
var/log and is given a size of 128 KB on a J Series switch and 1 MB on an M Series switch.
When the file is full, the file is cleared, an archive is created of the old data, and the file
is written to again. For example, once 128 KB of data is written into the messages file,
that file will be cleared and the information will be moved into a messages.0 file. When
the messages file is filled up again, the old data is archived into messages.0 and the old
messages.0 now becomes messages.1. This will continue for 10 archives until the data
is written. In the case study, we will increase the default number of archives to 15 and
the file size to 1 MB. We can do this with the following archive configuration:

[edit system syslog]
lab@TEQUILA# set file messages archive files 15 size 1M
[edit system syslog]
lab@TEQUILA# show file messages
any notice;
authorization info;
archive size 1m files 15;

Next, syslog messages need to be sent to a syslog server:

[edit system syslog]
lab@TEQUILA# set host syslog.underdogssf.com any any

The default JUNOS message does not send the priority (facility value and severity) of
the syslog message, which could cause issues when trying to parse the output at the
receiver. Cisco switches by default do send this priority message; to ensure that both
vendors send the same message format, configure the explicit-priority keyword:

Basic Switch Maintenance | 175

[edit system syslog]
lab@TEQUILA# set host syslog.underdogssf.com explicit-priority

Lastly, a new syslog file is created to log firewall entries:

[edit system syslog]
lab@TEQUILA# set file fw-log firewall info

Here is the complete stanza:

[edit system syslog]
lab@TEQUILA# show
user * {
 any emergency;
}
host syslog.underdogssf.com {
 any any;
 explicit-priority;
}
file messages {
 any notice;
 authorization info;
 archive size 1m files 15;
}
file interactive-commands {
 interactive-commands any;
}
file fw-log {
 firewall info;
}

SNMP
SNMP is a standard protocol used for a network management station to receive infor-
mation for the switch (agent), as shown in Figure 3-10. The manager can poll the switch
for switch health information such as memory utilization, link status, or firewall filter
statistics in the form of a GET command. The switch can also send event information to
the network manager without polling, in a process called a trap.

Figure 3-10. SNMP concept

The data structure that is used to carry information is called a Management Information
Base (MIB). A MIB has a structure in the format of a tree that defines groups of objects
into related sets. These MIBs are identified by an Object Identifier (OID), which names
the object. The leaf of the OID contains the actual managed objects. MIBs are defined

176 | Chapter 3: Initial Configuration and Maintenance

into two categories: standard MIBs and enterprise-specific MIBs. Standard MIBs are
defined by the IETF in various RFCs, whereas enterprise-specific MIBs are defined by
the vendor and must be compiled into the management station. Here is an example of
MIB data taken from a network manager:

SNMPv2-MIB::sysDescr.0 = STRING: Mx480 - Okemos, MI
SNMPv2-MIB::sysObjectID.0 = OID: JUNIPER-MIB::jnxProductNameM480
SNMPv2-MIB::sysUpTime.0 = Timeticks: (80461526) 9 days, 7:30:15.26
SNMPv2-MIB::sysContact.0 = STRING: Doug Marschke - x8675309
SNMPv2-MIB::sysName.0 = STRING: TEQUILA-3
SNMPv2-MIB::sysLocation.0 = STRING: Okemis, MI USA - Rack 4
SNMPv2-MIB::sysServices.0 = INTEGER: 4

To configure SNMP on a Juniper switch, you must specify a community string on the
switch. This acts as a password to verify incoming SNMP information on the manage-
ment station:

[edit snmp]
root@Tequila# set community sample

[edit snmp]
root@Tequila# show
community sample;

JUNOS software supports SNMPv1, SNMPv2, and SNMPv3.

With this basic configuration, SNMP GETs can be received on any interface from any
management statement. It is recommended that access be restricted to particular in-
terfaces and clients, such as the management network:

root@Tequila# show
interface me0.0;
community sample {
 clients {
 172.16.69.0/24;
 0.0.0.0/0 restrict;
 }
}

Also, the switch may want to initiate some information in the form of traps. Traps are
sent to a specified list of targets and are defined by categories. Possible categories
include:

Authentication
User login authentication failures

Chassis
Chassis and environmental notifications

Basic Switch Maintenance | 177

Configuration
Notification of configuration changes

Link
Link status changes

Remote operations
Remote operation notifications

Rmon-alarm
Events for remote monitoring (RMON) alarms

Routing
Routing protocol information such as neighbor status changes

Services
Events for additional JUNOS services such as Network Address Translation (NAT)
and SFW

Sonet-alarm
A variety of Synchronous Optical Network (SONET) alarms such as loss of light,
bit error rate (BER) defects, and so on

Start-up
Warm and cold boots

VRRP events
Virtual Router Redundancy Protocol (VRRP) events such as mastership changes

In the following example, a trap group called health is added to the SNMP configura-
tion, which sends chassis and link traps to station 10.10.12.4:

root@Tequila# show
interface fe-0/0/0.1141;
community sample {
 clients {
 10.10.12.4/32;
 0.0.0.0/0 restrict;
 }
}
trap-group health {
 categories {
 chassis;
 link;
 }
 targets {
 10.10.12.4;
 }
}

By default, both SNMP v1 and v2 traps are sent. Since v3 has certain
security parameters that must be configured, these are not sent auto-
matically. You can overwrite this by specifying a version under the trap
group.

178 | Chapter 3: Initial Configuration and Maintenance

It may also be useful to walk down the MIB tree to verify information in the MIB and
for troubleshooting purposes. To perform an SNMP walk on the switch, issue the show
snmp mib <object> command. In this case, the system MIB is examined on the switch:

root@Tequila> show snmp mib walk system
sysDescr.0 = Juniper Networks, Inc. ex4200-24t internet router, kernel JUNOS
9.2R1.9 #0: 2008-08-05 07:25:22 UTC
builder@amalath.juniper.net:/volume/build/junos/9.2/release/9.2R1.9/obj-
powerpc/sys/compile/JUNIPER-EX Build date: 2008-08-05 07:40:05 UTC Copyright (
sysObjectID.0 = jnxProductNameEX4200
sysUpTime.0 = 569337
sysContact.0
sysName.0 = Tequila
sysLocation.0
sysServices.0 = 6

NTP
When examining logs, it is essential to ensure that the proper date and time are recorded
for each event; otherwise, an event on one system component will be very hard to
compare on another! You can set the time and date manually on each switch using
the set date command:

root@Tequila> set date ?
Possible completions:
 <time> New date and time (YYYYMMDDhhmm.ss)
 ntp Set system date and time using Network Time Protocol
servers

However, since many devices are likely to be managed at once, each with slightly dif-
ferent clock speeds and drift, it is virtually impossible to keep all the clocks on every
device synchronized. NTP was developed for the purpose of clock synchronization.
NTP works in one of three modes:

Client
A client has a one-way synchronization with a server.

Symmetric active
There is equal peer synchronization with each other’s local clock.

Broadcast
The server sends periodic broadcast messages on shared media, and clients listen
to these messages for synchronization.

NTP uses a concept of clock strata to define the distance from the clock reference and
the accuracy. A stratum 0 clock is the reference clock (such as an atomic clock) and
each level of peering relationship decreases in accuracy and stratum level (see Fig-
ure 3-11).

Basic Switch Maintenance | 179

Figure 3-11. NTP stratum levels

All NTP configurations are set under [edit system ntp]. In the following configuration,
Tequila is configured in client mode with a server of 172.16.69.254. Also, a boot server
is configured to allow the initial clock setting to be set at boot time:

root@Tequila> show configuration system ntp
boot-server 172.16.69.254;
server 172.16.69.254;

If a switch is configured for NTP and the clocks are more than 128 seconds apart, the
synchronization process will fail. In the past, to recover from that scenario the operator
either rebooted the device with the boot server configuration or set the date manually
within 128 seconds. JUNOS software now allows you to synchronize the device by
simply issuing the set date ntp command and avoiding a reboot:

root@Tequila> set date ntp 172.16.69.254
10 Nov 22:50:21 ntpdate[794]: step time server 172.16.69.254 offset 0.000163 sec

To verify that NTP has worked correctly, issue the show ntp associations command
and look for the * next to the remote IP:

lab@tequila> show ntp associations
 remote refid st t when poll reach delay offset jitter

180 | Chapter 3: Initial Configuration and Maintenance

==
*172.16.69.254 LOCAL(0) 11 u 10 64 17 0.491 12.991 10.140

Check the correct time:

root@Tequila> show system uptime
Current time: 2008-11-22 03:53:35 UTC
System booted: 2008-11-20 04:58:58 UTC (1d 22:54 ago)
Protocols started: 2008-11-20 04:59:24 UTC (1d 22:54 ago)
Last configured: 2008-11-22 03:40:02 UTC (00:13:33 ago) by lab
 3:53AM up 1 day, 22:55, 1 user, load averages: 0.19, 0.10, 0.03

You also can change the time zone in the switch by issuing a set system time-zone
command:

root@Tequila# set system time-zone ?
Possible completions:
 <time-zone> Time zone name or POSIX-compliant time zone string
 Africa/Abidjan
 Africa/Accra
 Africa/Addis_Ababa
 Africa/Algiers
 Africa/Asmera
---(more 5%)---[abort]

Is NTP really working?

The show ntp associations command is often a source of mass confusion and terror
for operators, as there is no distinct “broken field.” The synchronization process will
be indicated by interpreting the delay and offset fields, as well as by noting the presence
or absence of a * character.

Here is an example of an association that has failed. Notice the space in front of the
172.16.69.254, as well as the zeros in the delay and offset fields. This is an indication
that no messages have been sent at all!

root@Tequila> show ntp associations
 remote refid st t when poll reach delay offset jitter
===
 172.16.69.254 0.0.0.0 0 u 12 64 0 0.000 0.000 4000.00

In comparison, here is another association that failed; however, notice that there are
values in the delay and offset fields. These indicate that NTP messages have been ex-
changed but synchronization has not been achieved, as no * has been displayed next
to the remote peer. The large offset is usually an indication that the clocks are too far
apart (above the 128-second threshold):

root@Tequila> show ntp associations
 remote refid st t when poll reach delay offset jitter
==
 172.16.69.254 LOCAL(0) 11 u 25 64 37 0.492 2542804 4000.00

Basic Switch Maintenance | 181

After issuing a set date ntp command, the clocks synchronize without having to reboot
the switch. Note the more sane offset value and the presence of the illustrious star next
to the remote peer address:

lab@r1> show ntp associations
 remote refid st t when poll reach delay offset jitter
===
*172.16.69.254 LOCAL(0) 11 u 10 64 17 0.491 12.991 10.140
3:53AM up 1 day, 22:55, 1 user, load averages: 0.19, 0.10, 0.03

Since NTP uses a step process to synchronize the clocks after issuing the
set date ntp command, the association could still appear to be broken.
This is normal for NTP, so just sit back, enjoy a drink, and after three
to five minutes, everything should be working as normal.

Rescue Configuration
The last item that should be set is the rescue configuration, which should be considered
a “known good” configuration. This configuration is usually enough to get basic con-
nectivity to the switch if the original configuration was deleted or lost. For security, the
rescue configuration must contain a root password.

By default, there is no rescue configuration, so it must be set after the initial configu-
ration. To save a configuration as the rescue configuration, use either jweb config-
management→Rescue, or the CLI command:

--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@Tequila> request system configuration rescue save

The rescue configuration is now stored in /config:

lab@Tequila> file list /config/

/config/:
.snap/
db /
juniper.conf.1.gz
juniper.conf.2.gz
juniper.conf.gz
rescue.conf.gz
ssh_host_dsa_key
ssh_host_dsa_key.pub
ssh_host_key
ssh_host_key.pub
ssh_host_rsa_key
ssh_host_rsa_key.pub
usage.db
vchassis/

If the rescue configuration needs to be removed, issue a request system configuration
rescue delete command.

182 | Chapter 3: Initial Configuration and Maintenance

Password Recovery
If you’re locked out of your switch due to lack of password knowledge, and you don’t
want to return the switch to a factory or rescue configuration from the LCD panel,
password “recovery” is the ticket. Recovery is really a misused word here, as you can
never really recover a lost password, but you can change the passwords of user root or
local users to a new value that hopefully they will pay attention to this time!

Due to a bug in JUNOS v9.2, which was fixed in JUNOS v9.3, the pass-
word recovery output is displayed on a system running v9.3. This system
is not used in the rest of this chapter’s topology.

To recover a lost password:

1. Connect to the router via the console port through a direct connection from your
PC or a term server.

2. Power-cycle the switch and wait for the following prompt:

Hit [Enter] to boot immediately, or space bar for command prompt.
Booting [kernel] in 1 second...

3. After pressing the space bar, enter single-user mode by typing boot -s:

U-Boot 1.1.6 (Feb 6 2008 - 11:27:42)

Board: EX4200-24T 2.11
EPLD: Version 6.0 (0x85)
DRAM: Initializing (1024 MB)
FLASH: 8 MB
USB: scanning bus for devices... 2 USB Device(s) found
 scanning bus for storage devices... 1 Storage Device(s) found

Consoles: U-Boot console
Found compatible API, ver. 7

FreeBSD/PowerPC U-Boot bootstrap loader, Revision 2.1
(marcelm@apg-bbuild01.juniper.net, Wed Feb 6 11:23:55 PST 2008)
Memory: 1024MB
Loading /boot/defaults/loader.conf
/kernel data=0x9ec818+0x6eb6c syms=[0x4+0x888e0+0x4+0x8f04d]

Hit [Enter] to boot immediately, or space bar for command prompt.
Booting [/kernel] in 1 second...

Type '?' for a list of commands, 'help' for more detailed help.
loader> boot -s

4. After the system boots up, start the recovery script:

Kernel entry at 0xa0000100 ...
GDB: no debug ports present
KDB: debugger backends: ddb
KDB: current backend: ddb

Basic Switch Maintenance | 183

Copyright (c) 1996-2008, Juniper Networks, Inc.
All rights reserved.
Copyright (c) 1992-2006 The FreeBSD Project.
Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
 The Regents of the University of California. All rights reserved.
JUNOS 9.3-20080719.0 #0: 2008-07-19 06:10:30 UTC

builder@elliath.juniper.net:/volume/build/junos/9.3/production/20080719.
0/obj-powerpc/sys/compile/JUNIPER-EX
WARNING: debug.mpsafenet forced to 0 as ipsec requires Giant Timecounter
"decrementer" frequency 50000000 Hz quality 0
cpu0: Freescale e500v2 core revision 2.2
cpu0: HID0 80004080<EMCP,TBEN,EN_MAS7_UPDATE>
real memory = 512753664 (489 MB)
avail memory = 501309440 (478 MB)
ETHERNET SOCKET BRIDGE initialising
nexus0: <PPC e500 Nexus device>
ocpbus0: <on-chip peripheral bus> on nexus0
openpic0: <OpenPIC in on-chip peripheral bus> iomem
0xfef40000-0xfef600b3 on ocpbus0
uart0: <16550 or compatible> iomem 0xfef04500-0xfef0450f irq 58 on ocpbus0
uart0: console (115207,n,8,1)
uart1: <16550 or compatible> iomem 0xfef04600-0xfef0460f irq 58 on ocpbus0
lbc0: <Freescale 8533 Local Bus Controller> iomem 0xfef05000-
0xfef05fff,0xff000000-0xffffffff irq 22 on ocpbus0
cfi0: <AMD/Fujitsu - 8MB> iomem 0xff800000-0xffffffff on lbc0 syspld0 iomem
0xff000000-0xff00ffff on lbc0
tsec0: <eTSEC ethernet controller> iomem 0xfef24000-0xfef24fff irq 45,46,50 on
ocpbus0
tsec0: hardware MAC address 00:19:e2:50:71:5f
miibus0: <MII bus> on tsec0
e1000phy0: <Marvell 88E1112 Gigabit PHY> on miibus0
e1000phy0: 10baseT, 10baseT-FDX, 100baseTX, 100baseTX-FDX, 1000baseTX-FDX, auto
pcib0: <Freescale MPC8544 PCI host controller> iomem 0xfef08000-
0xfef08fff,0xf0000000-0xf3ffffff on ocpbus0
pci0: <PCI bus> on pcib0
pci0: <serial bus, USB> at device 18.0 (no driver attached)
ehci0: <Philips ISP156x USB 2.0 controller> mem 0xf0001000-0xf00010ff irq 22 at
device 18.2 on pci0
usb0: EHCI version 0.95
usb0: <Philips ISP156x USB 2.0 controller> on ehci0
usb0: USB revision 2.0
uhub0: Philips EHCI root hub, class 9/0, rev 2.00/1.00, addr 1
uhub0: 2 ports with 2 removable, self powered
umass0: STMicroelectronics ST72682 High Speed Mode, rev 2.00/2.10, addr
2
pcib1: <Freescale MPC8544 PCI Express host controller> iomem 0xfef0a000-
0xfef0afff,0xe0000000-0xe3ffffff,0xec000000-0xec0fffff on ocpbus0
pci1: <PCI bus> on pcib1
pcib2: <PCI-PCI bridge> at device 0.0 on pci1
pci2: <PCI bus> on pcib2
mpfe0: <Juniper EX-series Packet Forwarding Engine> mem 0xa4000000-
0xa40fffff,0xa0000000-0xa3ffffff irq 20 at device 0.0 on pci2
pcib3: <Freescale MPC8544 PCI Express host controller> iomem 0xfef09000-
0xfef09fff,0xe4000000-0xe7ffffff,0xec100000-0xec1fffff on ocpbus0

184 | Chapter 3: Initial Configuration and Maintenance

pci3: <PCI bus> on pcib3
pcib4: <PCI-PCI bridge> at device 0.0 on pci3
pci4: <PCI bus> on pcib4
mpfe1: <Juniper EX-series Packet Forwarding Engine> mem 0xac000000-
0xac0fffff,0xa8000000-0xabffffff irq 18 at device 0.0 on pci4
pcib5: <Freescale MPC8544 PCI Express host controller> iomem 0xfef0b000-
0xfef0bfff,0xe8000000-0xebffffff,0xec200000-0xec2fffff on ocpbus0
pci5: <PCI bus> on pcib5
pcib6: <PCI-PCI bridge> at device 0.0 on pci5
pci6: <PCI bus> on pcib6
mpfe2: <Juniper EX-series Packet Forwarding Engine> mem 0xb4000000-
0xb40fffff,0xb0000000-0xb3ffffff irq 19 at device 0.0 on pci6
i2c0: <MPC85XX OnChip i2c controller> iomem 0xfef03000-0xfef03014 irq 59 on
ocpbus0
i2c1: <MPC85XX OnChip i2c controller> iomem 0xfef03100-0xfef03114 irq 59 on
ocpbus0
idma0: <mp85xxx DMA Controller> iomem 0xfef21000-0xfef21300 irq 36 on ocpbus0
bme0:Virtual BME driver initializing Timecounters tick every 1.000 msec Loading
common multilink module.
IPsec: Initialized Security Association Processing.
if_pfe_open: listener socket opened, listening on ...
da0 at umass-sim0 bus 0 target 0 lun 0
da0: <ST ST72682 2.10> Removable Direct Access SCSI-2 device
da0: 40.000MB/s transfers
da0: 500MB (1024000 512 byte sectors: 64H 32S/T 500C) Trying to mount root from
ufs:/dev/da0s2a Attaching /packages/jbase via /dev/mdctl...
Mounted jbase package on /dev/md0...
System watchdog timer disabled
Enter full pathname of shell or 'recovery' for root password recovery or RETURN
for /bin/sh: recovery

5. The system will do some file-checking and then dump you into the CLI:

Performing filesystem consistency checks ...
/dev/da0s2a: FILE SYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s2a: clean, 1005 free (13 frags, 124 blocks, 0.0% fragmentation)
/dev/da0s3e: FILE SYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s3e: clean, 14031 free (15 frags, 1752 blocks, 0.1%
fragmentation)
/dev/da0s2f: FILE SYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s2f: clean, 29276 free (124 frags, 3644 blocks, 0.4%
fragmentation)
/dev/da0s3d: FILE SYSTEM CLEAN; SKIPPING CHECKS
/dev/da0s3d: clean, 80452 free (20 frags, 10054 blocks, 0.0%
fragmentation)

Performing mount of main filesystems ...
Mounted jkernel-ex package on /dev/md3...
Mounted jpfe-ex42x package on /dev/md4...
Mounted jroute-ex package on /dev/md5...
Mounted jcrypto-ex package on /dev/md6...
Mounted jswitch-ex package on /dev/md7...
machdep.bootsuccess: 0 -> 0

Performing initialization of management services ...
mgd: error: could not open database: /var/run/db/schema.db: No such file or

Basic Switch Maintenance | 185

directory
mgd: error: Database open failed for file '/var/run/db/schema.db': No such file
or directory
mgd: error: could not open database schema: /var/run/db/schema.db
mgd: error: could not open database schema
mgd: error: database schema is out of date, rebuilding it
mgd: error: could not open database: /var/run/db/juniper.data: No such file
or directory
mgd: error: Database open failed for file '/var/run/db/juniper.data': No such
file or directory
mgd: error: Cannot read configuration: Could not open configuration database
mgd: error: Couldn't open lib /usr/lib/dd//libjdocs-dd.so
mgd: error: Couldn't open lib /usr/lib/dd//libjdocs-dd.so

Performing checkout of management services ...

NOTE: Once in the CLI, you will need to enter configuration mode using
NOTE: the 'configure' command to make any required changes. For example,
NOTE: to reset the root password, type:
NOTE: configure
NOTE: set system root-authentication plain-text-password
NOTE: (enter the new password when asked)
NOTE: commit
NOTE: exit
NOTE: exit
NOTE: When you exit the CLI, you will be asked if you want to reboot
NOTE: the system

6. Enter configuration mode and set a root password:

Starting CLI ...
root> configure
Entering configuration mode

[edit]
root# set system root-authentication plain-text-password
New password:
Retype new password:

7. Don’t forget to commit the configuration:

[edit]
root# commit and-quit
error: could not open database: /var/run/db/juniper.data: No such file or
directory
error: Database open failed for file '/var/run/db/juniper.data': No such file or
directory

commit complete
Exiting configuration mode

root@l48p2-sys>

8. Then reboot the switch to get it out of single-user mode:

root@l48p2-sys> request system reboot
Reboot the system ? [yes,no] (no) yes

186 | Chapter 3: Initial Configuration and Maintenance

Shutdown NOW!
[pid 358]
Sep 25 07:35:42 shutdown: reboot by root:"libthr.so.2" not found, required by
"rpdc"
--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@tequila> request system halt
Halt the system ? [yes,no] (no)

*** FINAL System shutdown message from lab@teqila ***

System going down IMMEDIATELY

Shutdown NOW!
[pid 663]

Now that the new switch is up and running with an initial configuration,
take note that it’s always best to perform a graceful shutdown to allow
the multitasking JUNOS to close the file and gracefully terminate the
various daemon processes that run in the background. Although rare,
filesystem damage can occur with an abrupt power off, which may cause
problems on the next boot. Use the request system halt or request
system reboot command to gracefully shut down or reboot the OS.
Once the OS is halted, it is safe to remove power.

Switch Maintenance Summary
This section pointed out the command used to determine overall hardware status, as
well as additional configuration for syslogging, network management, and time syn-
chronization, which can aid in later diagnostic activities. The section ended with a
discussion of rescue configuration, which should always be saved, should you need it
later, and password recovery for those aging hippies among us.

Conclusion
This chapter demonstrated the addition of a Juniper Networks EX switch into an ex-
isting all-Cisco network. First we examined two ways to get the initial configuration
into the router, either with EZSetup or by manually entering the related CLI command,
which in the end was not bad at all. With the initial configuration in place, additional
users, remote access, DHCP, and OoB management were also configured. The install
continued with verification of the switch’s health, as well as adding a syslog, SNMP,
and NTP configuration for enhanced switch health monitoring—for example, to allow
proactive notice when the switch’s health or operational status changes. We ended with
a look at ways to recover the switch to a rescue or factory-default configuration in the
event that the current configuration is corrupted, changed, or deleted.

Later chapters build upon this fine base by adding various Layer 2 and Layer 3 protocols
and services.

Conclusion | 187

Chapter Review Questions
1. What is the default password on the switch?

a. Juniper

b. Cisco

c. There is no password

d. Enable

2. Which predefined login class allows the user to have access rights to any login
command?

a. privileged

b. super-user

c. privileged exec

d. power-user

3. Which interface on a EX Series switch is set aside for OoB management?

a. fxp0

b. fxp1

c. bcm0

d. me0

4. In which DHCP modes can an EX Series switch operate? (Choose two.)

a. client

b. server

c. relay

d. bootstrap

5. Which command is issued to view the DHCP configuration on an EX Series switch?

a. show dhcp

b. show system services dhcp

c. show system services dhcp global

d. show dhcp global

6. True or false: the switch is preloaded with a default rescue configuration.

a. True

b. False

c. This question is totally unfair; I refuse to answer it!

7. In what ways can you configure the initial configuration settings on the switch?
(Choose two.)

a. CLI

b. LCD panel

188 | Chapter 3: Initial Configuration and Maintenance

c. EZSetup

d. QuickSetup

e. BSD shell

8. Choose two items that are included in the factory-default configuration.

a. LLDP

b. OoB management

c. RSTP

d. Telnet

9. Which syslog facility logs all CLI commands?

a. cli-commands

b. accounting

c. change-log

d. interactive-commands

10. In which directory are all logfiles stored?

a. /var/home/user

b. /log

c. /var/home/log

d. /var/log

e. /syslog

11. Which feature of SNMPv2 acts as a password to authenticate SNMP messages?

a. MIBs

b. Communities

c. OID

d. Traps

12. Which command allows NTP synchronization without a switch reboot?

a. set system ntp

b. request system time update

c. set date ntp

d. set ntp boot-server

Chapter Review Answers
1. Answer: C. There is no default password on a Juniper switch in the factory-default

configuration. A single user, root, will be configured with no password.

2. Answer: B. The class of super-user allows users to issue any command that they
desire on the switch. The other options listed are not supported classes.

Chapter Review Answers | 189

3. Answer: D. The other answers are valid interfaces for JUNOS, but none of them
are used for OoB management on an EX Series switch. For instance, fxp0 is used
for OoB management on M/T Series routers.

4. Answer: B and C. The switch either can be set as a DHCP server or can act as a
relay agent. It cannot be a server and a relay agent at the same time, however.

5. Answer: C. The other commands are not valid commands.

6. Answer: B. The switch does not come with a default rescue configuration, so it is
very important that you set this after your initial installation.

7. Answer: A and C. The initial configuration can be done via the CLI or EZSetup.
Remember that EZSetup can be invoked from the shell or the LCD panel.

8. Answer: A and C. The factory-default configuration contains many default pa-
rameters, including RSTP and LLDP. Remote access such as Telnet and an OoB
management interface would have to be configured via the CLI or using EZSetup.

9. Answer: D. The facility interactive-commands will log any commands that were
typed via any user interface method, including the CLI.

10. Answer: D. This is the directory for all syslog and traceoptions files.

11. Answer: B. A community will act as a password for SNMP messages. This com-
munity value is sent in clear text on the wire, which could easily be captured. The
next version of SNMP corrects this issue.

12. Answer: C. If the NTP server is reachable, set date ntp will restart the NTP update
process without having to reboot the switch, thus eliminating the need for a
boot-server configuration statement.

190 | Chapter 3: Initial Configuration and Maintenance

CHAPTER 4

EX Virtual Chassis

EX4200 switches support clustering of up to ten 4200 chassis into a single Virtual
Chassis (VC), which provides significant High Availability (HA) benefits in addition to
simplified network management. VC capabilities are included in the base 4200 model.
A VC can be built incrementally, which means you can grow the VC by adding one or
more switch chassis at any time, until the 10-chassis limit is reached, and you can mix
and match any EX4200 model as part of the same VC. This capability means an en-
terprise can start at a modest scale with a single 4200 chassis, and then expand into a
full-blown VC offering a local switching capacity of 1.36 Tbps/1.01 Bpps, with 128
Gbps of throughput for switching within the VC.

The topics covered in this chapter include:

• EX VC operation and deployment designs

• Configuration, operation, and maintenance

• VC deployment case study

The EX Virtual Chassis
The EX4200 VC is an exciting concept. By simply attaching a few rear-panel cables,
you can turn any mix of 10 standalone 4200s into a single logical entity that both
simplifies management and increases resiliency to hardware- and software-related
faults.

Virtual Chassis Overview
The individual member switches comprising a VC can be any type of EX4200, with any
mix of supported power supply units (PSUs), Power over Ethernet (PoE) options, and
uplink modules. A fully blown VC can offer 480 × 1 GE and 20 × 10 GE ports with 128
Gbps of full duplex (FD) switching capacity between any pair of adjacent nodes. When
desired, you can use ports on either the 2 × 10 GE or 4 × 1 GE uplink modules to form
a VC Extension (VCE), which, as its name implies, supports extended distances (up to
400 meters) between VC members.

191

Here are some key VC capabilities and functional highlights:

• You can interconnect from 2 to 10 EX4200s to operate as though they are a single
chassis.

• Management is simplified via a single management interface, a common JUNOS
software version, a single configuration file, and an intuitive chassis-like slot and
module/port interface numbering scheme.

• The design is simplified through a single control plane and the ability to aggregate
interfaces across VC members.

• Increased availability and reliability is available through N:1 redundant routing
engines. Also, JUNOS supports Graceful Restart, Graceful Routing Engine Switch-
over, and Non-Stop Routing (GR, GRES, and NSR).

• Performance and flexibility accommodate a grow-as-you-go design with no upfront
investment in costly chassis hardware.

At this time, Link Aggregation Control Protocol (LACP)/aggregated Ethernet (AE)
across multiple VCs is not supported. Member links of a bundled interface can be
housed in different switch members within a VC, however.

Each EX4200 ships with a .5-meter Virtual Chassis Port (VCP) cable; VCP cables are
also available in 1- and 3-meter lengths. This 3-meter length limit is the only restriction
on physical member placement, and with some of the creative cabling schemes dis-
cussed later, a VCP ring can be built spanning some 13.5 meters (~44 feet), which is
quite a respectable distance and more than suitable for a typical top-of-rack deployment
scenario. A VC design based on a chain extends this distance to some 27 meters (88.5
feet), but such a design comes at the cost of a 50% reduction in VC trunk bandwidth
and reduced reliability, as there is no tolerance for single VCP cable faults in such an
arrangement.

The VCP cables use a 68-pin connector and are considered proprietary,
and therefore are available only through Juniper Networks and its au-
thorized resellers. The user manual provides pin outs for the VCP cables,
however.

Interchassis distances greater than 6 meters require use of a VCE, which has the dis-
advantages of requiring uplink module hardware, and the resulting reduction in trunk
capacity, as determined by the speed of the uplink module used (e.g., 20 Gbps with
2 × 10 GE or 2 Gbps with 2 × 1 GE ports). Currently, the maximum supported VCE
distance is 500 meters. Figure 4-1 illustrates these key VC capabilities.

192 | Chapter 4: EX Virtual Chassis

Figure 4-1. The EX VC

Figure 4-1 shows two EX4200 VCs. Within each VC, some switches are not collocated,
hence the use of both VCP ring cabling and VCEs to tie in the remote switches to the
main VC location. The VCEs could be 10 GE or 1 GE front-panel uplinks, and uplink
speed can be mixed and matched within a single VC. In this example, the two VCs are
interconnected using a Layer 2 Redundant Trunk Group (RTG), which is a Juniper
proprietary link redundancy scheme that provides rapid failover convergence without
the need for Spanning Tree Protocol (STP) given its primary/forwarding/secondary
blocking operation. An RTG is similar in functionality to Cisco’s flexlink feature. If
desired, you can define an AE link to add additional inter-VC bandwidth, but depend-
ing on interconnection specifics, STP may be required to prevent loops.

A key aspect of Figure 4-1 is that each VC is associated with a single virtual management
IP address that represents the entire VC cluster, thereby greatly simplifying network
management. Lastly, note that an access layer switch is shown being dual-homed to

The EX Virtual Chassis | 193

each VC using an AE bundle. Such an AE link can contain from two to eight members,
yielding as much as 80 Gbps, with added redundancy, as the Ethernet bundle can
survive the loss of individual member links until the minimum link threshold is crossed;
the minimum number of member links can be set to the range of 1 to 8 inclusive.

Getting the 80 Gbps aggregated link mentioned previously on an
EX4200 requires use of a four-node VC, with each member having a 2
× 10 GE uplink module. Recall that an AE bundle can span members
within a chassis, allowing you to define an eight-member bundle that
uses both 10 GE uplink ports on all four members. For large-scale 10
GE aggregation scenarios, consider an MX platform.

Also, note that each VC member can contain an uplink module, yielding a maximum
of forty 1 GE or twenty 10 GE uplink ports per VC, in addition to the 480 GE ports
supported in a single VC (each of the 10 member chassis can support 48 front-panel
GE ports).

Figure 4-2 provides another VC deployment example.

Figure 4-2 shows a dual-VC design based on a top-of-rack deployment scenario. In this
example, the access layer VCs are in turn dual-homed into a redundant aggregation/
core layer to eliminate single points of failure (assumes redundant power feeds) for
maximum reliability and uptime. The single IP address used to manage and configure
each VC greatly simplifies network management and support activities.

“Virtual Chassis Design and Deployment Options” on page 198 provides tips on how
to get maximum bang from the limited length of VCP cables, and details design options
that combine VCP and VCE links to optimize both performance and VC coverage area.

Virtual Chassis Control Protocol

The heart of Juniper VC technology is the Juniper proprietary link state (LS) Virtual
Chassis Control Protocol (VCCP). VCCP functions to automatically discover and
maintain VC neighbors, and to flood VC topology information that permits shortest-
path switching between member switches using either internal or external (VC trunk)
switch paths.

VCCP is not user-configurable, and operates automatically on the rear-panel VC ports.
VCCP also operates over uplink ports when they are configured as VCE ports.

As with any LS protocol, the net effect is that VCCP rapidly detects and reacts to changes
in the VC topology to ensure maximum connectivity over optimal paths in the face of
VC moves and additions, because of switch or VC backbone failures. The loop-free
switching topology that results from the Shortest Path First (SPF) calculations allows
VCCP to “do the right thing” in almost any VC topology cabling scheme imaginable.

194 | Chapter 4: EX Virtual Chassis

Figure 4-2. A top-of-rack VC design promoting High Availability

The EX Virtual Chassis | 195

VCCP uses a link metric that’s scaled to interface speed when calculating its SPF tree.
Load balancing is currently not supported; a single best path is installed for each known
destination, even though multiple equal-costs paths may exist.

Member roles within a VC

As mentioned previously, a VC consists of any 2 to 10 EX4200 switches. Within each
VC, there are three distinct roles: master routing engine (RE), backup RE, and Line
Card Chassis (LCC):

Master RE
The master RE runs the VC show, so to speak, by actively managing the VC switch
members as far as VC operations go, and as importantly, by maintaining the master
copy of the switching/routing table (RT). Because this table is in turn copied to
each remaining VC member, the master RE controls overall packet and frame for-
warding based on the operation of its switching and routing protocols. Within a
VC, hardware-related commands are normally executed on the master RE, which
then conveys the instructions and results over an internal communications path.
Virtual console and Out of Band (OoB) management capability is also available,
again via the master RE and its internal communications channels to all VC mem-
bers. When a new switch member attempts to join a VC, the master RE is respon-
sible for determining its compatibility with the VC and the resulting assignment of
a member ID and VC role.

A functional VC must contain a master RE. You can configure mastership param-
eters that ensure a deterministic election behavior, or rely on the built-in tiebreak-
ing algorithms, which ultimately favor the first switch powered up. We provide
details on mastership election in a later section.

Backup RE
The backup RE, as its name implies, is the second most-preferred switch member
that stands ready to take over chassis operations if the current master RE should
meet an untimely demise. With default parameters, the backup RE is the second
switch that is powered up in the VC. At a minimum, the backup RE maintains a
copy of the active configuration (through use of commit synchronize on the master
RE); if GR is enabled, the backup RE also maintains copies of the forwarding table
(FT) to enable Non-Stop Forwarding (NSF) through a GRES event. Alternatively,
with NSR enabled both the FT and control plane state—for example, Open Short-
est Path First (OSPF) adjacency status or STP and learned Media Access Control
(MAC) address state—are mirrored to provide a truly hitless GRES experience.

LCC
An LCC is any switch member that is not currently acting as the master or backup
RE. This may simply be because it was the third through tenth switch member
powered up, meaning it could one day become a master or backup RE, or because
a configuration constraint bars it from any such ascendancy. An LCC accepts (and
stores) its member ID from the current master, and then proceeds to perform as

196 | Chapter 4: EX Virtual Chassis

instructed with regard to hardware operations and FT entries. The LCC runs only
a subset of JUNOS. For example, it does not run the chassis control daemon
(chassid).

The receipt of exception traffic—for example, a newly learned MAC address or
local hardware error condition—results in intrachassis communications between
that switch member and the master RE, which may then mirror the change to the
backup RE when GR or NSR is enabled. After processing the update, any related
actions, such as updating the FT or taking a failed piece of hardware offline, are
then communicated back to affected member switches, thereby keeping everything
tidy and in sync within the VC.

Member ID

When an EX4200 is powered on and attached to a VC, it determines whether it should
be master, and if not it’s assigned the next available member ID. The assigned member
ID is displayed on the front-panel LCD. When powered up as a standalone switch, the
member ID is always 0. A VC master assigns member IDs based on various factors,
such as the order in which the switch was added to the VC. Generally speaking, as each
switch is added and powered on, it receives the next available (unused) member ID
unless the VC configuration specifically maps that switch’s serial number to a specific
value.

Promoted stability ID assignments are sticky, meaning that the ID is not automatically
reused if the corresponding switch is removed from the VC. A later section describes
how you can clear or recycle VC switch member IDs when desired.

The member ID distinguishes the member switches from one another, and is used to:

• Assign a mastership priority value to a member switch

• Configure interfaces for a member switch (the function is similar to a slot number
on Juniper Networks routers)

• Apply some operational commands to a member switch

• Display the status or characteristics of a member switch

The switch member ID is a logical function and is independent of any particular VC
member role, or physical location along a VC ring or chain. Although it is a best practice
to have the master RE assigned ID 0, this is not mandatory.

Mastership priority

You can designate the role (master, backup, or LCC) that a member switch performs
within a VC by explicitly configuring its mastership priority. The priority ranges from
1 to 255, and larger values are preferred. The mastership priority value has the greatest
influence over VC mastership election, and so is a powerful knob. The default value
for mastership priority is 128. The current best practice is to assign explicit priority
values for the master and backup roles, which should be the same, and should be set

The EX Virtual Chassis | 197

to the highest value (255) to avoid preemption after a GRES and to then ensure that
any new LCC members have an explicit priority configured before they are attached to
the VC. These procedures are described in detail in a later section and are intended to
prevent undesired master RE transitions.

Default election algorithm

The default parameters ensure that even with no explicit configuration the VCP pro-
tocol will correctly detect and assign chassis member roles, such that there will be a
master and a backup RE, and one or more LCCs if at least three member switches are
present. Variations among switch models, such as whether the switch has 24 or 48
ports, have no impact on the master election process. The steps of the master election
algorithm are:

1. Choose the member with the highest user-configured mastership priority (255 is
the highest possible value).

2. Choose the member that was master the last time the VC configuration booted
(retained in each switch’s private configuration).

3. Choose the member that has been included in the VC for the longest period of
time, assuming there was at least a one-minute uptime difference; the power-up
sequence must be staggered by a minute or more for uptime to be factored.

4. Choose the member with the lowest MAC address, always a guaranteed tiebreaker.

Virtual Chassis Identifier

All members in a VC share a common Virtual Chassis Identifier (VCID) that is derived
from internal parameters and is not directly configurable by the user. Various VC mon-
itoring commands display the VCID as part of the command output.

Although it’s clear that you can form a functional VC by simply slapping together 10
EX4200 switches (via their VC ports) with default configurations, such an arrangement
is generally less than ideal. For example, you need to configure a virtual management
interface to avail yourself of the benefits of a single IP management entity per VC, N:1
RE redundancy may not be desired, and you may wish to exert control over which
members provide what VC functions, perhaps to maximize reliability in a given design.
Later sections provide VC design guidelines that promote high levels of reliability while
also alleviating potential confusion through explicit configuration of VC member roles.

Virtual Chassis Design and Deployment Options
This section details various VC design options and alternatives that you should carefully
factor before deploying a VC in your network. Although the physical topology of
the VC is a significant component of a VC’s design, several aspects of a VC’s operation
can be controlled through configuration. This section explores VC topology and

198 | Chapter 4: EX Virtual Chassis

configuration options, with a focus on current best practices relating to overall VC
design and maintenance.

In many cases, the basic choice of a VC topology is determined by the degree of sepa-
ration between VC switch members. The approach used for a single closet will likely
differ for a top-of-rack design in a data center, and both differ from a VC design that
extends over a campus area (multiple wiring closets). In addition, some designs pro-
mote optimal survivability in the event of VC backplane faults, a design factor that is
often overlooked.

It is worth pointing out that the Juniper VC architecture is such that local switching
between the chassis front-panel ports, to include the uplinks, does not involve use of
the VC trunks. As a result, when EX4200 switches are interconnected as part of a VC,
each individual switch is still capable of local switching at the maximum standalone
switching capacities detailed in Chapter 2. Therefore, in a 10-member VC where all
traffic is locally switched, the maximum total switching capacity is 1.36 Tbps (10 × 136
Gbps), with an aggregate throughput of 1.01 billion packets per second!

VCP topologies

As described in Chapter 2, each EX4200 chassis has two rear-panel VCPs. Each VCP
operates at 32 Gbps FD, which translates to 64 Gbps of throughput when you consider
that a single VCP can be simultaneously sending and receiving 32 Gbps of traffic. The
combined throughput of both VCPs is therefore 128 Gbps, or 64 Gbps FD. Note that
the maximum FD throughput for any single flow between a sender and receiver that
are housed on different VC switch members is 32 Gbps.

When deployed in the recommended ring topology, each VC member could be simul-
taneously switching among its front-panel and uplink ports, while also sending and
receiving 128 Gbps of traffic (64 Gbps per VCP) to and from other VC members. When
interconnected as a chain, or as a result of a VCP ring break, trunk capacity is reduced
to 64 Gbps at the ends, while the switches in the middle still enjoy the ability to use
both VCP ports.

Note that the actual VCP throughput is a function of the ingress and egress points
associated with the traffic being switched (or routed), both locally and by other VC
members. This is in part because currently EX switches do not support load balancing
or congestion avoidance across VC trunks; for each destination, a given switch installs
a single best path as determined by the lowest VCCP path metric to reach the switch
associated with that destination. In the event of a metric tie, the first path learned is
installed and used exclusively, until the VCCP signals a topology change, resulting in
a new SPF calculation and subsequent update to the shortest path tree.

A VCP ring offers 128 Gbps of throughput capacity between any two member switches,
but usage patterns and SPF switching between ring members may prevent any two
members from being able to use the full 128 Gbps VC trunk capacity. Similarly, ag-
gregate VC throughput can be higher than 128 Gbps when traffic patterns are carefully

The EX Virtual Chassis | 199

crafted to prevent congestion by having each pair of adjacent switches sink each other’s
traffic, which effectively yields an aggregate throughput potential of n × 64 Gbps, where
n is the number of member switch adjacencies in the VCP ring topology.

To help demonstrate this traffic dependency, consider the VC topology shown in Fig-
ure 4-3.

Figure 4-3. Effects of traffic patterns on VC trunk throughput

Given the VC ring topology, a total of 128 Gbps of VC switching capacity is available
between member switches. However, because two VCP ports are used to instantiate
the VC ring, only 64 Gbps of capacity is available in each direction.

Figure 4-3 shows a somewhat simplified scenario involving 64 Gbps of traffic arriving
at Switch 1, of which 32 Gbps is destined to Address X on Switch 2, while the remaining
32 Gbps is for Address Z on Switch 4. Given the topology shown in Figure 4-2, and
knowledge that the VCP installs routes to other destinations based on path metric, it’s
safe to assume that Switch 1 directs 32 Gbps of traffic out its VCP A port on to Switch
2 while simultaneously sending the 32 Gbps of traffic to Switch 4 via its VCP B port.
The next result is a total of 64 Gbps of traffic leaving Switch 1, which is split over its

200 | Chapter 4: EX Virtual Chassis

two VCP ports and effectively consumes all available transit trunk bandwidth at Switch
1, given that each VCP port operates at 32 Gbps FD.

Because the VCP ports are FD, at this same time both Switch 2 and Switch 4 can be
sending 32 Gbps of traffic to Destination Y on Switch 1. In this state, the trunk band-
width between Switch 1, Switch 2, and Switch 4 is consumed, and there is a total of
128 Gbps of traffic being switched, which is the stated VC trunk capacity.

However, because the traffic that is sent by Switch 1 is pulled off the ring at both Switch
2 and Switch 4, the traffic sent by Switch 1 to Address X and Address Z does not
consume VC trunk bandwidth between Switch 2, Switch 3, and Switch 4. It’s therefore
possible to switch an additional 128 Gbps of traffic, as long as this traffic is confined
to sources and destinations on Switch 2, Switch 3, and Switch 4. In this somewhat
contrived scenario, a total of 256 Gbps of traffic is switched over the VC ring. This is
truly a case of the “under-promise and over-deliver” philosophy users have come to
expect from Juniper Networks gear.

Although the previous example shows how you may get more than 128 Gbps of
throughput over a VC ring, there are situations where the VC topology and traffic
patterns are such that congestion occurs on some VC trunk segments, while other
segments are otherwise idle. For example, if a source on Switch 3 were to send 32 Gbps
to Destination Y on Switch 1, rather than some destination on Switch 4 or 2, we have
the case of the VC link between Switch 3 and Switch 4 remaining idle (assumes that
the VCCP at Switch 3 has installed the path through Switch 2 to reach Switch 1), while
a total of 64 Gbps of traffic, 32 Gbps sourced by Source X at Switch 2 and another 32
Gbps from the remote Switch 3, begins queuing up for the 32 Gbps VCP port linking
Switch 2 to Switch 1.

Generally speaking, there are two ways to form VCP connections: via a ring, and via a
braid. The differences primarily deal with how many switches are spanned by the lon-
gest VCP cable used. We examine these options in the next section.

VCP single rack rings

The most direct way to form a VCP ring is to simply connect each switch to the next,
with the last switch in the VC tied back to the first, as shown in Figure 4-4.

This type of linear ring cabling is best suited to a single-rack deployment, given that
the maximum separation between VC members is limited to 3 meters/9.8 feet (the
maximum supported VCP cable length). All three VCP cabling arrangements in Fig-
ure 4-4 are functionally identical. The approaches are termed a linear ring because the
flow of traffic is sequential, passing through each switch until it—or, more correctly,
some other traffic inserted by another switch—loops back at the end of the ring to start
its journey anew at the first switch. Figure 4-4 also provides a top-of-rack equivalent
that is spaced horizontally.

The EX Virtual Chassis | 201

Figure 4-4. A linear ring; the longest cable spans the VC

VC cable can be arranged in many ways; the takeaway here is that VCP ports just work:
as long as each switch is connected to the next and the last switch is tied to the first, a
functional VCP ring will form.

VCP multiple rack rings

As stated previously, the longest supported VCP cable is only 3 meters, or some 9.8
feet. However, with some creative cabling, it’s possible to create a ring that spans as
much as 15 meters/49.2 feet. This respectable distance brings a VC ring topology into
the realm of many multirack/data center deployment scenarios. Figure 4-5 depicts such
braided ring cabling at work.

The key to the braided VC ring is that the longest VCP cable now spans only three
switch members. Where desired, you can form a braided ring using a mix of short and
long cables to save money, given that a short VCP cable ships with each EX4200 switch.
As before, Figure 4-5 also provides a horizontally oriented top-of-rack equivalent. Try-
ing to trace the packet flow through a braided ring can be a bit confusing, but overall
performance and VCCP operation remain unchanged, and things simply work. In this
example, the top switch sees the third switch as its VCP B neighbor, and packets take
a somewhat convoluted path as they wind their way around the ring, sometimes being
sent to a physically adjacent neighbor (at the ring’s ends) and other times being sent
past the physically adjacent member switch and onto the VCCP neighbor at the other
end of the VCP cable.

202 | Chapter 4: EX Virtual Chassis

Figure 4-5. A braided VC ring; the longest cable spans three switches

VCP serial chain

The final VCP cabling option is a serial chain. Figure 4-6 shows this arrangement.

The obvious advantage to the serial chain is the ability to achieve the largest possible
VC diameter, which is now some 27 meters/88.5 feet. The equally obvious downside
is the use of a single VCP port at each switch, which halves the total VC trunk through-
put to 64 Gbps. Another significant drawback is the lack of tolerance to any VCP cable
fault, which results in a bifurcated VC, and the potential for unpredictable operation,
given that a split VC is currently not supported.

The EX Virtual Chassis | 203

Figure 4-6. A serial VCP chain

VCE topologies

VCE topologies are formed by setting one or more ports on the (optional) uplink mod-
ule to function in VCCP mode. Oddly, this is done with an operational rather than a
configuration mode command, in the form of a request virtual-chassis vc-port
statement, as we describe in a later section. Once placed into VCCP mode the related
port cannot be used for normal uplink purposes until the VCE mode is reset. You can
configure all uplink module ports as VCEs, and you can also mix and match normal
and VCE modes on a per-port basis.

VCE functionality is supported on both the 2 × 10 GE and 4 × 1 GE uplink modules,
and a mix of 1 GE and 10 GE VCE links can be used as part of an extended VCE design.
It should be noted that even the rear-panel VCP ports, which offer an aggregate 128
Gbps of throughput, can become congested in some cases. Therefore, careful thought
should be given before attempting to deploy a VC design incorporating 1× GE uplink
ports because of the obvious potential for serious performance bottlenecks should there
be a significant amount of interswitch member traffic over these links.

You can use any type of supported optics modules (SFP/XFP) and fiber for VCE links,
but the maximum supported distance is currently limited to 500 meters. Although this
may not reflect the maximum distance the related optics can drive, at 500 meters per
VCE link, and with as many as 9 such links in a 10-member serial VC chain configu-
ration, you are talking 4,500 meters (14,763 feet), which is some serious VC-spannage
indeed!

204 | Chapter 4: EX Virtual Chassis

A VCE-based topology can be either a ring (recommended), or a serial bus, as we
described for VCP-based topologies earlier. Because even a 10× GE port represents
reduced bandwidth, and due to the increased probability of a fault occurring on an
extended length of fiber optic cable, you should always deploy a VCE ring topology,
and should never rely on a single VCE to tie together to remote member clusters. A
pure VCE ring configuration requires two VCE ports, and therefore consumes all uplink
ports when using the 2 × 10 GE uplink module. However, a hybrid VCP/VCE design
can allow the benefits of a ring topology while using only a single VCE port in some
cases.

Extending the VC

A VC design based solely on VCE links is considered rare; the far more common case
is a single- or multiple-rack deployment using only VCP ports, as this eliminates the
need for uplink ports and their related SFPs, and also yields maximum performance
with plug-and-run simplicity. Recall that a VCP ring can span 15 meters, and a VCP
chain can extend up to 27 meters, distances that bring most data center and top-of-
rack designs well within reach.

By combining VCP and VCE ports as part of your VC design, you can achieve the best
of both worlds: high-speed VCP-based and local switching within a wiring closet and
lower-speed VCE-based trunks linking the closets together. Figure 4-7 shows such a
design.

In this example, the VCE links are shown as 10 GE, but 1 GE links could be substituted
with no change in core functionality. Note how some of the VC members use only VCP
ports, whereas other switch members use both VCP and VCE ports. An advantage of
this design is that it preserves one of the two supported 10 GE uplinks for use in, well,
uplinking non-local traffic to the distribution layer, where it’s then sent to the core or
to other distribution layer nodes as needed. The use of two VCE links between different
VC members provides added capacity and redundancy in the event of VCE link failure.
You can use as many parallel VCE links as desired to maximize these characteristics.

When deploying an extended VC, give careful thought to typical and projected traffic
patterns. Where possible, you should follow the 80/20 rule, which is to say that ideally
80% of traffic is locally switched, which in this case refers to not having to be trunked
over relatively low-bandwidth VCE links. Recall that local switching capacity is unaf-
fected, and therefore remains wire-speed for intraswitch traffic. If the majority of traffic
can be kept local to each member switch, bandwidth on the VC trunks is not a signif-
icant factor. The design shown in Figure 4-7 is optimized when most of the traffic is
switched within that closet/VCP wiring domain, as this takes advantage of local switch-
ing and the high-speed VCP links.

The EX Virtual Chassis | 205

Figure 4-7. Typical extended VC deployment scenario

Packet Flow in a Virtual Chassis
This section focuses on packet flow through a VC, during both normal and VCP link
failure conditions. Note that Chapter 3 details Layer 2 and Layer 3 packet flows
within a standalone EX switch. Here the focus is on VC topology discovery and com-
munications between switch members making up a VC.

206 | Chapter 4: EX Virtual Chassis

Virtual chassis topology discovery

When a VC is brought up, each member switch floods VCCP packets over its VC trunk
ports. Although proprietary, it can be said that VCCP is based on the well-known
Intermediate System to Intermediate System (IS-IS) routing protocol. VCCP automat-
ically discovers VC neighbors, builds adjacencies with these neighbors, and then floods
link state packets (LSPs) to facilitate automatic discovery of the VC’s topology, as well
as rapid detection and reaction to changes in the VC topology due to a switch or VC
trunk failure. Figure 4-8 illustrates this process in the context of a VC comprising three
switch members arranged in a VCP-based ring topology.

Figure 4-8. VC topology discovery

In this example, each member switch is a 48-port model, and therefore contains
three EX-PFEs that work together to drive the 48 front-panel 1× GE ports, the optional
uplink ports, as well as the internal and external VC trunks. Each PFE is identified as
A–I, and each switch member is identified by a member ID, here shown as A1, B1, and
C1. Note that in Figure 4-8, the B, E, and H entities are EX-PFE application-specific
integrated circuits (ASICs) that have only internal or front-panel links.

Figure 4-8 also shows the resulting logical topology that is formed through the VC ring
cabling. Note that a break in the VCP ring creates a serial chain, and a resulting halving

The EX Virtual Chassis | 207

of VC trunk bandwidth for destinations near the break, as their maximum VC band-
width drops to 64 Gbps given the single communications path at the ends of the chain.
Because each VC trunk segment operates point to point, those switches that are still
connected by two functional VCP segments could still send and receive as much as 128
Gbps of traffic—for example, 32 Gbps (FD) to and from each adjacent neighbor. But
if this traffic is destined for the ends of the chain, all VC trunk bandwidth is consumed,
and the switches at either end of the break are each limited to 64 Gbps of switching
throughput.

Because each switch member is using two VCP ports, there are two communications
paths to choose from for any given destination; for example, member A1 can send out
the VCP port connected to PFE B, or it can send out its other port to I. The destination-
to-port mapping at any given time is a function of each switch’s SPF calculation, as
described next.

The SPF calculation

Figure 4-9 shows how the example’s logical topology is in turn viewed as a source-
rooted SPF tree at each EX-PFE to all other PFE destinations in the VC.

Figure 4-9. The source-rooted SPF tree for inter-VC destinations

Once the VC topology has stabilized, and all PFEs have sent and received each other’s
VCCP link state advertisements (LSAs), the result is a replicated link state database
(LSDB) at each PFE. Changes to the VC topology are rapidly communicated by flooding

208 | Chapter 4: EX Virtual Chassis

updated VCCP LSPs, which in turn trigger new SPF runs at each PFE as an updated
SPF tree is calculated.

Currently, load balancing is not supported. In the event of a hop-count tie, the winner
is selected with preference to the PFE associated with the lowest member ID. Fig-
ure 4-9 shows the result for PFEs E and A, and depicts how their respective SPF trees
reach the other PFEs that comprise the VC. The lack of load balancing results in a single
forwarding next hop for each PFE destination. However, although there is no load
balancing to a specific PFE, load balancing is possible to different PFE destinations.
This is because VCPs are always in a forwarding state for some subset of the VC’s PFE
destinations, such that one port is used as the forwarding next hop for one-half of the
VC’s destinations and vice versa. Based on Figure 4-9, we see that packets in PFE A
that need to be switched toward a destination housed on PFE D are sent out the upper
VCP link toward PFE B over the internal VC trunk within switch member A1.

A topology change in the form of a ring break triggers a new SPF recalculation by all
PFEs. For those stations adjacent to the break, the result is that the surviving VCP port
is used to forward to all remaining PFE destinations. Figure 4-10 shows this state.

Figure 4-10. SPF after a VCP trunk failure

The EX Virtual Chassis | 209

Figure 4-10 shows an updated SPF tree for PFE C, which is adjacent to the break, and
A, which is shielded from the break through its adjacent PFE neighbors B and C. Be-
cause this is a ring rather than a switch break, all PFEs and all destinations remain
reachable, albeit at reduced VC trunk capacity, as described previously. A similar sit-
uation results in the event of a VC switch member failure, except that the PFEs asso-
ciated with the failed switch are no longer reachable and are removed from the VC’s
topology. Connectivity to remaining PFEs continues, and based on design redundancy,
connectivity to endpoints can reconverge through an alternative path.

It should be noted that VC switch member roles are not affected by changes in VC
topology or costs to reach a given PFE. A switch member’s VC role is linked to its
member ID and associated priority. Thus, a member switch need only remain reachable
for it to retain its current VC role. As a result, only the failure of the current master, or
two VCP trunk failures that serve to isolate the master from the rest of the VC, can
result in the need to promote a backup RE to the role of master RE.

A bifurcated VC: It’s a bad thing

When two VC trunk failures occur between two pairs of adjacent member switches,
the result can be a bifurcated VC. In such a state, PFEs that were formerly part of the
same VC lose contact. This can result in multiple master REs becoming active, each
feeding its VC members with a copy of the VC configuration file, which can result in
unpredictable and even network-disruptive behavior. In this example, in addition to
both VCs potentially forwarding the same traffic, this condition also results in a du-
plicated IP management address; recall that the single vme.0 address is shared by all
members in a VC, but we now have two VCs running the same configuration, which
includes the virtual management address.

It’s rare to actually encounter this condition, because it requires the simultaneous fail-
ure of two VC switch members, or two VC trunk cable segments between two different
pairs of adjacent VC members. Given the relative infrequency of this failure mode, and
the complexity of making things work in such a state, a bifurcated VC is currently not
supported. With that said, the best practice in a vertical VC design has the master RE
at either the top or the bottom, and the desired backup RE in the middle so that it’s
equidistant from either end. The rationale is that in the event of a bifurcation there is
maximum probability that each of the split VCs will continue to operate using one of
the two RE-capable switch members; this is especially important when deploying a
redundancy scheme that permits only two of the VC members to function in the RE role.

Virtual chassis packet walk-through

This section details packet processing in a number of different scenarios. Figure 4-11
provides a macro view of VC packet forwarding.

210 | Chapter 4: EX Virtual Chassis

Figure 4-11. VC packet forwarding

As described previously, VC member discovery results in an SPF tree rooted at each
EX-PFE that is optimized on the path metric and, in the case of a VCP ring, points to
one of two VC port interfaces for forwarding between member switches within the VC.
In this example, a source on Switch 0’s ge-0/0/28 interface is sending to a destination
on Switch 2’s ge-2/0/47; Sequence Number 1 and the related solid arrows show the
prefailure forwarding state, which—being based on path metric optimization—has
Switch 0 forwarding toward Switch 2 through its VCP link to Switch 1 with a hop count
of 2.

When all interfaces have the same bandwidth, as is the case here, the
SPF result is effectively based on hop count.

At step 2, the VCP cable between Switch 0 and Switch 1 suffers a fault, resulting in
flooding of updated VCCP LSAs. After the new VC topology has stabilized, the updated
calculation at Switch 0 causes it to begin forwarding toward Switch 2 via its VCP link
to Switch 4, shown at step 3. The dashed arrows show that the remaining switches have
also converged on the new topology, with the result being a sane forwarding path that,
albeit no longer at three hops, permits ongoing communications between the source
and destination VC interfaces.

The EX Virtual Chassis | 211

Intersystem packet flows

This section builds on the previous, high-level example of interswitch packet flow by
detailing how unicast and multicast packet flows are processed within each switch and
its respective EX-PFEs. Figure 4-12 starts the discussion with a unicast flow for a known
source and destination address.

Figure 4-12. Known source: unicast flow

Figure 4-12 shows a somewhat simplified VC consisting of three EX switches, with each
switch member having a single PFE. In this example, the switch member ID and PFE
ID are the same, and range from 0 to 2. The three switches are connected in a ring, and
each switch’s PFE to VCP port mapping is shown. This is a function of a hop-count-
optimized SFP run at each member switch given that all interface metrics are the same.

Figure 4-12 shows two simultaneous unicast flows. The solid flow ingresses at Switch
0 and egresses at Switch 1, and the dashed flow begins at Switch 2 and terminates at
Switch 0. The MAC address to switch member/PFE ID mapping is assumed to be in
place, meaning that both the Source MAC (SMAC) and Destination MAC (DMAC)
addresses for both flows have been learned and the appropriate TCAM entries are in
place and are used to map a MAC address to a destination PFE. In a normal case, many
MAC addresses can map to the same PFE ID, and therefore to the same forwarding
VCP next hop.

212 | Chapter 4: EX Virtual Chassis

The highlighted entry in Switch 0’s mapping table shows its mapping of Switch ID 1
to its VCP port 0, and the solid line shows the resulting unicast flow. In similar fashion,
the dashed line at Switch 2 highlights the mapping table entry that causes it to use its
VCP 0 to reach PFE 0.

Multicast, broadcast, or unknown DMAC address flows require special handling, as
they must be flooded within the VC while taking safeguards to ensure that endless
packet loops/broadcast storms do not occur. This is because such flows need to be
flooded to all ports associated with the ingress port’s virtual LAN (VLAN). This causes
such traffic to be flooded to all remote PFEs, which may or may not have local VLAN
members resulting in the decision to either replicate and forward, or discard, respec-
tively. The lack of a Time to Live (TTL) field in Ethernet frames makes a forwarding
loop particularly nasty and can easily bring a Layer 2 network to a grinding halt. Fig-
ure 4-13 details how EX-PFEs solve this problem.

Figure 4-13. Known source: flooded traffic

The key to preventing broadcast storms is the use of a source ID mapping table in each
PFE that ensures that a single copy of each flooded frame is received by every PFE within
the VC. Step 1 in Figure 4-13 shows a single multicast stream sourced at Switch 0. The
highlighted source ID mapping tables show how each switch forwards the associated
traffic. Switch 0’s locally originated traffic is flooded out through both its VCP 0 and

The EX Virtual Chassis | 213

VCP 1 ports at step 2. This traffic, when received by PFEs 1 and 2, results in blocking
at Switch 1’s VCP 0 port, and also at Switch 2’s VCP 1 port, which is shown in step 3.

The result is that each switch/PFE in the VC receives a single copy of each flooded
frame, where specifics determine whether local replication or discard is appropriate for
its front-panel ports. Forwarding of this traffic out the remaining VCP port to another
PFE is constrained by a source ID mapping table built within each PFE that is based
on VCCP exchanges and the resulting topology database. Changes in the VC topology
trigger VCCP updates and a resulting modification to the source ID mapping tables to
ensure continued connectivity.

Figure 4-14 expands on the preceding discussion with details of the flow of exception
traffic within a VC.

Figure 4-14. Exception flows within a VC

Exception traffic refers to packets that need to be shunted out of the ASIC fast path and
up to the RE for processing that is outside the realm of pure packet forwarding. For
example, when in Layer 2 bridging mode, each SMAC address must be learned so that
forwarding decisions based on the DMAC can be intelligently made. When in Layer 3
mode, a similar exception flow occurs for certain IP packets—for example, those with
a source route or Router Alert (RA) option, or in the case of traffic that is addressed to
the switch itself.

Exception flows are rate-limited and policed within both the PFE and
the RE to prevent the lockout of critical control plane processes during
periods of abnormally high levels of exception traffic, such as might
occur during a denial of service (DoS) attack. You can view exception
traffic statistics, including policed drops, using the output of the show
pfe statistics and show system statistics commands.

Figure 4-14 details how an unrecognized SMAC address results in the need to redirect
traffic to the control plane for additional processing. Things start at step 1, when a

214 | Chapter 4: EX Virtual Chassis

frame is received with a known DMAC address of A but an unknown SMAC address
of X. The ingress PFE performs both SMAC and DMAC lookups for each frame as part
of its Layer 2 forwarding and learning functions. Upon seeing the unknown SMAC, the
frame is shunted out of the ASIC forwarding path and into the control plane, where it
is sent to the local switch’s RE at step 2 in Figure 4-14. At step 3, the LC switch con-
structs a notification message from the buffered frame’s particulars. The notification
is then sent to the VC’s master RE using the SPF between the ingress switch’s CPU and
the master RE. The path chosen can contain both internal PFE-PFE and external VCP
links, as shown in this example.

Step 4 has the VC’s RE perform the needed accounting and admission control func-
tions. For example, a MAC limit parameter may be set that prevents this SMAC from
being learned, or perhaps a Layer 2 firewall filter is in place that indicates this SMAC
should be blocked. Assuming no forwarding restrictions exist, the master RE sends an
update to all PFEs in the VC, which is shown at step 5. This update instructs all PFEs
to update their TCAM with the newly learned SMAC. Things conclude at step 6 when
the ingress switch reinjects the previously buffered frame back into the local PFE com-
plex, where it’s now switched toward the egress PFE, and then toward the egress port,
based on the frame’s DMAC, using the SPF between the two PFEs. When the frame is
received by the egress switch, which functions as a backup RE in this example, no
additional learning/intra-VC communications are needed because the SMAC was pro-
grammed into all PFEs back at step 5, so the egress PFE simply forwards the frame out
the port associated with Destination A.

Virtual Chassis Summary
This section detailed the architectural and design aspects of the EX4200 VC. With an
understanding of VC member roles, member ID, and mastership priority, in addition
to VCP topologies and cabling schemes, you are no doubt ready to move on to the act
of configuring and maintaining a VC. You are in luck, because the next section provides
this very information.

Configuration, Operation, and Maintenance
You configure and manage almost all aspects of a VC via the VC’s master RE. However,
you can also configure VC parameters when an EX4200 is a standalone switch and not
actually attached to other switches. This is because each EX4200 switch has some
innate characteristics of a VC by default. A standalone EX4200 switch is assigned
member ID 0 and is the master of its own (and therefore single-member) VC, which
allows you to configure VC parameters on a standalone switch.

When the previously standalone switch is interconnected with an existing VC, the VC
configuration statements and any VCE uplink settings that you previously specified on
the standalone switch remain part of its configuration, where they can do such things

Configuration, Operation, and Maintenance | 215

as influence mastership reelections. Once a switch becomes part of a VC, the current
VC master synchronizes its configuration copy to all member switches, overwriting any
local changes that conflict with the current master’s settings.

As with configuration, VC operation and diagnostic troubleshooting is generally per-
formed through the master switch. In a typical configuration, a single virtual IP address
is shared among all VC switch members, and any incoming traffic received by a VC
member for that shared address is automatically redirected to the current master RE.
In a similar manner, a virtual console service redirects console input on any VC switch
member to the master RE’s console using an internal communications path.

There is a configuration option to disable the internal management VLAN, which al-
lows you to access each VC switch member through its (now) individually IP-addressed
OoB management Ethernet port. This option is generally used only in advanced VC
troubleshooting situations, and is described later.

The next section details the parameters that are normally configured when deploying
a VC with a preprovisioned configuration file.

Virtual Chassis Configuration Modes
Broadly speaking, there are two primary ways to deploy a VC: via plug-and-play with
a default or non-provisioned configuration, or via preprovisioned mode. The latter must
include explicit configuration that can force VC member ID and roles in a deterministic
manner. Although the anything-goes nature of a default configuration VC is guaranteed
to work (when using all VCP cabling), such a design is generally not considered to be
a best practice. Note that use of VCE ports requires explicit actions because, by default,
these ports operate in uplink mode.

In non-provisioned mode with all switches running default configurations, all will have
the same mastership priority. As such, the master switch will be the first one powered
up, and the backup RE is the second switch powered on. Should the current master
later fail, the backup RE becomes the master and any of the remaining switches could
become the new backup, assuming they were all powered up at nearly the same time;
recall that uptime can influence mastership tiebreaking, as described previously. Al-
though some might argue that having 1:10 RE redundancy (meaning that any of the 10
VC members can become the active RE) is a good thing, others argue that the law of
diminishing returns kicks in when you actually factor the probability of a failure mode
that manages to take down two switches while somehow managing to spare all other
VC members. In most cases, whatever causes you to lose both your current and backup
master REs at the same time—for example, the loss of AC power distribution—is going
to take down the entire VC anyway.

In contrast, a deterministic design uses a preprovisioned VC member-to-role mapping
that, in the best practice case, assigns a master and backup RE with all remaining VC
members forced into a Line Card (LC) role. In most cases, you will also want to statically

216 | Chapter 4: EX Virtual Chassis

assign switch member IDs. Such an approach removes the significance of the switch
power-up/VC attachment sequence, which, by default, assigns member IDs in the se-
quence in which each switch is powered up/attached to the VC. This is a significant
point, because in addition to its use in various operational and maintenance commands,
the member ID also impacts the interface names for that switch’s front-panel ports. For
example, the first GE port on the VC member with ID 3 is ge-3/0/0, and you may want
this ID to be deterministically assigned to the third EX switch in a vertical stack, and
to ensure that it can never change by nailing the value down with explicit configuration.

Hot or cold insertion: when does a VC addition become a VC merge?

Regardless of whether you use a default or prestaged configuration, when it comes to
expanding a VC you will need to physically attach a new switch member to an existing
VC. When performing a VC addition, you must ensure that the new switch is powered
off before attaching it to the existing VC.

You can attach a powered-on switch to an existing VC, but this operation is disruptive
because it constitutes the merging of two VCs into one. Recall that every standalone
EX4200 is, by definition, the master of its own domain. Therefore, when attached to a
VC after being powered on, there are two active master REs, which forces a contention
situation, with the result being the reboot of the losing RE and its VC members, along
with the loss of its configuration. Because the old master’s configuration is lost, the
final VC configuration will be that of the winning master, and it’s likely that the member
ID will also change. Because of the potential for resulting network disruption, cold
insertion is always recommended when adding a new member to a VC. In a cold in-
sertion, the newly attached and powered-on switch does not assume a master role, and
instead listens to VCCP messages to learn its role in the VC. Assuming the new switch
has a lower priority, there will be no master contention process, as would occur with
a host insertion.

Virtual Chassis Configuration
Several parameters can be configured to control and manage the operation of a VC. At
a minimum, you should assign a virtual management address that represents the VC
itself and is serviced by whatever member switch is the VC’s current master RE.

Most VC designs, even when using non-provisioned mode, typically add additional
configuration to help promote some degree of deterministic operation. This section
details VC configuration options, along with some best practice design tips to keep
things interesting. Note that with a few exceptions, all of these parameters are config-
ured through the master RE, which then pushes the changes to the affected members
when the configuration is synchronized.

Configuration, Operation, and Maintenance | 217

Virtual management address

You configure a virtual management IP address as you would on any real interface,
except the vme interface does not accept any encapsulation options, and forces the use
of unit 0, given that VLAN tagging is currently not supported. Once in place, any
matching traffic received on the physical me0 interface at any switch member is auto-
matically redirected to the vme.0 interface on the active VC master, regardless of the
member switch on which the traffic ingresses.

You can configure both an IPv4 and IPv6 address if needed; an advanced license is not
required for IPv6 on the OoB management interface. The example shown here performs
IPv4 address configuration for the vme.0 interface:

[edit]

lab@Vodka# edit interfaces

[edit interfaces]
lab@Vodka# set vme unit 0 family inet address 172.16.69.34/24

[edit interfaces]
lab@Vodka# show vme
unit 0 {
 family inet {
 address 172.16.69.34/24;
 }
}

The result is a vme.0 interface instantiation on the current master RE. Note that non-
master member switches do not display a vme.0 interface, and show their respective
me0 interfaces as having no configuration. A later section details use of the
no-management-vlan option to permit explicit IP addresses of a member switch’s me0
interface while part of a VC.

Don’t Use Both the vme and me0 Interfaces
The 9.2R1.9 used in this book permitted explicit configuration of both the vme.0 and
me0 interfaces. However, even when a different subnet was used, the presence of an IP
address on the me0 interface prevents proper operation of the vme.0 interface. The me0
interface worked as expected. Be sure to remove any explicit me0 configuration when
planning a VC with a virtual vme0 interface. This behavior may change as the code
evolves:

[edit]
lab@Vodka# run show interfaces vme.0
 Logical interface vme.0 (Index 8) (SNMP ifIndex 36)
 Flags: Link-Layer-Down SNMP-Traps Encapsulation:
Unspecified
 Input packets : 82895
 Output packets: 51005
 Protocol inet, MTU: 1500
 Flags: Is-Primary
 Addresses, Flags: Dest-route-down Is-Preferred Is-

218 | Chapter 4: EX Virtual Chassis

Primary
 Destination: 172.16.69/24, Local: 172.16.69.34,
Broadcast: 172.16.69.255

[edit]
lab@Vodka# delete interfaces me0

[edit]
lab@Vodka# commit
fpc0:
configuration check succeeds
fpc1:
commit complete
fpc0:
commit complete

[edit]
lab@Vodka# run show interfaces vme.0 | match flags
 Flags: SNMP-Traps Encapsulation: Unspecified
 Flags: Is-Primary
 Addresses, Flags: Is-Preferred Is-Primary

Virtual chassis member parameters

Most of the VC configuration parameters are found at the [edit virtual-chassis]
hierarchy, as you might expect. The options are shown here with the command-line
interface (CLI) help function:

[edit virtual-chassis]
lab@Vodka# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> mac-persistence-timer How long to retain MAC address when member leaves virtual
chassis
> member Member of virtual chassis configuration
 preprovisioned Only accept preprovisioned members
> traceoptions Global tracing options for virtual chassis

The mac-persistence-timer knob determines how long a new master continues to use
the MAC address that was owned by the previous master. The default is 10 minutes,
and can be set to 0 for an immediate switch or to some really long value so that the
manual claims are unlimited. The goal is to avoid a MAC address change and the re-
sulting reflooding/relearning, in the event that the old master’s departure is short-lived
and it can return to operation without any external device being the wiser.

The preprovisioned option establishes how deterministic you wish to be. When this is
enabled, you must map each member switch’s serial number to a member ID and a
specific role of either RE or LC. You cannot specify a member priority in a preprovi-
sioned configuration. The priority is assigned based on a default mapping-to-member
role (i.e., the RE role is assigned 129 while the LC role is assigned 0). In preprovisioned
mode, a matching serial number must be found or the new member cannot become

Configuration, Operation, and Maintenance | 219

part of the active VC topology. Note that a VCCP adjacency is still formed in this case,
and the unwelcome switch will quickly be relegated to an LC role where it can do little
damage. Note also that the virtual console/management functionality will not work
from the non-provisioned switch, and its LSAs are ignored during SPF calculation,
which effectively eliminates it from the active VC’s topology.

By default, the VC configuration mode is considered non-provisioned, which is syn-
onymous with the factory default in that no explicit VC configuration is required. The
default VC mode permits the mapping of specific member IDs to a mastership priority
value, but this mapping is not required. Member IDs with no mapping receive the
default value of 128; you can prevent a member from being able to become the master
or backup RE by assigning a value of 0. The highest priority of 255 should be assigned
to the members that you wish to function as the master and backup REs. You cannot
manually assign a VC member role, or specify a serial number when in non-
provisioned mode.

The current best practice is to have both a master and a backup RE in
each VC. When there are more than three VC members, the remaining
members are forced into an LC role. Both of the candidate RE members
are assigned the same priority, which is typically the highest possible
value of 255. This is done to prevent RE mastership preemption in the
case that a primary RE suffers a transient failure, such as a reboot, and
is known as non-revertive behavior. When the old master comes back
online, its equal priority setting prevents it from forcing another mas-
tership change, which promotes general stability while allowing human
intervention (e.g., logfile analysis) before the decision is made to revert
to the original mastership roles, which can then be performed in a
maintenance window.

In a non-provisioned mode, the master RE assigns the next sequential member ID (and
any associated priority that is set in the configuration) to each member switch as it is
attached to the VC and powered on. The new switch’s priority value is then used to
determine its VC member role based on the mastership election algorithm. You control
member ID assignment in this mode by powering up the member switches in the desired
order so that each switch receives the next sequential (and desired) member ID. After
the fact, you can still use the CLI to alter the membership values.

The member subhierarchy houses the remaining VC configuration options:

[edit virtual-chassis]
lab@Vodka# set member 0 ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 mastership-priority Member's mastership priority (1..255)
 no-management-vlan Disable magagement VLAN
 role Member's role
 serial-number Member's serial number

220 | Chapter 4: EX Virtual Chassis

Here, you set parameters such as member ID to mastership priority when in non-
provisioned mode, or in preprovisioned mode by binding a serial number to either an
RE or an LC role. A typical non-provisioned mode configuration is as follows:

[edit virtual-chassis]
lab@Vodka# show
member 0 {
 mastership-priority 255;
}
member 1 {
 mastership-priority 255;
}
member 2 {
 mastership-priority 1;
}

Note again that to make the priority values matter you must control member ID as-
signment via the power-on sequence or via CLI commands after things have settled. In
this example, members 0 and 1 are the primary REs and member 1 could become an
RE only in the event of both members 0 and 1 failing. You cannot assign a 0 priority in
non-provisioned mode, which means all VC members are candidates to become the
master RE. Here is a sample preprovisioned configuration:

[edit virtual-chassis]
lab@Vodka# show
preprovisioned;
member 1 {
 role routing-engine;
 serial-number BM0208269767;
 no-management-vlan;
}
member 0 {
 role routing-engine;
 serial-number BM0208269834;
}
member 2 {
 role line-card;
 serial-number BM0208269888;
}

The preprovisioned keyword places the VC into non-default mode, where each member
must be explicitly listed by serial number and allowed role. Priority assignments are
now based on default values for the RE and LC roles. The example forces member 2 to
function as an LC with a derived priority of 0, while members 0 and 1 can be REs. All
candidate REs are assigned the same priority, leading to a non-revertive mode of
operation.

VCEs

The use of a front-panel uplink as a VCE is an optional aspect of a VC design. As noted
previously, the rear-panel VCP ports simply work, and accept no user configuration.
Anytime you attach cables to these ports, a VC will attempt to form.

Configuration, Operation, and Maintenance | 221

By default, an uplink port does not run the VCCP; hence it is called an “uplink” and
not a VCE port. You use the request virtual-chassis vc-port operational mode com-
mand to activate or deactivate VCCP/uplink mode on these ports:

lab@Vodka# run request virtual-chassis vc-port ?
Possible completions:
 delete Delete a member's virtual chassis port
 set Set a member's virtual chassis port

When performed in operational mode, these commands write the VCE port informa-
tion into the affected switches’ private configuration, where it persists until removed.

While in uplink mode the various ports are indexed as ge-id/1/n, where id is the
switches’ member ID and n is the port number, which can range from 0 to 3, depending
on uplink module type. Once placed into VCE mode, these same ports are renamed
and become vcp-255/1/n, and the corresponding uplink port device is removed. This
process is shown in the following code for a switch with member ID 0:

lab@Vodka> show interfaces ge-0/1/0 terse
Interface Admin Link Proto Local Remote
ge-0/1/0 up up
ge-0/1/0.0 up up eth-switch
lab@Vodka> request virtual-chassis vc-port set pic-slot 1 port 0

Once placed into VCP mode, the previous uplink port is no longer available and a new
VCP device is created:

lab@Vodka> show interfaces ge-0/1/0 terse
error: device ge-0/1/0 not found

lab@Vodka> show interfaces vcp-255/1/0 terse
Interface Admin Link Proto Local Remote
vcp-255/1/0 up up
vcp-255/1/0.32768 up up

When you plan to use a VCE to attach a new switch to an existing VC, you should
power up the new switch and configure both ends of the VCE (one end on the new
switch, the other on an existing VC member) before you physically attach the new
switch to the VC using the VCE link. This ensures that both ends agree to use VCCP
over the shared link, and that proper VC topology discovery and member role deter-
mination is performed. Failing to perform these steps may cause master reelection and
result in disruption to traffic forwarding until the VC topology stabilizes.

Once a switch is part of a VC, additional VCE ports can be provisioned or removed
through the master RE by adding the desired member ID to the request virtual-
chassis commands. In most cases the master RE will be member ID 0, but this is not
mandatory. When a member ID is not specified, the local switch is assumed and the
command is performed on the local master RE:

lab@Vodka> request virtual-chassis vc-port set pic-slot 1 port 1 ?
Possible completions:
 <[Enter]> Execute this command
 all-members Set virtual chassis port on all virtual chassis members

222 | Chapter 4: EX Virtual Chassis

 local Set virtual chassis port on local virtual chassis member
 member Set virtual chassis port on specific virtual chassis member (0..9)
. . .

Using Synchronized Commits
With the 9.2 version used in this book, it’s important that you perform a commit
synchronize operation when you have made any changes to the virtual-chassis stanza
on the master RE. Failing to do this can result in a member switch retaining the previous
VC configuration, which causes the changes to not take effect. Later JUNOS versions
may perform these operations without needing the synchronize option. Using
synchronize is always recommended in a dual-RE environment, but in a VC it’s also
needed when making VC-related changes, even when there is only one RE. Consider
adding set system commit synchronize to your configuration to make every commit
behave as though you added synchronize.

Virtual chassis configuration summary

Well, that’s pretty much it; there really isn’t much to configuring a VC. In fact, if de-
terminism is not your bag, you can just plug a bunch of EX4200s together using just
about any VCP cabling scheme, and things will just work. With that said, you really
should configure a virtual management address, and at a minimum map member IDs
to priorities as part of a non-provisioned deployment, to ensure consistency across
various reboot scenarios. Once a member is assigned it becomes sticky, meaning that
the associated priority remains fixed across reboots and power-downs, which tends to
ensure the same master, backup, and LC roles when all members are up and running.

The next section details operational analysis and VC maintenance procedures.

Virtual Chassis Operation and Maintenance
This section details commands and techniques used to perform operational analysis,
troubleshooting, or VC moves and changes. The next section demonstrates most of
these commands and techniques as part of a VC deployment case study.

To help keep you interested, the material is presented in the context of a VC discovery
task, in which your goal is to reverse-engineer a VC you know nothing about using only
CLI operational mode show commands. We suggest you use a sheet of paper to diagram
your discoveries as they are made. You start by displaying the VC configuration:

[edit]
regress@EX4200_VC_demo# show virtual-chassis

[edit]

From the preceding code, note that you are dealing with a default virtual-chassis
stanza, and therefore a non-provisioned deployment scenario. The lack of configura-
tion details means there is not much more to be learned here, so let’s move along. Your

Configuration, Operation, and Maintenance | 223

VC discovery diagram remains largely blank, except that the name of the VC and its
mode of deployment are known.

Operational mode commands with member context

Several CLI commands support member-specific context when executed in a VC. Gen-
erally speaking, when the member argument is omitted, the command acts on the local
master RE. Adding the all keyword ensures that a command runs on all members, and
in similar fashion, specifying a specific member ID constrains the command to that
member.

For a complete list of VC member-aware commands, consult the JUNOS documenta-
tion matching the EX software release on your switch. For Release 9.2, this information
is available at http://www.juniper.net/techpubs/en_US/junos9.2/topics/reference/general/
virtual-chassis-command-forwarding.html. Most of the CLI’s request system and show
system commands support the member keyword. The reboot command is demonstrated:

regress@EX4200_VC_demo > request system reboot ?
Possible completions:
 <[Enter]> Execute this command
 all-members Reboot all virtual chassis members
 at Time at which to perform the operation
 in Number of minutes to delay before operation
 local Reboot local virtual chassis member
 media Boot media for next boot
 member Reboot specific virtual chassis member (0..9)
 message Message to display to all users
 other-routing-engine Reboot the other Routing Engine
 partition Partition on boot media to boot from
 | Pipe through a command
regress@ EX4200_VC_demo > request system reboot member 1
Reboot the system ? [yes,no] (no) yes

Rebooting fpc1

regress@ EX4200_VC_demo >

A show version command runs on all members by default, and is a good way to confirm
software compatibility, as all VC members should run the same code and members
with mismatched software versions are typically not allowed to actively join the VC:

regress@EX4200_VC_demo> show version
fpc0:
--
Hostname: EX4200_VC_demo
Model: ex4200-48t
JUNOS Base OS boot [9.2R1.9]
. . .

fpc1:
--
Hostname: -fpc1-BK
Model: ex4200-48t

224 | Chapter 4: EX Virtual Chassis

http://www.juniper.net/techpubs/en_US/junos9.2/topics/reference/general/virtual-chassis-command-forwarding.html
http://www.juniper.net/techpubs/en_US/junos9.2/topics/reference/general/virtual-chassis-command-forwarding.html

JUNOS Base OS boot [9.2R1.9]
. .

Notice that fpc1 has automatically been assigned a hostname that reflects its member
ID (1) and its current VC role of BacKup (BK) RE. From the vacant configuration and
its current backup status, you can deduce that fpc0 has a higher mastership priority,
was powered on first, has been booted the longest, or simply has the lowest MAC
address, as it has won the master election process. Further investigation shall reveal the
truth.

Your discovery diagram now shows a single VC, with two members, both as candidate
masters. You can also add that both VC members are 48-port models, but there’s not
much else to be learned here.

The show chassis lcd command is a fine way to view the information displayed on the
EX’s LCD panel, assuming you are not around to gaze upon its cheery countenance
directly:

regress@EX4200_VC_demo> show chassis lcd fpc-slot 0
Front panel contents for slot: 0

LCD screen:
 00:RE EX4200_VC_
 LED:SPD ALARM 00
LEDs status:
 Alarms LED: Off
 Status LED: Green
 Master LED: Green
Interface LED(ADM/SPD/DPX/POE)

ge-0/0/0 On:3 blinks per sec
ge-0/0/1 On:3 blinks per sec
. . .

The information displayed confirms that slot 0 is the active RE, the model number, and
that no alarm-level events have been detected. The port status shows that the port is
up, but shows no activity (the first LED is on), and that the port is in 1,000 Mbps mode
(three blinks per second).

VC monitoring commands

Use the show virtual-chassis command to obtain VC-specific information. Given your
current task, this seems a fine place to explore:

regress@EX4200_VC_demo> show virtual-chassis ?
Possible completions:
 <[Enter]> Execute this command
 active-topology Virtual chassis active topology
 member-config Show virtual chassis member configuration from specified member
 protocol Show virtual chassis protocol information
 status Virtual chassis information
 vc-port Virtual chassis port information
 | Pipe through a command

Configuration, Operation, and Maintenance | 225

Note that the full range of command options is available only at the master RE. Non-
RE switches run only a subset of the JUNOS processes, and therefore support a subset
of the commands shown here for a master RE. Your discovery proceeds with a display
of VC ports:

regress@EX4200_VC_demo> show virtual-chassis vc-port
fpc0:

Interface Type Status
or
PIC / Port
vcp-0 Dedicated Up
vcp-1 Dedicated Down

fpc1:

Interface Type Status
or
PIC / Port
vcp-0 Dedicated Up
vcp-1 Dedicated Down

The display tells you a few things. It seems that neither member has any VCE ports
defined, given that only VCP port-related information is displayed. Also, each member
switch is showing a single VCP port in the Up state, indicating that the two switches
are attached in a serial VCP chain, which in this case is attached to the VCP 0 port on
both members. Additional information is displayed to confirm that VCCP packets are
being sent and received over member 0’s VCP 0 interface:

regress@EX4200_VC_demo> show virtual-chassis vc-port statistics vcp-0 member 0

Member ID: 0 Port: vcp-0
 RX TX
Total octets: 20807032 7654180
Total packets: 77187 67757

Note that show virtual-chassis and show virtual-chassis status commands are syn-
onymous in this release:

regress@EX4200_VC_demo> show virtual-chassis

Virtual Chassis ID: 3f04.fea3.76b3
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BP0208207200 ex4200-48t 128 Master* 1 vcp-0
1 (FPC 1) Prsnt BP0208207201 ex4200-48t 128 Backup 0 vcp-0

Member ID for next new member: 2 (FPC 2)

There’s some real gold here. You see confirmation of member ID assignment, member
operational status, and serial number (handy, as this information is needed for a pre-
provisioned deployment); the mastership priority (set to default for non-provisioned
mode); the member’s role within the VC; and the member’s adjacency status. In this

226 | Chapter 4: EX Virtual Chassis

example, you see that member 0 connects to member 1 using VCP 0, which meshes
nicely with your discoveries to date. Also note that the master switch plans to assign
member ID 2 to the next switch that successfully joins this VC.

The active-topology switch displays the results of the VCCP that operates between
EX-PFEs to ensure optimal paths and loop-free switching among all member switches.
The active-topology option is available only on the master RE because LC members
do not run any switching/routing daemons:

regress@EX4200_VC_demo> show virtual-chassis active-topology
 Destination ID Next-hop

1(vcp-0)

Wow, this is somewhat of a letdown, especially if you have ever had to wade through
the route table of an Internet router sporting several full Border Gateway Protocol (BGP)
routing feeds. Still, this is a simple two-node VC with a single interconnection link, and
therefore the active topology consists of Switch 0 connected to Switch 1, with a single
link, as displayed.

Monitor the VC control protocol

The show virtual-chassis protocol command has several arguments that help get to
the meat of a VC’s operation:

regress@EX4200_VC_demo> show virtual-chassis protocol ?
Possible completions:
 adjacency Show virtual chassis adjacency database
 database Show virtual chassis link-state database
 interface Show virtual chassis protocol interface information
 route Show virtual chassis routing table
 statistics Show virtual chassis performance statistics

As with any LS protocol, displaying adjacency status is always a good place to start
when performing operational analysis.

A Word on VCCP and IS-IS
VCCP is a proprietary adaptation of the IS-IS routing protocol. Therefore, knowing IS-
IS operation definitely helps in your understanding of VCCP. A complete description
of IS-IS operation is beyond the scope of this book. Suffice it to say that IS-IS has
traditionally served as an Interior Gateway Protocol (IGP) for the IPv4 and IPv6 (and
even ISO/CNLS) protocols in large service provider or government networks. IS-IS uses
hellos to discover and maintain adjacencies and reliably floods LSPs that are stored in
a replicated LSDB among all routers in the same level. Each IS-IS node then computes
a shortest path from itself to all other IS-IS nodes to form an RT. Unlike IP, IS-IS routers
do not assign an address to each interface; instead, a single system-level ID, called a
Network Entity Title (NET), is used to represent each node in the level.

IS-IS uses a Designated Intermediate System (DIS) concept similar to OSPF’s Designa-
ted Router (DR); however, all stations on a shared LAN form an adjacency with each

Configuration, Operation, and Maintenance | 227

other, which differs from OSPF, where DR-other routers see each other as neighbors
but form an adjacency only with the LAN’s DS and BDRs (Designated and Backup
Designated Routers). IS-IS supports levels, which are somewhat analogous to OSPF’s
areas, provide hierarchy routing.

The nature of IS-IS is to use an easily extensible type length value (TLV) format that
often results in it being used as a mule, in that it transports information that is opaque
to the IS-IS protocol itself. The inherent transport flexibility, combined with its address-
per-node rather than per-interface model, allowed Juniper to leverage its prior IS-IS
development work for VCCP. This is good, as Juniper’s IS-IS implementation is proven
to offer high performance while also being robust and reliable.

This display shows several VCCP adjacencies, and the good news is they are all up:

regress@EX4200_VC_demo> show virtual-chassis protocol adjacency
fpc0:
--
Interface System State Hold (secs)
internal-0/24 001f.1234.8842 Up 65535
internal-1/25 001f.1234.8842 Up 65535
internal-2/24 001f.1234.8840 Up 65535
internal-2/27 001f.1234.8841 Up 65535
vcp-0 001f.1234.7dc0 Up 58
]
fpc1:
--
Interface System State Hold (secs)
internal-0/24 001f.1234.7dc2 Up 65535
internal-1/25 001f.1234.7dc2 Up 65535
internal-2/24 001f.1234.7dc0 Up 65535
internal-2/27 001f.1234.7dc1 Up 65535
vcp-0 001f.1234.8840 Up 58

At first glance, this output may seem odd. Where did all these devices and interfaces
come from? You can find the answer, in part, in Chapter 3.

Recall that an EX4200-48 comprises three EX-PFEs, with each PFE dividing the work
associated with front-panel, uplink, and VC ports. Each PFE has an internal device ID
and an associated MAC address that serves as its VCCP system ID. By default, the EX
itself is represented by the lowest-numbered PFE, which effectively functions as the
DIS for the internal LAN connections.

Each PFE has both internal links and external links to other PFEs, with the latter in the
form of VCE or VCP ports. Looking in detail at fpc0, we see a total of five adjacencies,
only one of which is to an external PFE, in this case reachable over the VCP-0 port. The
remaining adjacencies must therefore represent internal PFE connections, and in fact
this is found to be the case given the internal interface designations.

Although you could make some discovery diagram updates based on the adjacency
information, you opt to take the next analysis step by displaying the VCCP LSDB. In
this example, the LSDB is displayed for switch member 1 only; given that all members

228 | Chapter 4: EX Virtual Chassis

have an identical LSDB when things are working, it should not matter which copy you
view:

regress@EX4200_VC_demo> show virtual-chassis protocol database member 0
fpc0:
--
LSP ID Sequence Checksum Lifetime
001f.1234.7dc0.00-00 0xa7c 0xe1e9 116
001f.1234.7dc1.00-00 0x31b 0xb393 114
001f.1234.7dc2.00-00 0x315 0xaceb 115
001f.1234.8840.00-00 0xa6e 0x701c 117
001f.1234.8841.00-00 0x31b 0x869c 111
001f.1234.8842.00-00 0x318 0x4d99 112
 6 LSPs

The results show there are six LSPs. This makes sense, given that there are six EX-PFEs
in this VC, and each runs a VCCP instance, and therefore each forms adjacencies with
its neighbor PFEs and floods LSPs as a result. Based on this information, your VC
discovery diagram begins to take the shape of a network consisting of two LAN seg-
ments (one per member switch), each with three VCCP entities (one per EX-PFE),
which are in turn connected by a serial link (VCP-0).

The extensive switch is used to display as much VCCP LSDB information as Juniper
sees fit to make available. The display is taken from member 1, in part to show it has
the same database entries as did member 0.

Note that some TLVs are not completely decoded.... How mysterious!

regress@EX4200_VC_demo> show virtual-chassis protocol database extensive member 1
| no-more
fpc0:

001f.1234.7dc0.00-00 Sequence: 0xa3a, Checksum: 0x49ed, Lifetime: 117 secs
 Neighbor: 001f.1234.7dc2.00 Interface: internal-0/24 Metric: 10
 Neighbor: 001f.1234.8840.00 Interface: vcp-0 Metric: 10

 Header: LSP ID: 001f.1234.7dc0.00-00, Length: 356 bytes
 Allocated length: 1492 bytes,
 Remaining lifetime: 117 secs, Interface: 0
 Estimated free bytes: 1075, Actual free bytes: 1136
 Aging timer expires in: 117 secs

 Packet: LSP ID: 001f.1234.7dc0.00-00, Length: 356 bytes, Lifetime : 118 secs
 Checksum: 0x49ed, Sequence: 0xa3a,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 1, VC ID: 3f04.fea3.76b3, Flags: 1, Priority: 128
 System ID: 001f.1234.7dc0, Device ID: 3
 System ID: 001f.1234.7dc1, Device ID: 4
 System ID: 001f.1234.7dc2, Device ID: 5
 Neighbor Info: 001f.1234.7dc2.00, Interface: internal-0/24, Metric: 10

Configuration, Operation, and Maintenance | 229

 Neighbor Info: 001f.1234.8840.00, Interface: vcp-0, Metric: 10
 Unknown TLV, Type: 24, Length: 1
 Unknown TLV, Type: 28, Length: 112
 No queued transmissions

001f.1234.7dc1.00-00 Sequence: 0x307, Checksum: 0x1deb, Lifetime: 111 secs
 Neighbor: 001f.1234.7dc2.00 Interface: internal-1/25 Metric: 10

 Header: LSP ID: 001f.1234.7dc1.00-00, Length: 195 bytes
 Allocated length: 1492 bytes,
 Remaining lifetime: 111 secs, Interface: 0
 Estimated free bytes: 1233, Actual free bytes: 1297
 Aging timer expires in: 111 secs

 Packet: LSP ID: 001f.1234.7dc1.00-00, Length: 195 bytes, Lifetime : 118 secs
 Checksum: 0x1deb, Sequence: 0x307,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 1, VC ID: 3f04.fea3.76b3, Flags: 1, Priority: 128
 System ID: 001f.1234.7dc0, Device ID: 3
 System ID: 001f.1234.7dc1, Device ID: 4
 System ID: 001f.1234.7dc2, Device ID: 5
 Neighbor Info: 001f.1234.7dc2.00, Interface: internal-1/25, Metric: 10
 No queued transmissions

001f.1234.7dc2.00-00 Sequence: 0x301, Checksum: 0x1644, Lifetime: 111 secs
 Neighbor: 001f.1234.7dc0.00 Interface: internal-2/24 Metric: 10
 Neighbor: 001f.1234.7dc1.00 Interface: internal-2/27 Metric: 10

 Header: LSP ID: 001f.1234.7dc2.00-00, Length: 239 bytes
 Allocated length: 1492 bytes,
 Remaining lifetime: 111 secs, Interface: 0
 Estimated free bytes: 1188, Actual free bytes: 1253
 Aging timer expires in: 111 secs

 Packet: LSP ID: 001f.1234.7dc2.00-00, Length: 239 bytes, Lifetime : 118 secs
 Checksum: 0x1644, Sequence: 0x301,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 1, VC ID: 3f04.fea3.76b3, Flags: 1, Priority: 128
 System ID: 001f.1234.7dc0, Device ID: 3
 System ID: 001f.1234.7dc1, Device ID: 4
 System ID: 001f.1234.7dc2, Device ID: 5
 Neighbor Info: 001f.1234.7dc0.00, Interface: internal-2/24, Metric: 10
 Neighbor Info: 001f.1234.7dc1.00, Interface: internal-2/27, Metric: 10
 No queued transmissions

001f.1234.8840.00-00 Sequence: 0xa2e, Checksum: 0xaa09, Lifetime: 116 secs
 Neighbor: 001f.1234.7dc0.00 Interface: vcp-0 Metric: 10
 Neighbor: 001f.1234.8842.00 Interface: internal-0/24 Metric: 10

230 | Chapter 4: EX Virtual Chassis

 Header: LSP ID: 001f.1234.8840.00-00, Length: 542 bytes
 Allocated length: 542 bytes,
 Remaining lifetime: 116 secs, Interface: 26
 Estimated free bytes: 42, Actual free bytes: 0
 Aging timer expires in: 116 secs

 Packet: LSP ID: 001f.1234.8840.00-00, Length: 542 bytes, Lifetime : 118 secs
 Checksum: 0xaa09, Sequence: 0xa2e,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 0, VC ID: 3f04.fea3.76b3, Flags: 3, Priority: 128
 System ID: 001f.1234.8840, Device ID: 0
 System ID: 001f.1234.8841, Device ID: 1
 System ID: 001f.1234.8842, Device ID: 2
 Neighbor Info: 001f.1234.8842.00, Interface: internal-0/24, Metric: 10
 Neighbor Info: 001f.1234.7dc0.00, Interface: vcp-0, Metric: 10
 Master Info: System ID: 001f.1234.8840
 Backup Info: System ID: 001f.1234.7dc0
 Member Info: System ID: 001f.1234.7dc0, Member ID: 1 Member role: Backup
 System ID: 001f.1234.7dc0, Device ID: 3
 System ID: 001f.1234.7dc1, Device ID: 4
 System ID: 001f.1234.7dc2, Device ID: 5
 Member Info: System ID: 001f.1234.8840, Member ID: 0 Member role: Master
 System ID: 001f.1234.8840, Device ID: 0
 System ID: 001f.1234.8841, Device ID: 1
 System ID: 001f.1234.8842, Device ID: 2
 Unknown TLV, Type: 24, Length: 1
 Unknown TLV, Type: 28, Length: 112
 No queued transmissions

001f.1234.8841.00-00 Sequence: 0x308, Checksum: 0x11cd, Lifetime: 111 secs
 Neighbor: 001f.1234.8842.00 Interface: internal-1/25 Metric: 10

 Header: LSP ID: 001f.1234.8841.00-00, Length: 195 bytes
 Allocated length: 284 bytes,
 Remaining lifetime: 111 secs, Interface: 26
 Estimated free bytes: 89, Actual free bytes: 89
 Aging timer expires in: 111 secs

 Packet: LSP ID: 001f.1234.8841.00-00, Length: 195 bytes, Lifetime : 118 secs
 Checksum: 0x11cd, Sequence: 0x308,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 0, VC ID: 3f04.fea3.76b3, Flags: 3, Priority: 128
 System ID: 001f.1234.8840, Device ID: 0
 System ID: 001f.1234.8841, Device ID: 1
 System ID: 001f.1234.8842, Device ID: 2
 Neighbor Info: 001f.1234.8842.00, Interface: internal-1/25, Metric: 10
 No queued transmissions

001f.1234.8842.00-00 Sequence: 0x305, Checksum: 0xfaa2, Lifetime: 115 secs

Configuration, Operation, and Maintenance | 231

 Neighbor: 001f.1234.8840.00 Interface: internal-2/24 Metric: 10
 Neighbor: 001f.1234.8841.00 Interface: internal-2/27 Metric: 10

 Header: LSP ID: 001f.1234.8842.00-00, Length: 239 bytes
 Allocated length: 284 bytes,
 Remaining lifetime: 115 secs, Interface: 26
 Estimated free bytes: 45, Actual free bytes: 45
 Aging timer expires in: 115 secs

 Packet: LSP ID: 001f.1234.8842.00-00, Length: 239 bytes, Lifetime : 118 secs
 Checksum: 0xfaa2, Sequence: 0x305,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 0, VC ID: 3f04.fea3.76b3, Flags: 3, Priority: 128
 System ID: 001f.1234.8840, Device ID: 0
 System ID: 001f.1234.8841, Device ID: 1
 System ID: 001f.1234.8842, Device ID: 2
 Neighbor Info: 001f.1234.8840.00, Interface: internal-2/24, Metric: 10
 Neighbor Info: 001f.1234.8841.00, Interface: internal-2/27, Metric: 10
 No queued transmissions

The display is rather long, but also largely repetitive. We highlighted the key points.
For example, within each switch, the PFE with the lowest MAC address serves as the
primary system ID. For switch member 0, this is 001f.1234.8840, which is lower than
both 001f.1234.8841 and 001f.1234.8842. This PFE acts as the DIS for the internal
network by advertising the list of internal device (PFE) IDs along with their adjacent
neighbors. The master RE places additional information into its LSPs that details the
role of each VC member. This information represents the results of mastership election,
and is used to confirm how each member switch should operate. Each LSP also reports
the software version that it’s running. This information is used to detect software
incompatibilities among VC members.

Figure 4-15 represents the result of your VC discovery exercise.

Considering that no details were originally provided, it’s clear you can learn a lot about
a VC’s operation (or lack thereof when it’s broken), using the provided CLI commands
and tracing tools. Figure 4-15 shows that switch member 0 is the master, and that it
contains three EX-PFEs. The lowest-numbered PFE MAC address is used as the system
identifier, and is shown in the truncated form of 8840. Each internal link, which is
numbered based on PFE ID, has a pair of adjacent PFEs, which accounts for four of the
five adjacencies shown within each switch. The fifth adjacency is via the external
VCP0 connection to member 1.

232 | Chapter 4: EX Virtual Chassis

Figure 4-15. VC discovery: the result

The LSDB information indicates that member 0 is the current master and member 1 is
a backup master. Similar information is deduced for switch member 1, using the same
combination of CLI commands and LSDB analyses. Based on the number of LSPs gen-
erated by member 1, you can conclude that it is a three-PFE system, for example. This
information allows the complete VC internal topology to be documented in Fig-
ure 4-15.

VC tracing

Tracing the operation of a VC is an excellent way to learn more about its operation and
to troubleshoot problems when things don’t go according to plan. The discovery VC
is updated with the following tracing configuration:

[edit]
regress@EX4200_VC_demo# show virtual-chassis

Configuration, Operation, and Maintenance | 233

 traceoptions {
 file vc_trace;
 flag hello;
 flag lsp;
 flag me;
 flag error;
 flag psn;
 flag csn;
 }

In the trace config, the me flag traces master election. The error flag should call out any
errors, and the hello, lsp, and sequence number (psn/csn) flags result in tracing hello
packet exchanges, LSP flooding, and sequence number exchanges, respectively. Note
that in IS-IS, DIS and non-DIS nodes periodically send CSN and PSN packets (respec-
tively) to perform LSP acknowledgment.

After committing, the vc_trace logfile is monitored as the virtual-chassis process is
restarted, which is a good way to shake VC things up:

regress@EX4200_VC_demo> monitor start vc_trace

regress@EX4200_VC_demo> restart virtual-chassis-control
*** vc_trace ***
Oct 5 14:35:28.207928 TASK_SIGNAL_TERMINATE: first termination signal received
Oct 5 14:35:28.208897
Oct 5 14:35:28.208897 VCCPD_PROTOCOL_ADJDOWN: Lost adjacency to 001f.1234.8842 on
internal-0/24,
. . .

Oct 5 14:35:28.514872 vccpd_provision_cfg_apply: pre_provisioned_cfg 0
. . .

Oct 5 14:35:28.517918 VCCPD_PROTOCOL_ADJUP: New adjacency to 001f.1234.8842 on
internal-0/24
Oct 5 14:35:28.517918
Oct 5 14:35:28.518292
Oct 5 14:35:28.518292 VCCPD_PROTOCOL_ADJUP: New adjacency to 001f.1234.8841 on
internal-2/27
Oct 5 14:35:28.518292
Oct 5 14:35:28.518700
Oct 5 14:35:28.518700 VCCPD_PROTOCOL_ADJUP: New adjacency to 001f.1234.8840 on
internal-2/24
. . .
Oct 5 14:35:28.525734 Sending PTP IIH on vcp-0.32768
Oct 5 14:35:28.525787 packet length 1492
Oct 5 14:35:28.527487 Received PTP IIH, source id 001f.1234.7dc0 on vcp-0.32768
Oct 5 14:35:28.527620 Sending PTP IIH on vcp-0.32768
Oct 5 14:35:28.527663 packet length 1492
Oct 5 14:35:28.528845 Received PTP IIH, source id 001f.1234.7dc0 on vcp-0.32768
Oct 5 14:35:28.529222
. . .

Oct 5 14:35:28.547225 isis_install_lsp: starting me link election
Oct 5 14:35:28.547282 vccpd_run_me_link_election: found 1 members
Oct 5 14:35:28.547304 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0

234 | Chapter 4: EX Virtual Chassis

Oct 5 14:35:28.547376 vccpd_run_me_link_election: me_link_owner is 65535
Oct 5 14:35:28.547399 vccpd_run_me_link_election: my member role 5
. . .

The truncated output shows the detection of a non-provisioned installation, the for-
mation of new adjacencies, and the exchange of VCCP hello packets, which are dis-
played as IIH (which stands for Intermediate System to Intermediate System Hello, by
the way). The capture also shows the beginnings of the chassis mastership election
process. The mastership election process is traced with all other flags removed to reduce
clutter. Recall that at the time the VC process was restarted, FPC0 was acting as the
backup RE:

. . .
Oct 5 14:49:44.261942 vccpd_run_me_link_election: found 1 members
Oct 5 14:49:44.262000 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0
Oct 5 14:49:44.262019 vccpd_run_me_link_election: me_link_owner is 65535
Oct 5 14:49:44.262040 vccpd_run_me_link_election: my member role 5
Oct 5 14:49:44.293543 isis_run_me
Oct 5 14:49:44.293604 isis_run_me: starting exit_vc_mode_startup timer

Oct 5 14:49:44.293636 exit_vc_mode_startup timer running, exit ME
Oct 5 14:49:44.348031 vccpd_run_me_link_election: found 1 members
Oct 5 14:49:44.348089 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0
Oct 5 14:49:44.348109 vccpd_run_me_link_election: me_link_owner is 65535
Oct 5 14:49:44.348129 vccpd_run_me_link_election: my member role 5
Oct 5 14:49:44.348363 vccpd_run_me_link_election: found 1 members
Oct 5 14:49:44.348390 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0
Oct 5 14:49:44.348409 vccpd_run_me_link_election: me_link_owner is 65535
Oct 5 14:49:44.348428 vccpd_run_me_link_election: my member role 5
Oct 5 14:49:44.348660 vccpd_run_me_link_election: found 1 members
Oct 5 14:49:44.348687 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0
Oct 5 14:49:44.348706 vccpd_run_me_link_election: me_link_owner is 65535
Oct 5 14:49:44.348725 vccpd_run_me_link_election: my member role 5
Oct 5 14:49:44.404440 isis_run_me
Oct 5 14:49:44.404499 exit_vc_mode_startup timer running, exit ME
Oct 5 14:50:24.293693 isis_exit_vc_mode_startup: mastership mode to
vc_mode_line_card

At this time, FPC0 has returned to the default LC role, where it waits to determine
whether any master REs are present:

regress@EX4200_VC_demo> show virtual-chassis

Virtual Chassis ID: 3f04.fea3.76b3
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BP0208207200 ex4200-48t 128 Linecard*

The tracing continues:

Oct 5 14:50:24.294832 isis_run_me
Oct 5 14:50:24.294889 001f.1234.7dc0.00 selected as master
Oct 5 14:50:24.295008 001f.1234.8840.00 selected as backup
Oct 5 14:50:24.295034 001f.1234.7dc0.00 over 001f.1234.8840.00 vc_mode_master
1>5

Configuration, Operation, and Maintenance | 235

Oct 5 14:50:24.295058 001f.1234.7dc0.00 over 001f.1234.8840.00 vc_mode_master
1>5
Oct 5 14:50:24.295162 Assignment: role-2, mid-0, devs-3, devid1-0, devid2-1
Oct 5 14:50:24.295193 mastership mode changed from line_card to backup

Oct 5 14:50:24.295291 isis_run_me: starting me link election
Oct 5 14:50:24.295321 vccpd_run_me_link_election: found 2 members
Oct 5 14:50:24.295342 member: id 1, role 1, link 1, me_ifl 0, bme_ifl 0
Oct 5 14:50:24.295362 member: id 0, role 5, link 0, me_ifl 0, bme_ifl 0
Oct 5 14:50:24.295381 vccpd_run_me_link_election: me_link_owner is 1
Oct 5 14:50:24.295401 vccpd_run_me_link_election: my member role 5
Oct 5 14:50:24.396111 isis_run_me
Oct 5 14:50:24.396204 001f.1234.7dc0.00 selected as master
Oct 5 14:50:24.396231 001f.1234.8840.00 selected as backup
. . .

At the end, FPC0 transitions from LC to backup RE role; given that the current master
RE never restarted, its uptime was higher, and therefore it was not preempted. Had
both FPCs restarted, the result would be the same, as the tiebreaker is the lowest MAC
address, which again favors FPC0 in this example.

VC maintenance

Maintaining a VC is much like maintaining a standalone router or switch. As noted
previously, many operational commands have a member context to allow execution on
one or all VC members.

When performing a reboot or shutdown operation, you should factor the potential
effects of mastership transitions in the event of only some VC members being rebooted.
As a general rule, it’s always best to reboot or shut down all members of a VC at the
same time, especially when not using a preprovisioned mode:

lab@Vodkila> request system halt all-members
warning: This command will halt all the members.
If planning to halt only one member use the member option
Halt the system ? [yes,no] (no) yes

Halting fpc0

*** FINAL System shutdown message from lab@Vodkila ***
System going down IMMEDIATELY

*** FINAL System shutdown message from lab@Vodkila ***
System going down IMMEDIATELY

Shutdown NOW!
[pid 677]

You can perform software upgrades or downgrades on selected members by adding the
appropriate member switch to the request system software command. Future releases
may offer automatic software download to members with a mismatched version. In the
current release, the user is responsible for ensuring version compatibility:

236 | Chapter 4: EX Virtual Chassis

regress@EX4200_VC_demo> request system software add jinstall-ex-9.2R1.9-domestic-
signed.tgz member ?
Possible completions:
 <member> Install package on VC Member (0..9)
regress@EX4200_VC_demo> ...install-ex-9.2R1.9-domestic-signed.tgz member 1
Pushing bundle to fpc1
WARNING: A reboot is required to install the software
WARNING: Use the 'request system reboot' command immediately

VC adds, moves, and changes

There are a few scenarios where a VC member switch may be removed from the VC.
In some cases, the switch is taken away, never to return, resulting in a smaller VC. In
other cases, a switch may be removed temporarily—for example, to have repair actions
performed after a hardware failure. In yet other cases, one member switch may be
replaced with a different switch—for example, swapping out a 24-port model with a
48-port version.

In all of these cases, you should understand the default member ID assignment func-
tion, and how CLI commands are used to alter and control member IDs. By default, a
switch member writes its ID into a private area of its configuration, and this value is
retained through removal and reinsertion events. To prevent conflicts, the master RE
retains a list of all assigned values and assigns the next highest available value when a
new switch joins the VC.

Use the request virtual-chassis recycle command when a switch is removed from a
VC to free up a previously assigned member ID, thus making it available for use by
another switch. Use the request virtual-chassis renumber command to change a
member’s current assignment to a new value; an error is returned if the new value is
currently in use.

It’s a best practice to assign member ID 0 to the primary master RE, and then number
all switches sequentially based on their vertical or horizontal placement relative to
member 0. If you assume a three-member VC, you would thus have switch IDs 0, 1,
and 2 assigned.

If switch member 1 is to be removed from the VC for good, you perform these actions,
which are not disruptive to the VC’s overall operation:

1. Power down and remove Switch 1 (the second switch). Adjust the cabling to ac-
count for its loss.

2. Use the request virtual-chassis renumber member-id 2 new-member-id 1 com-
mand to maintain best-practice sequential numbering.

Note that as a result of a member ID change, you will need to update the master’s
interface configuration to reflect the new member ID, which recalls functions such as
the FPC component in a traditional JUNOS interface name. The CLI conveniently
warns the user of this necessity, and even offers sample syntax to make the job easier:

Configuration, Operation, and Maintenance | 237

lab@switch> request virtual-chassis renumber member-id 1 new-member-id 2
To move configuration specific to member ID 1 to member ID 2, please
use the replace command. e.g. replace pattern ge-1/ with ge-2/

Do you want to continue ? [yes,no] (no)no

In typical JUNOS software fashion, you can configure interfaces that
relate to a VC switch member that has not yet been attached. Such a
configuration is simply ignored until the related hardware is present, at
which point the related configuration is activated.

To replace switch member 1 with a new switch that is intended to take over its role in
the VC, perform the following steps:

1. Power down and remove Switch 1 (the second switch).

2. Load the default config on the replacement switch, power it down, and attach it
to the VC.

3. Apply power to the new switch. The new switch receives the next available member
ID, which will be 3 in this example. Use the request virtual-chassis renumber
member-id 3 new-member-id 1 command to reassign the member ID to 1, the value
that is associated with the switch being replaced.

When using preprovisioned mode, you will need to update the config-
uration to reflect the serial number of the replacement switch before it
can join the VC. At this point, the previous commands are used to re-
assign the member ID as desired.

Connecting to non-master members

You can use the request session member <id> command to connect to a non-master
switch member using an internal communications path. This command operates re-
gardless of whether you have configured the no-management-vlan option for that mem-
ber switch. This capability can be useful when you are troubleshooting an issue with a
specific VC member and wish to view its private configuration or view its local opera-
tional status.

Using the no-management-vlan option

In most cases, you will assign a virtual management address that redirects your session
from any management port to the VC’s current master. You can alter this behavior and
assign explicit me0 OoB management addresses to the master and backup REs so that
you can access each simultaneously. Note that configuring the me0 interface disables
the vme0 functionality.

238 | Chapter 4: EX Virtual Chassis

In either case, you may want to access the OoB port of an LC member without having
to connect to the master and then request a session. This capability is also useful during
VC communications failures that may prevent you from connecting through the master
switch. In addition to specifying the no-management-vlan option for the desired member,
you must also access a root shell on the desired member switch so that you can assign
an IP address to the me0 interface using the ifconfig command. Note that in the current
release you cannot use the CLI to assign an me0 address to an LC member in a VC.
Although this procedure also works for a backup RE, it’s not needed because you can
use the CLI on a master or backup master to assign an me0 address.

The process is demonstrated here, but is performed on a backup RE as the demonstra-
tion VC has only two members, and neither is in the LC role:

[edit virtual-chassis]
regress@EX4200_VC_demo# set member 1 no-management-vlan

[edit virtual-chassis]
regress@EX4200_VC_demo# show
member 1 {
 no-management-vlan;
}

[edit virtual-chassis]
regress@EX4200_VC_demo# commit synchronize
fpc0:
configuration check succeeds
fpc1:
commit complete
fpc0:
commit complete

You start by placing the no-management-vlan option into effect for member 1. Note the
use of commit synchronize to push the change to other members, in this case member
1. Next, request a session to member 1. Note that you cannot use the console to perform
this operation because of virtual console redirection, which places you right back at
the master, unless a communications problem prevents the redirection, in which case
you are presented with a local login prompt:

[edit virtual-chassis]
regress@EX4200_VC_demo# run request session member 1
€
--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
regress@EX4200_VC_demo-fpc1-BK> show interfaces terse me0
Interface Admin Link Proto Local Remote
me0 up up
me0.0 up up eth-switch

regress@EX4200_VC_demo-fpc1-BK> show interfaces terse vme0
error: device vme0 not found

Configuration, Operation, and Maintenance | 239

Once you are connected, the CLI confirms that no me0 or vme0 interface address is
currently assigned. To run ifconfig, you must access a root shell:

regress@EX4200_VC_demo-fpc1-BK> start shell

% su
Password:

As root, the ifconfig command is used to assign and then display an IPv4 address to
the me0 device:

root@EX4200_VC_demo-fpc1-BK% ifconfig me0.0 add inet 172.69.16.6 netmask
255.255.255.0
root@EX4200_VC_demo-fpc1-BK% ifconfig me0
me0: encaps: ether; framing: ether
 flags=0x3/0x8000 <PRESENT|RUNNING>
 curr media: i802 0:1f:12:34:7e:3e
me0.0: flags=0x8000 <UP|MULTICAST>
 inet primary mtu 1500 local=172.69.16.6 dest=172.69.16.0/24
bcast=172.69.16.255
 <unknown> primary mtu 0
root@EX4200_VC_demo-fpc1-BK% exit
%exit

The root shell is exited and the CLI at member 1 confirms that the address is in effect:

regress@EX4200_VC_demo-fpc1-BK> show interfaces me0
Physical interface: me0, Enabled, Physical link is Up
 Interface index: 1, SNMP ifIndex: 33
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 100mbps
. . .
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 172.69.16/24, Local: 172.69.16.6, Broadcast: 172.69.16.255
 Protocol eth-switch, MTU: 0
 Flags: Is-Primary

The result of all this is the ability to telnet or SSH directly to VC member 1 using the
assigned 172.16.69.6 address. Once you are connected, the lack of management VLAN
prevents redirection to the current master RE, thereby allowing you to work on the
member switch directly. Generally speaking, this capability is used for specific trou-
bleshooting or fault isolation procedures. For example, if a new JUNOS software bun-
dle cannot be pushed from the master RE to some switch member using the internal
communications paths, perhaps due to a software version issue, you may need to FTP
a matching software bundle directly to a switch member. Without the no-management-
vlan option, you can FTP only to the active or backup REs, and this is possible only
when you are not using a virtual management interface. When you are using a virtual
management interface, you can FTP only to the active RE.

Configuration, Operation, and Maintenance Summary
The EX4200 VC does not require any explicit configuration to just work, out of the
box, so to speak. The use of uplink ports as a VC extension does require explicit

240 | Chapter 4: EX Virtual Chassis

configuration, however. There are two main options when deploying a VC: the non-
provisioned and preprovisioned modes. The former, which can use a factory default,
can also include a member ID to priority mapping, which, given the sticky nature of
member IDs, helps to promote stability of the original VC configuration through
reboots and power-down events.

The current best practice is to use preprovisioned mode, which explicitly maps member
serial numbers to a desired VC role. This mode provides maximum determinism, and
also security, in that a switch must be preconfigured as a member before it is allowed
to actively join the VC.

The operation and maintenance of a VC is much like that of any standalone EX, which
is the beauty of the design. Various operational mode commands exist to specifically
monitor and control VC operation, and many support a member context to allow global
versus targeted actions.

The next section combines the information we’ve covered to this point as part of a VC
deployment case study involving the book’s topology.

Virtual Chassis Case Study
This section combines the information we’ve covered thus far in the form of a practical
VC deployment case study based on the book’s topology. Here are the design
requirements:

1. Rename Switch 3, Vodka, to Vodkila, to reflect the impending merger of the two
previously standalone switch names.

There is an old saying that mixing beer and whiskey is risky; this
is sage advice and we can only hope that no ill effects result from
the vodka-tequila combination that is soon to be born!

2. Assign 172.16.69.34/24 to the OoB interface; ensure that incoming Telnet and
console connections to any switch members are redirected to the current VC
master.

3. Switch 3 and Switch 4 share a closet; the third member is located in a remote closet.

4. Ensure that Switch 3 and Switch 4 can function as the master RE in a non-revertive
manner.

5. Ensure that the third VC member functions as an LC whenever either or both
Switch 3 and Switch 4 are operational.

6. Assign Switch 3 and Switch 4, and the new VC member IDs 0, 1, and 2, respectively.

7. Ensure that no additional switches can join the VC without management
intervention.

Virtual Chassis Case Study | 241

8. The design must have no single point of VC failure, and the loss of any VC trunk
should not prevent ongoing communications.

You may need the following information to complete your task:

1. All three VC member switches have a 4 × 1 GE uplink module installed.

2. The EX4200 serial numbers are:

• Switch 3 = BM0208269780

• Switch 4 = BM0208269767

• Third VC member = BM0208269780

Figure 4-16 shows the before and after topologies.

In this example, the VC deployment occurs in two phases. Phase 1 combines the two
existing switches, Vodka and Tequila, into the mythical Vodkila, and phase 2 brings in
a third VC member that is housed in a remote closet. Note how the interface names
change on switch member 1 to reflect its shift from a standalone VC with member ID
0 to member ID 1. Except for LLDP updates that report the connected peer’s interface
name change, there is minimal disturbance to the surrounding switches. The same level
of connectivity is maintained, and for the most part things just get simpler, given that
there is one less bridge/router in the network to generate protocol updates and to con-
tend for the role of designated bridge.

Combining the two switches may result in changes to the spanning tree forwarding
topology, especially if either Switch 3 or Switch 4 is the current designated bridge.
Regardless, the nature of Layer 2 forwarding and its propensity to form loops means
there will be fewer forwarding or root bridge ports in the “after” topology. For example,
assuming that Whiskey is the current root bridge, before the merge Switch 3 and Switch
4 have a root port that can forward toward the root. After the merge the combined VC
has a single root port; assuming default parameters, this will be either the ge-0/0/3 or
the ge-0/0/4 interface. Despite the potential for some reduction in the aggregate num-
ber of forwarding ports, the VC provides many administrative gains, and if desired the
physical topology could be altered to provide added capacity, likely in the form of an
aggregated bundle. In fact, with the addition of AE bundles, more capacity can be easily
attached.

Note that in Layer 3 mode the redundant links can still be used and the ability to load-
balance means there is little net effect to forwarding capacity. This is yet another reason
router geeks are prone to saying, “Bridge when you must and route when you can.”

242 | Chapter 4: EX Virtual Chassis

Figure 4-16. The results of VC deployment

Virtual Chassis Case Study | 243

Prepare for the Merge
Before rolling out the VC bandwagon, there are a few things you should do to ensure
a smooth migration:

1. Back up both standalone switch configurations to a remote location.

2. Return one of the switches to a factory-default configuration, and power off.

3. Attach VCP cables.

The first step is just a good practice and is pretty much common sense. After the merge,
you will need to modify the interface assignments in one of the switches to match its
new member ID. The master switch overwrites the public configuration portion of all
VC members, resulting in loss of the original configuration. Lastly, the master could
(in some future release) automatically push a new JUNOS install image into any mem-
bers with a mismatched software version. The install process may only attempt to save
SSH keys from the original configuration, so be sure to move anything you plan to keep
to safe storage off the EX device itself.

In this example, the OoB is used to quickly copy a saved configuration from Vodka to
an FTP server. The same process is performed at Tequila, but is not shown:

[edit]
lab@Vodka# save Vodka_pre_vc_config
Wrote 172 lines of configuration to 'Vodka_pre_vc_config'

[edit]
lab@Vodka# run file copy Vodka_pre_vc_config
ftp://instructor:training1@ftp_server/juniper/vodka_l3_vc
ftp://instructor:training1@ftp_server/juniper/100% of 3346 B 917 kBps

In case you’re curious, a static host mapping is configured to allow use
of the hostname:

[edit]
lab@Vodka# show system static-host-mapping
ftp_server inet 172.16.69.254;

Next, you load and commit a factory default on Tequila. Given that root is the only
user in the new config, you log out as user lab, so you can return as root to perform a
graceful shutdown (the non-existent lab user is no longer permitted to perform this
operation):

lab@Tequila> configure
Entering configuration mode

[edit]
lab@Tequila# load factory-default
warning: activating factory configuration

[edit]

244 | Chapter 4: EX Virtual Chassis

lab@Tequila# set system root-authentication plain-text-password
New password:
Retype new password:

[edit]
lab@Tequila# commit and-quit
commit complete
Exiting configuration mode

lab@Tequila> quit

login:
Amnesiac (ttyu0)
root@%
root@% root
root@% OS 9.0R2.10 built 2008-03-06 10:31:45 UTC
root@% cli
root> request system halt
Halt the system ? [yes,no] (no) yes

*** FINAL System shutdown message from root@ ***
System going down IMMEDIATELY

Shutdown NOW!
[pid 1198]
. . .

Though not easy to show in this book, the final preparation step is the attachment of
the VCP cables between Switch 3 and Switch 4. Given the redundancy aspects of the
design, and their close proximity, you opt for a VCP ring. In this case, there is no merit
to any particular VCP cabling scheme, as distance is not an issue and all VCP ports
operate the same. As a result, you end up attaching the VCP 0 port of both switches
with one VCP cable, and their VCP 1 ports with the other.

Preparation is complete; you are now ready to actually deploy the VC!

Configure VC Parameters
Now the fun can officially start. Your first configuration choice is to perform a non-
provisioned versus a preprovisioned installation. Thinking back, the choice is clear
given the requirement that no switch be allowed to join the VC without management
action. The non-provisioned mode does not offer you the ability to list allowed mem-
bers by serial number, and will therefore allow any switch with compatible software
into the VC. So, preprovisioned it is.

The preprovisioned mode allows you to explicitly bind each member’s serial number
with a VC member ID and VC role, which is just the ticket here. This helps to ensure
that you also meet the stated member ID requirements, which will no longer be based
on VC attachment sequence. This mode also handles priority based on role, taking care
of the requirement that member 3 must be an LC when either member 1 or member 2
is acting as the master RE.

Virtual Chassis Case Study | 245

The first step is to assign the new hostname:

lab@Vodka> configure
Entering configuration mode

[edit]
lab@Vodka# set system host-name Vodkila

The next configuration task removes the standalone me0 OoB management interface
configuration to replace it with a virtual one that is shared among REs. You configure
the vme interface as though it were any other interface, but currently there is no VLAN
encapsulation and you must use unit 0:

[edit interfaces]
lab@Vodka# show me0
unit 0 {
 family inet {
 address 172.16.69.3/24;
 }
}

[edit interfaces]
lab@Vodka# delete me0

With the physical me0 interface out of the way, you are clear to add the vme configuration.
Note that committing with both prevents the virtual interface from being created:

[edit interfaces]
lab@Vodka# set vme unit 0 family inet address 172.16.69.34/24

[edit interfaces]
lab@Vodka# show vme
unit 0 {
 family inet {
 address 172.16.69.34/24;
 }
}

Rather than deleting the me0 and adding a new vme, you might consider
using the CLI’s rename function. After renaming me0 to vme you will likely
have to reassign the IP address, an operation that can also be performed
using rename.

Next, position yourself at the [edit virtual-chassis] hierarchy to begin configuration
of the VC-specific parameters:

[edit interfaces]
lab@Vodka# top edit virtual-chassis

[edit virtual-chassis]
lab@Vodka# set preprovisioned

246 | Chapter 4: EX Virtual Chassis

The preprovisioned statement does what it says, and once in this mode you must list
each member that is allowed to join the VC by its serial number, which is then mapped
to an ID and VC role. You start with the current switch, Vodka, because it’s supposed
to be assigned ID 0, and because it’s the only VC member currently powered on. As
previously explained, this switch is already the master of its one-VC domain using ID
0. Because you will assign this switch an RE role, and because it’s been powered up
first, expect this switch to remain as master once construction of the new Vodkila is
complete.

The definition for switch member 0 is added:

[edit virtual-chassis]
lab@Vodka# set member 0 role routing-engine

[edit virtual-chassis]
lab@Vodka# set member 0 serial-number BM0208269834

[edit virtual-chassis]
lab@Vodka# show
preprovisioned;
member 0 {
 role routing-engine;
 serial-number BM0208269834;
}

That was pretty straightforward, so you move on to complete the definition for member
ID 1. The updated configuration is displayed:

[edit virtual-chassis]
lab@Vodka# set member 1 role routing-engine serial-number BM0208269766

[edit virtual-chassis]
lab@Vodka# show
preprovisioned;
member 0 {
 role routing-engine;
 serial-number BM0208269834;
}
member 1 {
 role routing-engine;
 serial-number BM0208269766;
}

Happy with your work, you decide to commit the changes. Before doing so, add the
commit synchronize option so that all commit events are treated as though the
synchronize switch was included. Recall that in any dual-RE configuration it’s recom-
mended that you always synchronize the configuration at every commit, for obvious
reasons. As a rule, if you do not have a specific need to maintain distinctly different
configs on the master and backup REs, don’t. Note that NSR/Non-Stop Bridging sup-
port mandates this option, but general GRES and/or protocol GR does not:

[edit virtual-chassis]
lab@Vodka# top

Virtual Chassis Case Study | 247

[edit]
lab@Vodka# set system commit synchronize

[edit]
lab@Vodka# commit and-quit
error: Could not connect to fpc-1 : Can't assign requested address
warning: Cannot connect to other RE, ignoring it
commit complete

The commit warning is expected; given that only member 0 is powered up, the attempt
to synchronize the configuration to non-existent VC members is in vain, and fails ac-
cordingly. Before powering up Switch 4, you quickly access VC status at member 0:

lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master*

The VC status is as expected. One switch is up; it’s the current master RE, and it has
an ID of 0:

lab@Vodkila> show virtual-chassis vc-port
fpc0:

Interface Type Status
or
PIC / Port
vcp-0 Dedicated Down
vcp-1 Dedicated Down

There is nothing to be alarmed about here; VCP ports can be up only when attached
to another switch that has power applied:

lab@Vodkila> show virtual-chassis protocol adjacency
fpc0:

Interface System State Hold (secs)
internal-0/27 001f.123d.b4c1 Up 65535
internal-1/24 001f.123d.b4c0 Up 65535

The VCCP adjacency status confirms that the switch has two PFEs and that both are
internally adjacent. Again, all is as expected. Note that the presence of only two PFEs
indicates this must be a 24-port model, which in fact is the case:

lab@Vodkila> show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis BM0208269834 EX4200-24T

248 | Chapter 4: EX Virtual Chassis

Confirm initial VC operation

With the single-node VC doing all it can, the time has come to power up the old
Tequila. Before flipping its power switch, attach to its console to monitor its boot
progress and look for any error messages:

. . .
FLASH: 8 MB
USB: scanning bus for devices... 2 USB Device(s) found
 scanning bus for storage devices... 1 Storage Device(s) found
. . .
starting local daemons:.
Sat Jan 1 01:41:09 UTC 2005

Amnesiac (ttyu0)

Nothing noteworthy shows in the boot-up messages, except that things do not end well
given the display of an Amnesiac prompt. The expectation was a virtual console redi-
rection to the current master RE, which clearly did not happen. This does not bode
well for the nascent VC. You log in to the now factory-default configuration as root:

root@% root
root@% OS 9.0R2.10 built 2008-03-06 10:31:45 UTC
root@% cli
root> show virtual-chassis
 ^
syntax error, expecting <command>.

After logging in as root, you find it odd that the show virtual-chassis command does
not complete as it did on Switch 3. You decide to create a lab/super-user account so
that you can log in via internal communications paths via Switch 3/Vodkila; root logins
are not currently permitted on the intra-VC communications path:

root> configure
Entering configuration mode

root# ...user lab class super-user authentication plain-text-password
New password:
Retype new password:

[edit]
root# commit
commit complete

Back on member 0/Switch 3, you decide to do some troubleshooting:

lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master* 1 vcp-0
 1 vcp-1

Virtual Chassis Case Study | 249

1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Linecard 0 vcp-0
 0 vcp-1

The output of the show virtual-chassis command works again, and interestingly it
shows two members, each connected by two VC ports, which is pretty much as ex-
pected. The only detail that seems off is that member 1 is shown as an LC, when the
preprovisioned configuration stated it should function in an RE role; the expected sta-
tus for member 1 is therefore backup. Something is not right. You next display VC
adjacency status:

lab@Vodkila> show virtual-chassis protocol adjacency
fpc0:

Interface System State Hold (secs)
internal-0/27 001f.123d.b4c1 Up 65535
internal-1/24 001f.123d.b4c0 Up 65535
vcp-0 001f.123d.d281 Up 58
vcp-1 001f.123d.d280 Up 57

fpc1:

Interface System State Hold (secs)
internal-0/27 001f.123d.d281 Up 65535
internal-1/24 001f.123d.d280 Up 65535
vcp-0.32768 001f.123d.b4c1 Up 58
vcp-1.32768 001f.123d.b4c0 Up 59

The output confirms that all expected adjacencies for two EX4200-24s connected via
two VCP ports are present. Each switch has two internal and two external adjacencies,
which is expected given this configuration and cabling scheme. VCCP LSP flooding
also seems to be working, given that the expected number of LSPs (one from each PFE
in the VC) is present in both members:

lab@Vodkila> show virtual-chassis protocol database
fpc0:

LSP ID Sequence Checksum Lifetime
001f.123d.b4c0.00-00 0x2cd 0xea48 117
001f.123d.b4c1.00-00 0x2c9 0xef34 117
001f.123d.d280.00-00 0x1e1 0xe412 115
001f.123d.d281.00-00 0x1e3 0xce41 116
 4 LSPs

fpc1:

LSP ID Sequence Checksum Lifetime
001f.123d.b4c0.00-00 0x2cd 0xea48 115
001f.123d.b4c1.00-00 0x2c9 0xef34 115
001f.123d.d280.00-00 0x1e1 0xe412 117
001f.123d.d281.00-00 0x1e3 0xce41 118
 4 LSPs

The first clue as to what is wrong comes from a detailed analysis of the LSP generated
by the DIS/pseudonode at member 0/Switch 3. The output is truncated to save space:

250 | Chapter 4: EX Virtual Chassis

lab@Vodkila> show virtual-chassis protocol database extensive member 0
fpc0:
--
. . .

 Packet: LSP ID: 001f.123d.b4c0.00-00, Length: 584 bytes, Lifetime : 118 secs
 Checksum: 0x84cc, Sequence: 0x2d6,
 Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, SW version: 9.2

 TLVs:
 Node Info: Member ID: 0, VC ID: 001f.123d.b4c0, Flags: 3, Priority: 129
 System ID: 001f.123d.b4c0, Device ID: 0
 System ID: 001f.123d.b4c1, Device ID: 1
 Neighbor Info: 001f.123d.b4c1.00, Interface: internal-0/27, Metric: 10
 Neighbor Info: 001f.123d.d281.00, Interface: vcp-0, Metric: 10
 Master Info: System ID: 001f.123d.b4c0
 Backup Info: System ID: 0000.0000.0000
 Member Info: System ID: 001f.123d.d280, Member ID: 1 Member role: Not Part of
Virtual Chassis
 System ID: 001f.123d.d280, Device ID: 3
 System ID: 001f.123d.d281, Device ID: 4
 Member Info: System ID: 001f.123d.b4c0, Member ID: 0 Member role: Master
 System ID: 001f.123d.b4c0, Device ID: 0
 System ID: 001f.123d.b4c1, Device ID: 1
 Unknown TLV, Type: 25, Length: 40
 Unknown TLV, Type: 24, Length: 1
 Unknown TLV, Type: 28, Length: 112
 No queued transmissions
. . .

Given the highlighted output, it appears the VC’s master feels that member 1 is not a
functional part of the VC. This condition should help drive home how the operation of
VCCP is independent of the results; this is to say that VCCP appears to be working fine
here, but the result is not the expected two-member VC.

You decide to monitor the messages log to see whether anything is up, and the following
messages are found to be repeating:

lab@Vodkila> monitor start messages

lab@Vodkila>
*** messages ***
Jan 1 02:13:48 Vodkila fpc1 (mrvl_cos_egr_buf_init) Egress buffer limits on 0
error 0
Jan 1 02:13:48 Vodkila /kernel: invalid fpc 1, closing connection
Jan 1 02:13:48 Vodkila /kernel: pfe_listener_disconnect: conn dropped: listener
idx=3, tnpaddr=0x11, reason: none
Jan 1 02:13:48 Vodkila fpc1 (mrvl_cos_egr_buf_init) Egress buffer limits on 1
error 0
Jan 1 02:13:48 Vodkila fpc1 PFEMAN: Master socket closed
Jan 1 02:13:48 Vodkila fpc1 PFEMAN disconnected; PFEMAN socket closed abruptly
Jan 1 02:13:48 Vodkila fpc1 pfeman_get_server_addr: selecting master RE
Jan 1 02:13:48 Vodkila fpc1 Routing engine PFEMAN reconnection succeeded after 1

Virtual Chassis Case Study | 251

tries
Jan 1 02:13:48 Vodkila fpc1 PFEMAN master RE reconnection made

Clearly something is not right with member 1. You add tracing to the VC, and see what
it has to say:

[edit]
lab@Vodkila# show virtual-chassis
preprovisioned;
traceoptions {
 file vc_trace;
 flag error;
}
member 0 {
 role routing-engine;
 serial-number BM0208269834;
}
member 1 {
 role routing-engine;
 serial-number BM0208269767;
}

[edit]
lab@Vodkila# run monitor start vc_trace

[edit]
lab@Vodkila#
*** vc_trace ***
Jan 1 02:38:56.329244 WARNING: LSP from 001f.123d.d281 on interface vcp-0 with
bad packet version 9.0
Jan 1 02:38:56.329451 WARNING: LSP from 001f.123d.d280 on interface vcp-1 with
bad packet version 9.0
. . .

The VC trace spews out errors that serve to make the issue somewhat clear. The bad
version messages jog your memory; what was that about a VC needing compatible
software versions again? You internally connect to member 1 and have a real “d’oh!”
moment as its version is displayed:

ab@Vodkila> request session member 1
€
--- JUNOS 9.0R2.10 built 2008-03-06 10:31:45 UTC
lab>

Breaking the connection and back on the master RE, you are relieved to note a com-
patible Jinstall package on its local storage:

lab> exit
rlogin: connection closed

lab@Vodkila> file list

/var/home/lab/:
.ssh/
Vodka_pre_vc_config
jinstall-ex-9.2R1.9-domestic-signed.tgz

252 | Chapter 4: EX Virtual Chassis

l2_base
l2_base_vc
. . .

And now the beauty of VCCP strikes you. It provides an opaque transport of VC-related
information, and therefore can operate even when VC parameters do not match. Al-
though a VC may not form, the continued operation of the VCCP protocols permits
ongoing diagnostics and facilitates maintenance activities, such as use of internal links
to allow login into member switches or, luckily for you, the pushing and subsequent
installation of software upgrades:

lab@Vodkila> request system software add jinstall-ex-9.2R1.9-domestic-signed.tgz
member 1 reboot
Pushing bundle to fpc1
WARNING: A reboot is required to install the software
WARNING: Use the 'request system reboot' command immediately
Rebooting ...
shutdown: [pid 720]
Shutdown NOW!

lab@Vodkila>

The software add command makes use of the member switch, and correctly identifies
member 1, preventing the software from being installed on member 0, which is already
on that version and would serve only to force a needless reboot. Meanwhile, you switch
attention back to Switch 4’s console port to again monitor its boot progress:

. . .
Verified SHA1 checksum of jswitch-ex-9.2R1.9.tgz
Verified SHA1 checksum of jweb-ex-9.2R1.9.tgz
Running requirements check first for jbundle-ex-9.2R1.9-domestic...
Running pre-install for jbundle-ex-9.2R1.9-domestic...
Installing jbundle-ex-9.2R1.9-domestic in /tmp/pa2350.21/jbundle-ex-9.2R1.9-
domestic.x2350...
Running post-install for jbundle-ex-9.2R1.9-domestic...
Adding jkernel-ex...
. . .

Updated JUNOS versions may automate the pushing of compatible
software to new switch members. In the 9.2 release, this process must
be performed manually.

So far, so good; all indications are that the matched software version is being installed.
It makes watching water boil seem...enticing, doesn’t it? Sometime later when the up-
grade is complete, the initial console login is again Amnesiac, causing a pang of fear to
run up your spine:

Tue Aug 5 08:59:53 UTC 2008

Amnesiac (ttyu0)

Virtual Chassis Case Study | 253

Your concerns melt away in true “Calgon bath” fashion, when you see that the console
login is now correctly redirected to the VC’s master. Eureka! A Vodkila is born and you
can’t help declaring, “It’s alive!”

login: lab

Logging to master
€ƒPassword:

--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@Vodkila>

With things apparently working, the VC status is displayed to confirm that member
1 is now correctly listed as a backup RE:

lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master* 1 vcp-0
 1 vcp-1
1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Backup 0 vcp-0
 0 vcp-1

The assignment of the same priority (based on the VC member role in preprovisioned
mode) results in a non-revertive mastership behavior, which is a required aspect of the
VC deployment. Should the current master fail and then come back online, it will not
overthrow the new master, given that both have the same priority. The show chassis
mac-addresses command provides final proof that you now have a functional two-
member VC:

lab@Vodkila> show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 00:1f:12:3d:b4:c0
 Public count 64
 FPC 1 MAC address information:
 Public base address 00:1f:12:3d:d2:80
 Public count 64

Recall that in the event of an RE switch, the new master begins using its own MAC
address after the configured age-out time. During the age-out it continues to use the
old master’s MAC address.

To complete the VC migration, the original interface assignments in Tequila’s original
(and luckily enough, saved) configuration are modified to replace slot/FPC number 0
with 1, resulting in the list shown. While you’re at it, you decide to add some descrip-
tions to help keep things straight in the new world order that is Vodkila:

ge-1/0/0 {
 description "To Rum also";
 unit 0 {
 family inet {

254 | Chapter 4: EX Virtual Chassis

 address 10.4.5.4/24;
 }
 }
}
ge-1/0/1 {
 description "To Brandy";
 unit 0 {
 family inet {
 address 10.4.6.4/24;
 }
 }
}
ge-1/0/2 {
 description "To Bourbon";
 unit 0 {
 family inet {
 address 10.4.7.4/24;
 }
 }
}
ge-1/0/3 {
 description "To Gin";
 unit 0 {
 family inet {
 address 10.2.4.4/24;
 }
 }
}
ge-1/0/8 {
 description "To Whiskey too";
 unit 0 {
 family inet {
 address 10.1.4.4/24;
 }
 }
}

A load merge terminal relative is entered at the [edit interfaces] hierarchy to paste
the modified interface name into the configuration, and the change is committed:

[edit interfaces]
lab@Vodkila# load merge terminal relative
[Type ^D at a new line to end input]
 ge-1/0/0 {
 description "To Rum also";
 unit 0 {
 family inet {
 address 10.4.5.4/24;
 }
 }
 }
 ge-1/0/1 {
 description "To Brandy";
 unit 0 {
 family inet {
 address 10.4.6.4/24;

Virtual Chassis Case Study | 255

 }
 }
 }
 ge-1/0/2 {
 description "To Bourbon";
 unit 0 {
 family inet {
 address 10.4.7.4/24;
 }
 }
 }
 ge-1/0/3 {
 description "To Gin";
 unit 0 {
 family inet {
 address 10.2.4.4/24;
 }
 }
 }
 ge-1/0/8 {
 description "To Whiskey too";
 unit 0 {
 family inet {
 address 10.1.4.4/24;
 }
 }
 }
load complete

[edit interfaces]
lab@Vodkila#

[edit interfaces]
lab@Vodkila# commit and-quit
fpc0:
configuration check succeeds
fpc1:
commit complete
fpc0:
commit complete
Exiting configuration mode

lab@Vodkila>

Note how the commit synchronize setting results in the configuration being mirrored
to both REs. You will be happy you did this should the mastership later change. Not
being one to leave well enough alone, you decide to test a mastership change now using
a request chassis routing-engine command:

lab@Vodkila> request chassis routing-engine master release no-confirm
lab@Vodkila>
Vodkila (ttyu0)

The virtual management session is broken during the mastership change. Upon recon-
nection, you are again attached to the newly active master:

256 | Chapter 4: EX Virtual Chassis

login: lab
Password:

--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@Vodkila>

lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Backup 1 vcp-0
 1 vcp-1
1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Master* 0 vcp-0
 0 vcp-1

Given the change in mastership that was just triggered, it is no surprise to see that
member 1 is now acting as the VC’s master RE while member 0 stands by waiting to
return to its former glory. Having confirmed proper mastership switchover (GRES) and
the desired non-revertive behavior, you return to the original member roles, but using
a slightly different approach to keep it real, yo:

lab@Vodkila> request session member 0
€
--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@Vodkila-fpc0-BK> request chassis routing-engine master acquire no-confirm

lab@Vodkila-fpc0-BK>
Vodkila-fpc1-BK (ttyu0)

login: lab

Logging to master
€Password:

--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master* 1 vcp-0
 1 vcp-1
1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Backup 0 vcp-0

The highlights call out the redirection of the console port on Switch 4 to the current
VC master, which is always called Vodkila. The current master is again member 0. In
the next section the two-member VC is expanded to pick up a remote member.

Virtual Chassis Case Study | 257

Newer versions of JUNOS helps to disambiguate which member is the
active RE by adding the member ID to the hostname prompt.

Expand the VC with VCE Links
In this section, you will complete the VC deployment by adding a third member switch,
located some distance away from the current VC members. Given the distance needed,
you will need to use VCE ports, which involves redefining one or more uplink module
ports to operate in VCCP mode.

Figure 4-17 shows the VCE design specifics needed to meet the stated redundancy
requirements.

Figure 4-17. Expanding the VC with member 3

The key point is the use of two VCE ports at member 3, with each port attached to a
different VC member, thereby meeting the stated redundancy objectives given that this
approach ensures no single point of failure for the VC, and that the VC can continue
to communicate with the loss of any one VC trunk.

You can define as many VCEs as you have uplink ports, but note that VCCP routing
will use only one such link for any given destination, based on the results of its shortest-
path calculation. VCCP factors link speed so that the high-speed VCP backplane ports
are generally preferred over any VCE link when an all-VCP path exists.

Prepare the new switch

As before, you should return the new switch to a factory default, after archiving any
configuration it may have. In this case, you also have the foresight to ensure that it’s
already running a matched software version.

You can configure the new switch’s uplinks now, as long as you do not attach its uplink
cables to the other VC members before their uplinks are set to VCCP mode. Failing to

258 | Chapter 4: EX Virtual Chassis

do this may prevent proper VCCP auto-sense, which may force a restart virtual-
chassis-control to get things working properly.

Configure the VCE ports

In our lab, the cables are already attached, and the lab is too far away to warrant a trip
just for this. To help ensure that things work to plan, the approach taken is to configure
the VC’s VCE ports first. In effect, this places them in auto-discovery mode. The new
switch does not have any uplink configuration, so currently only light traffic is sent
over its uplink ports, which should avoid any potential confusion to the VCCP auto-
sense function. When ready, you plan to activate the VCE ports on the new switch and
things should work.

You start at the master RE, where you configure member 0’s VCE link to Switch 3. Note
that given that this is member 0, you are configuring PIC 0/1, which is the uplink
module:

lab@Vodkila> request virtual-chassis vc-port set ?
Possible completions:
 interface Member's virtual chassis interface
 pic-slot Member's PIC slot
lab@Vodkila> request virtual-chassis vc-port set pic-slot 1 port 0

The pic-slot argument correctly identifies the uplink module on the local switch, and
sets the first port to VCE mode. The change is confirmed for member 0:

lab@Vodkila> show virtual-chassis vc-port member 0
fpc0:

Interface Type Status
or
PIC / Port
vcp-0 Dedicated Up
vcp-1 Dedicated Up
1/0 Configured Up

The new VCE is correctly displayed and is in the Up state given that it’s cabled to the
new switch member and has light. This leaves the three remaining 1 GE ports available
for normal uplink usage at member 0. The same command is used to create a VCE link
at member 1. In this case, the member argument is used to push the change to the correct
VC member:

lab@Vodkila> request virtual-chassis vc-port set pic-slot member 1 1 port 0
fpc1:

lab@Vodkila>

And the results are confirmed as before:

lab@Vodkila> show virtual-chassis vc-port member 1
fpc1:

Virtual Chassis Case Study | 259

Interface Type Status
or
PIC / Port
vcp-0 Dedicated Up
vcp-1 Dedicated Up
1/0 Configured Up

As expected, no adjacencies have been formed over either VCE at this point:

lab@Vodkila> show virtual-chassis protocol adjacency member 0
fpc0:

Interface System State Hold (secs)
internal-0/27 001f.123d.b4c1 Up 65535
internal-1/24 001f.123d.b4c0 Up 65535
vcp-0 001f.123d.d281 Up 58
vcp-1 001f.123d.d280 Up 59
vcp-255/1/0 001f.123d.d280 Down 11

With the VC end ready to go, it’s time to power up the new switch and configure its
uplinks for VCE operation. Note that until it’s attached, the switch has member ID 0,
which you must keep in mind when you configure its VCE ports. Once it becomes part
of the VC it will receive its new member ID and will do the right thing to update its
private configuration:

root> show virtual-chassis

Virtual Chassis ID: 001f.123d.e6c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269780 ex4200-24t 128 Master*

Member ID for next new member: 1 (FPC 1)

Both VCE ports are activated. The 1/0 port goes to member 0 and the 1/1 port goes to
member 1:

root> request virtual-chassis vc-port set pic-slot 1 port 0

root> request virtual-chassis vc-port set pic-slot 1 port 1

After a moment or two, the results are confirmed. You begin by logging out, at which
time you note that the prompt changes, which indicates proper VC operation and is a
good omen:

-fpc0-LC (ttyu0)

. . .
root@-fpc0-LC% .9 built 2008-08-05 07:25:22 UTC
root@-fpc0-LC% cli

root@-fpc0-LC> show virtual-chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269780 ex4200-24t 128 Linecard*

260 | Chapter 4: EX Virtual Chassis

But the show virtual-chassis display confirms that something is again wrong. The new
switch member has the wrong ID, and fails to list the rest of the VC members that are
known to exist. Back at the master we get some additional hints as to the nature of the
problem:

lab@Vodkila> show virtual-chassis

Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master* 1 vcp-0
 1 vcp-1
1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Backup 0 vcp-0
 0 vcp-255/1/0
 0 vcp-1
- Unprvsnd BM0208269780 ex4200-24t

Yep, the display makes the problem clear. We are in a preprovisioned mode but have
failed to update the master configuration with the new member’s serial number. The
configuration mistake is rectified:

lab@Vodkila> configure
Entering configuration mode

[edit]
lab@Vodkila# set virtual-chassis member 2 role line-card serial-number BM0208269780

[edit]
lab@Vodkila# commit and-quit
fpc0:
configuration check succeeds
fpc1:
commit complete
fpc0:
commit complete
Exiting configuration mode

And the VC status is again displayed:

lab@Vodkila> show virtual-chassis
Preprovisioned Virtual Chassis
Virtual Chassis ID: 001f.123d.b4c0
 Mastership Neighbor List
Member ID Status Serial No Model priority Role ID Interface
0 (FPC 0) Prsnt BM0208269834 ex4200-24t 129 Master* 1 vcp-0
 2 vcp-255/1/0
 1 vcp-1
1 (FPC 1) Prsnt BM0208269767 ex4200-24t 129 Backup 0 vcp-0
 2 vcp-255/1/0
 0 vcp-1
2 (FPC 2) Prsnt BM0208269780 ex4200-24t 0 Linecard 0 vcp-255/1/0
 1 vcp-255/1/1

Virtual Chassis Case Study | 261

The results are as expected, and they confirm that a three-member VC is now opera-
tional. The neighbor ID list indicates that some neighbors are adjacent over a VCE, as
indicated by the vcp-255/1/0 designation. Proper internal routing is confirmed by dis-
playing the VC’s active topology:

lab@Vodkila> show virtual-chassis active-topology
 Destination ID Next-hop

 1 1(vcp-0) 1(vcp-1)

 2 (vcp-255/1/0) 1(vcp-1)

The display confirms that member 0 plans to reach member 1, which is collocated using
the VCP cables. Its first choice is to use VCP Port 0, and it can fall back to Port 1 if
needed. To reach the remote chassis, it prefers the direct VCE link vcp-255/1/0, but in
the event of that next hop failing it is prepared to fall back to its vcp-1 link, which takes
it through member 1 via the VCP connection, and then from member 1 to member 2
over the remaining VCE link.

A quick look at the VC RT for Destination 3 at member 0 confirms that VCE links have
a higher cost, due to their reduced bandwidth:

lab@Vodkila> show virtual-chassis protocol route 2 member 0
fpc0:

Dev 001f.123d.b4c0 ucast routing table Current version: 79

System ID Version Metric Interface Via
001f.123d.b4c1 79 10 internal-0/27 001f.123d.b4c1
001f.123d.d280 79 20 vcp-0 001f.123d.d281
 internal-0/27 001f.123d.b4c1
001f.123d.d281 79 10 vcp-0 001f.123d.d281
001f.123d.e6c0 79 63 vcp-255/1/0 001f.123d.e6c0
001f.123d.e6c1 79 73 vcp-255/1/0 001f.123d.e6c0

The display shows that internal and VCP links have a cost of 10. Thus, the route from
PFE 0 in member 0 to PFE d280, which is in member 1, has a path cost of 20, given the
use of two such links. The lower-speed 1 GE VCE is assigned a cost of 63 by the auto-
matic scaling algorithm. As such, for member 0 to reach PFE 1 (e6c1) in member 2, the
path cost is 73, reflecting the need to transit one VCE and one internal link.

These results confirm the operation of the new VC and complete the VC deployment
case study.

Since you were the one to bring it up, who better to pull it all down? Note the use of
the all-members switch to force the graceful shutdown of the entire VC:

lab@Vodkila> request system halt all-members
warning: This command will halt all the members.
If planning to halt only one member use the member option
Halt the system ? [yes,no] (no) yes

262 | Chapter 4: EX Virtual Chassis

Halting fpc1

Halting fpc2
Shutdown NOW!
[pid 2413]

*** FINAL System shutdown message from lab@Vodkila ***
System going down IMMEDIATELY

Case Study Summary
The VC deployment case study demonstrated the simplicity and veritable plug-and-
play nature of the EX4200 VC. Along with VC configuration, the commands and pro-
cedures used to verify a VC’s operational status and maintenance procedures were also
demonstrated.

Conclusion
The EX4200 VC is a powerful form of abstraction that permits you to start small and
grow into a large-scale switching platform that offers the ease of use and management
associated with a single entity.

The Juniper Networks VC is truly simple to deploy and maintain, given the CLI’s sup-
port of a member context switch and the ability to connect to member switches over
internal communications paths, even when there is a problem that may prevent that
member from actively joining the VC. You have the choice of just plugging things
together with no explicit VC configuration, or you can exercise a high degree of deter-
ministic control over most aspects of a VC’s operation. Besides being easier to manage,
there are significant HA benefits to the VC, including redundant REs and the resulting
ability to support GRES and NSR, but also for forwarding plane faults and the VC’s
ability to work around a failed PFE or VC trunk through LS VCCP.

The next chapter keeps things rolling by getting into the meat of STP, the heart and
soul of any LAN switch. You will be glad that there is now one less switch to manage
and troubleshoot when things invariably go astray, given that Vodkila lives strong, and
lives large, and is far more than the sum of its individual parts.

Chapter Review Questions
1. How many EX4200s can be grouped into a VC?

a. 2

b. 6

c. 8

d. 10

Chapter Review Questions | 263

2. Each VC port operates at:

a. 16 Gbps, FD

b. 32 Gbps, FD

c. 64 Gbps, FD

d. 128 Gbps, FD

3. True or false: the master RE must be assigned member ID 0.

4. Which is the correct order for master RE election when a VC is rebooted?

a. Uptime, member ID, priority, lowest MAC address

b. Priority, last role, uptime, lowest MAC address

c. Last role, priority, uptime, highest MAC address

d. Uptime, last role, lowest MAC address, priority

5. Which is true about VCE ports?

a. Only the 2 × 10 GE uplink module can support VCE in Release 9.2

b. All ports on an uplink module must operate in normal or VCE mode

c. You must use a single VCE link when connecting wiring closets to avoid loops

d. An operational mode configuration command is used to set or clear VCE mode

6. Which are true regarding VCCP? (Choose all that apply.)

a. VCCP is defined in an Internet draft

b. It’s a Juniper proprietary protocol based on distance vector routing

c. It’s a Juniper proprietary protocol based on link state OSPF routing

d. It’s a Juniper proprietary protocol based on link state IS-IS routing

7. Which can be set in a non-provisioned deployment?

a. A member ID to a priority

b. A member ID to a VC role such as RE or LC

c. A serial number to a priority and VC role

d. You cannot configure any VC parameters in this mode

8. How is the member ID assigned in a non-provisioned deployment?

a. Based on VC role

b. Based on power-up sequence, with each new switch getting the next ID

c. The serial number is mapped to the member ID

d. You cannot control member ID in this mode

9. A new switch is added to a preprovisioned VC. Until the serial number is mapped:

a. No VCCP adjacency can form

b. The switch can enter the VC but as an LC only

c. A VCCP adjacency will form but the switch will not be a member of the VC

264 | Chapter 4: EX Virtual Chassis

d. The master configuration file is automatically updated with the new member’s
serial number, as learned through VCCP

10. Which command connects you to the current backup RE, from the current master?

a. request routing-engine login backup

b. request routing-engine login other

c. start shell pfe network member <id>

d. request session member <id>

11. You want to alter a serial number to VC role assignment, but after you commit the
change, the related VC member does not take on the new role. What may be wrong?

a. You need to use commit synchronize to push the change to the VC member’s
private configuration

b. The VC backbone is malfunctioning, preventing intra-VC communications

c. The EX4200 chassis type mapped to that member ID is not compatible with
the new role; a hardware key is needed to function as the master RE

d. You must use non-provisioned mode to map a member ID to a VC role

Chapter Review Answers
1. Answer: D. A VC consists of 2 to 10 EX4200 chassis.

2. Answer: B. Each VC port operates at 32 Gbps FD, yielding 64 Gbps of throughput
per port. Two ports yield 128 Gbps of throughput between adjacent VC members.

3. Answer: False. Although it is a best practice to make the master RE member 0, this
is not mandatory; the member ID must be unique, but has no direct relationship
to the VC role.

4. Answer: B. Only B is correct, and the lowest MAC address is the tiebreaker.

5. Answer: D. The operational mode request virtual chassis vc-port command
alters the private NVRAM configuration to set or clear VCE mode. Support for
1X GE VCE ports first appeared in Release 9.2. You can mix and match VCE and
normal modes, and all ports can operate in VCE mode if desired.

6. Answer: D. VCCP is based on the IS-IS link state routing protocol, but is proprietary
to Juniper.

7. Answer: A. In non-provisioned mode, you can map a member ID to a mastership
priority.

8. Answer: B. In non-provisioned mode, the member ID is not set directly, but is
instead controlled through the power-up sequence. You can later alter the assign-
ment with the CLI request chassis renumber command.

9. Answer: C. VCCP can function even when mismatched software or configuration
issues prevent a successful VC join.

Chapter Review Answers | 265

10. Answer: A, B. From the current master you can request a login to the other RE,
which will be a backup. You can also explicitly state that a connection should be
formed to the backup RE. Option C is used to form internal VTY connections to
PFE components, which may or may not be a master/backup RE. Option D allows
you to access the CLI of a member switch using an internal communications path.
As with option C, such a switch member may be acting in an LC role.

11. Answer: A. In the 9.2 release used for this book, member-specific VC changes
committed on the master RE are pushed to the member’s private configuration
only when the synchronize switch is used; later releases may automate this function
for LC-related changes, but synchronization is required between the master and
backup REs as in some cases you may wish to have different configurations. Use
of NSR requires that the system commit synchronize option be set, forcing all com-
mits to synchronize.

266 | Chapter 4: EX Virtual Chassis

CHAPTER 5

Virtual LANs and Trunking

LAN switches filter and forward traffic based on learning Source MAC (SMAC) ad-
dresses, and then later filter traffic based on Destination MAC (DMAC) addresses.
Although a regular switch does terminate a collision domain, it does not isolate broad-
cast and multicast traffic; such traffic must be flooded to all LAN members because
these addresses are never used as an SMAC, and thus can never be learned. By defini-
tion, this Broadcast, Unknown, or Multicast (BUM) traffic by its nature has to be
flooded to all stations anyway.

LAN virtualization, also known as a virtual LAN or VLAN, allows switches to logically
group end stations to provide isolation of BUM traffic, enhancing both performance
and security. This chapter covers VLAN tagging and the configuration and monitoring
of VLAN switching on the EX platform in the context of integrating a JUNOS switch
into a Cisco environment.

The topics covered in this chapter include:

• Virtual LANs and trunking

• EX to catalyst VLAN integration (and troubleshooting)

Virtual LANs and Trunking
Ethernet LAN and LAN switching concepts, also known as bridging, are described in
Chapter 1. This chapter focuses on using VLAN tags to logically partition the LAN into
multiple broadcast domains.

In a conventional Ethernet LAN, all nodes must be physically connected to the same
MAC broadcast domain to communicate at Layer 2. With VLANs, the physical location
of the nodes is not important, as you can group network devices in ways that make
sense for your organization—for example, by department or business function—
without regard for the physical station attachment point. A VLAN is identified by a
specific tag value, as described shortly, and the stations that belong to a common VLAN
will normally share a common IP network address, meaning they share a LAN from
the IP perspective.

267

VLAN capability allows switching for multiple-LAN communities that share a physical
infrastructure, while ensuring that no information is leaked between these communi-
ties. This trunking is achieved via VLAN tags, as defined in the IEEE 802.1Q standard;
in fact, a trunk interface is often said to operate in dot1Q mode. The 802.1Q standard
also characterizes the meaning of a VLAN with regard to Media Access Control (MAC)
layer functions and protocols such as bridging or Spanning Tree Protocol (STP), and
how stations on separate VLANs can communicate through the services of a Layer 3
device in the form of a router. In this case, the router uses a Routed VLAN Interface
(RVI) to route between the otherwise ships-in-the-night separation of traffic riding over
different VLANs. In IOS terminology, the Layer 3 interface that connects logically dis-
tinct Layer 2 domains with IP forwarding is referred to as a Switched Virtual Interface
(SVI).

Port Modes
Switch ports, or interfaces, operate in either access or trunk mode. An interface in access
mode connects to a network device, such as a desktop computer or an IP telephone.
The interface itself belongs to a single VLAN, and the frames sent and received over
that access interface are normal, untagged native Ethernet frames. In a default EX con-
figuration, all interfaces are placed in access mode.

Trunk interfaces handle traffic for multiple VLANs, multiplexing the traffic for all those
VLANs over the same physical connection. Trunk interfaces are generally used to in-
terconnect with other switches, or routers, and use explicit tagging to segregate traffic
on the shared trunks.

Tagging User Traffic
Traffic received on an access port, or from a particular MAC address when so config-
ured, is mapped to an associated VLAN and the related VLAN tag is inserted before
the frame is forwarded over trunk ports. Once tagged, the frame is forwarded only over
those trunks that are defined to support that VLAN, and for which that VLAN is in a
forwarding state when running Multiple Spanning Tree Protocol (MSTP), as described
in Chapter 6. When a switch has local access ports that belong to the associated VLAN,
and the frame needs to be sent to those ports (based on DMAC and learning), the tag
is removed and the frame is sent in its original (native) format out the access port.

ISL Versus 802.1Q Trunks
The Inter Switch Link (ISL) protocol predates the IEEE 802.1Q standard and is pro-
prietary to Cisco Systems. ISL is considered a two-level encapsulation scheme and op-
erates by adding a 26-byte header and 4-byte CRC trailer to each frame. The header
contains a 10-bit VLAN identifier to support 1,024 VLANs, as well as a user priority
indication.

268 | Chapter 5: Virtual LANs and Trunking

JUNOS software does not support ISL. Therefore, you must configure .1Q trunking
on IOS devices to interoperate with JUNOS switching gear by issuing a switchport
trunk encapsulation dot1q and switchport mode trunk configuration statement under
the desired interface. Note that some IOS hardware is not capable of supporting the
standards-based .1Q form of trunking, and that in some cases you can run both ISL
and .1Q as part of a migration strategy.

Given that the original IEEE 802.1D (Bridging) standard has been up-
dated to support features such as MSTP and Rapid Spanning Tree Pro-
tocol (RSTP) in a .1Q trunk context, there is little need to continue
deploying vendor-proprietary trunk protocols such as ISL.

Figure 5-1 shows the format of an IEEE 802.1Q tagged frame.

Figure 5-1. The IEEE 802.1Q tagged frame format

Figure 5-1 shows that 802.1Q tagging is not really an encapsulation scheme, but rather
involves the insertion of a 4-byte field after the frame’s SMAC address. The tag is in-
serted before the Type or Length field when sending Ethernet frames or IEEE 802.3
frames, respectively.

Virtual LANs and Trunking | 269

Although standards exist to define the transport of IPv4/IPv6 traffic over
IEEE 802.3, typically using a combination of Logical Link Control
(LLC/IEEE 802.2) and Subnetwork Access Protocol (SNAP) encapsu-
lation, which ironically allows an escape back to EtherType codes, this
method of IP transport is rarely used and is not supported by JUNOS
devices. JUNOS devices always encapsulate IP in Ethernet v2 frames,
which use an EtherType for explicit identification of the encapsulated
protocol, thus eliminating the need for LLC/SNAP. Ethernet-based IP
encapsulation is defined in RFCs 894 and 2464 for IPv4 and IPv6 using
Type codes 0×0800 and 0×86DD, respectively.

The insertion of .1Q tags increases frame size, and necessitates recalculation and update
of the frame check sequence (FCS). When received over a trunk port, the VLAN tag is
removed and the FCS is restored before the (now) untagged frame is forwarded (as
needed) to all access ports associated with that VLAN.

Adding four bytes to an Ethernet frame containing 1,500 bytes of user
data creates a jumbo frame, which, according to the original Ethernet/
802.3 standards, is a frame larger than 1,518 bytes (not counting the
Start Frame Delimiter). Modern devices typically adjust the local defi-
nition of a jumbo frame when VLAN tagging is in effect to support so-
called baby giants of 1,522 octets, but this is not always the case. Note
that older LAN switching gear may not even support VLAN tag-
ging/.1Q trunking. Although you can pass VLAN-tagged traffic through
such a pre-VLAN switch, you must ensure that it’s capable of being
configured to support the larger frame sizes that result from tag insertion
to ensure that you do not suffer jumbo-related frame discards.

The Tag Protocol Identifier (TPID) informs switches as to whether there is a .1Q tag
field in the frame being processed; the default coding of 0 × 8100 is selected to not
conflict with valid IEEE 802.3 Length indicators, which are always less than 0 × 0600,
or with any preexisting EtherType codes. As a result, tag coding is unambiguous and
ensures that proper actions are taken for tagged and untagged frames. Other TPID
values exist to support stacked VLANs, which is also known as QinQ and is described
in a later section.

The Priority Code Point (PCP) is defined in IEEE 802.1p, and provides eight levels
(0–7) of priority indication to accommodate class of service (CoS) actions by Layer 2/3
devices. The use of .1p priority as part of a CoS solution is covered in Chapter 10. Note
that a Layer 3 device can also use .1p marking when configured for VLAN tagging via
802.1Q, but more often, Layer 3 devices are set to look into the Layer 3 header, that
is, at an IP packet’s Precedence or DiffServ Code Points (DSCPs), for CoS classification.

270 | Chapter 5: Virtual LANs and Trunking

The Canonical Format Identifier (CFI) is used to support translational bridging be-
tween Ethernet and Token Ring networks. Ethernet/802.3 LANs use a canonical ad-
dress format, meaning that each octet of the MAC address is sent starting with the
Least Significant Bit (LSB) first. In contrast, Token Ring networks (IEEE 802.5) send
each address octet starting with the Most Significant Bit (MSB). This bit is sometimes
referred to as the Token Ring Encapsulation flag, which denotes its historical use in this
capacity. The term historical is used here because, despite its technical merits, the sim-
ple truth is that 802.5/Token Ring and the related Source Route Bridging (SRB) failed
in the marketplace, and quite resoundingly, too. This fact makes the whole concept
of translational bridging moot given the ubiquitous nature of Ethernet technologies.

The 12-bit VLAN Identifier field is the meat of the matter here; it codes the VLAN value
in the range of 0 to 4,095 inclusive. Note that a coding of 0 indicates a frame that is not
part of any VLAN. In this case, the .1Q tag can still indicate user priority and is referred
to as a priority tag. Also, the all-1s value of 0×FFF (decimal 4,095) is reserved for im-
plementation use. Together these restrictions yield a total of 4,094 usable VLANs. Note
that in some implementations the VLAN number space is said to be global (chassis-
based), and in some cases internal functions may consume additional VLAN IDs, fur-
ther reducing the values that can be defined for user purposes; in the EX architecture,
VLAN numbering is global, but the full range of VLAN IDs from 1 to 4,094 are available
for use.

It’s a common practice to see a VLAN, oftentimes VLAN 1, reserved for network man-
agement, especially on Cisco devices, which, unlike EX switches, often do not support
a discrete Out of Band (OoB) management interface that is reserved for that purpose.

MX Platforms and Switching Domains
Although coverage of the MX platform is outside the scope of this book, it bears men-
tioning that the MX platform supports the notion of a virtual switching domain or
instance. On an MX, each switching instance can support the full range of 1 to 4,094
VLAN IDs, and you can bridge/route between these switching domains using an Inte-
grated Route Bridge (IRB) interface. EX platforms do not support virtual switches, or
the IRB construct. On an EX you use an RVI to route between VLANs that are all part
of its single switching instance.

QinQ, a.k.a. provider bridging

The term QinQ, also called Service VLANs (S-VLANs), defines a method of pushing
multiple VLAN tags onto a single frame, typically at the edges of a service provider’s
network, to provide a VLAN “trunk of trunks” type of service that requires a minimum
of cooperation between the service’s users and the service provider. In some ways, this
is similar to an ATM Virtual Path Indicator (VPI), which allowed a single virtual path
to carry multiple Virtual Chassis (VCs) that were managed by the end user in a manner
that was transparent to the provider of the ATM path service.

Virtual LANs and Trunking | 271

QinQ is defined in the IEEE 802.1ad-2005 specification and is gaining popularity in
metropolitan and wide-area LAN emulation services, sometimes called a Transparent
LAN Service (TLS) or a Virtual Private LAN Service (VPLS) because of the added flex-
ibility to the service user and ease of management for the provider.

In the basic case, the service provider allocates a single outer tag, called a Service tag
(S-VLAN), that’s used to identify the customer access link; this leaves the customer free
to add additional VLANs, called Customer VLANs (C-VLANs), which are then trunked
over the provider’s core in transparent fashion.

In most cases, an alternative TPID value is used for the outer tag to flag QinQ versus
normal, single-tagged traffic. Although the 802.1ad specification defines 0×88a8 for
service-provider outer tags, most QinQ-supporting equipment allows you to define the
S-tag value, and 0×9100 or 0×9200 are commonly used in today’s networks.

Figure 5-2 shows a typical QinQ scenario.

Figure 5-2 shows two provider customers: Customer 1 is using tagged frames and Cus-
tomer 2 sends native Ethernet; within the service provider’s network, an additional
layer of tagging in the form of S-tags is added. This results in both the original C-tag as
well as an S-tag for Customer 1, while Customer 2 has only the S-tag when in the
provider’s core. The additional layer of trunking allows the customers to manage their
own VLAN trunking independent of the service provider, which greatly simplifies
VLAN moves, adds, and changes. The provider gains the benefit of being able to offer
an S-VLAN service, and can also take steps to normalize tagging for its customers and
their varying service types, which in turn can simplify general operations and mainte-
nance activities, creating the proverbial win-win situation for QinQ.

With all those great things to be said for S-VLANs, it has to be noted that in the 9.2
JUNOS release, EX platforms do not offer QinQ support. As always, this may change
in a later release, so check back often. MX platforms feature full QinQ support and can
be used to build the core/distribution layer in a large switching deployment involving
both S-VLANs and large-scale routing services as well. By mixing and matching lower-
cost EX platforms at the network while the more sophisticated (and expensive) MX
platforms handle the core, you get the best of both worlds: many lower-cost ports at
the edge, combined with fewer high-cost but also high-touch ports in the core that
provide both value-added services and high-speed transport.

272 | Chapter 5: Virtual LANs and Trunking

Figure 5-2. S-VLANs (QinQ) in action

Virtual LANs and Trunking | 273

The Native and Default VLANs
There is much confusion over the terms default VLAN and native VLAN, and whether
this means tagged or untagged. In many cases, the confusion stems from the fact that
the native and default VLANs can be different, but by default are the same in IOS
devices, and because the native VLAN can use tagging, but typically is sent and received
untagged.

The native VLAN

Clause 9 in the 802.1Q specification defines a native VLAN that is designed to support
older switches that do not understand .1Q tagging. Although this is not a Cisco book,
Cisco did invent much of what is now called bridging and routing, and many modern
network concepts have roots in IOS. Cisco provides the following definition of the
native VLAN:

The native VLAN is defined as the VLAN to which a port returns when not trunking,
and is the untagged VLAN on an 802.1Q trunk. By default, VLAN 1 is the native VLAN.

In other words, the native VLAN defines how a switch transmits and receives traffic
associated with the native VLAN assigned to the switch port. At egress, such traffic is
not tagged, and is therefore sent in native (i.e., untagged) format on that link. In reverse,
at reception any untagged frame is assumed to belong to that port’s native VLAN.
Support for native VLAN allows a trunk to send and receive a mix of tagged and un-
tagged traffic, with the latter being mapped to the trunk’s native VLAN. Non-native
traffic is always explicitly tagged when sent over a trunk interface, and upon reception
the explicit tag value is used to associate the traffic with its destination VLAN. In con-
trast, the lack of an explicit tag implicitly associates traffic with that port’s native VLAN.
Although each trunk can have its own native VLAN, the current best practice is to
define a single native VLAN within the bridge domain.

Native VLANs are significant when interoperating with Cisco devices because the
switches have historically associated control plane traffic with a native VLAN in an
effort to protect the (limited) control plane resources from the burden associated with
having to process end-station multicast and broadcast traffic. Placing the management
and Layer 2 control plane traffic in a specific VLAN, one that is not shared by normal
user devices, alleviated this problem.

Historically, the native VLAN on a Cisco device is VLAN ID 1, and as noted, the as-
sociated traffic is typically sent and received untagged; note that you can alter this
behavior on supported platforms with a vlan dot1q tag native configuration state-
ment. You can also modify the native VLAN ID with the interface-level switchport
trunk native vlan <value> command; but keep in mind that making changes to the
native VLAN ID can lead to complexities with signaling protocols and should be ap-
proached with caution.

274 | Chapter 5: Virtual LANs and Trunking

It should also be noted that in IOS, support for implicit tagging has resulted in an exploit
that allows traffic to jump across VLAN boundaries without having to first cross a
router. See http://www.sans.org/resources/idfaq/vlan.php for more information. Al-
though it’s unclear whether EX switches are vulnerable to this particular issue, the
current best practice is to ensure that the native VLAN ID used for trunk ports is
never assigned to user access ports, thus preventing a user from crafting traffic that
seeks to avail itself of special treatment via the implicit tagging that was really intended
for interswitch communications.

You need to watch out for the vendor’s defaults here. In Cisco’s case, the defaults have
trunk ports accepting untagged traffic as part of the native VLAN, and all access ports
belong to this native VLAN, a condition that can open you up to this exploit and put
you in conflict with Cisco’s stated best practice. In contrast, JUNOS trunk ports do not
accept untagged traffic without explicit configuration to do so, and all interfaces are
placed into a default and untagged VLAN.

The native VLAN concept is also used to support IP telephony devices that do not
support Link Layer Discovery Protocol (LLDP). Here the switch port attached to the
IP telephone is placed into trunk mode, and a native VLAN is defined to map untagged
data traffic received via the phone’s PC interface into a data VLAN, while the voice
traffic is sent and received using the access port tag, which is in turn associated with
voice traffic and specialized CoS treatment. We provide details on EX IP telephony and
LLDP support in Chapter 10.

The default VLAN

A default VLAN describes a device’s factory-default VLAN configuration and is not
part of any LAN standard. Generally, this configuration places all Layer 2 interfaces
into a common VLAN, one that is not tagged and which provides out-of-the-box con-
nectivity among all ports.

On a Cisco switch, the default has all interfaces in access mode and associated with
VLAN 1, the native VLAN. On EX switches, the factory default places all interfaces
into an untagged VLAN called default. The JUNOS Layer 2 default configuration does
not define a native VLAN, and explicit support for a native VLAN must be added to
trunk interfaces with the native-vlan-id <value> statement.

Putting it all together

We’ve covered quite a few concepts getting to this point. It’s time to step back and look
at the big picture, and Figure 5-3 provides just such an overview of the key concepts
we’ve covered thus far.

Virtual LANs and Trunking | 275

http://www.sans.org/resources/idfaq/vlan.php

Figure 5-3. VLANs and trunking: putting it all together

Figure 5-3 shows two user communities named red and green. The two communities
are associated with VLAN tags 10 and 20, respectively. The end-user devices are at-
tached to access ports that send and receive untagged traffic, which in turn are associ-
ated with VLAN ID 10 or 20 based on user role. The trunk interface is configured with
both the green and red VLANs, and user traffic is explicitly tagged based on the ingress
access port’s VLAN association.

In this example, a native VLAN has been defined (or is a default) on each trunk port
and uses VLAN ID 1. Traffic that is intended for the other end of the link—for example,
a Cisco Discovery Protocol (CDP) packet or an EX’s LLDP message—is sent on the
native VLAN, which means this traffic is not tagged.

The default/native VLAN handling behavior differs between an EX and an IOS device:

276 | Chapter 5: Virtual LANs and Trunking

Cisco

• The default VLAN is untagged and is the native VLAN.

• Trunk ports default to accept all for VLANs in the range 1 to 4,095, which
includes the native VLAN, which is also the default VLAN.

• Ports default to auto-negotiate and try to form trunks, or else operate as access
ports.

• Access ports that are not reassigned to some specific VLAN default to the native
VLAN.

JUNOS

• The default VLAN is named default and is untagged. There is no native VLAN
by default.

• Ports default to access mode with no auto-negotiation; trunk ports do not sup-
port any VLANs, including the default VLAN.

The result of the Cisco default is that stations on “unused” ports can communicate
with other “unused” ports using the native VLAN, both locally and remotely via trunk
interfaces. Such communications can represent a security risk, especially from known
exploits that allow VLAN hopping when trunked over the native VLAN, not to mention
the potential for a denial of service (DoS) attack given that control plane protocols often
ride over the native VLAN as well. To mitigate these risks, you could redefine the native
VLAN, disable native VLAN trunking, or simply configure all unused access ports into
a non-trunked VLAN that acts as a type of quarantine.

For JUNOS, explicit configuration is needed to create a native VLAN, and again to
define a trunk port, and yet again to support the native VLAN on that trunk port. In
addition, unused access ports default to the default VLAN, which, as previously stated,
is not automatically supported by trunk interfaces, and as a result bars any remote
connectivity for members of the default VLAN.

Generic Attribute Registration Protocol
Generic Attribute Registration Protocol (GARP) is defined in the IEEE 802.1D (Bridg-
ing) standard, and is intended to provide a generic framework for bridges to register
and deregister attribute values such as VLAN tags or multicast group membership.
GARP defines the architecture, rules of operation, state machines, and variables for the
registration and deregistration of these attribute values, while the attributes themselves
are opaque to GARP, much as a donkey has no opinion about what’s in his saddle bags,
as long as they’re not too heavy.

One application for GARP is a VLAN management protocol called GARP VLAN Reg-
istration Protocol (GVRP), which can simplify the administration and management of
VLAN membership information. As a network expands and the number of clients and

Virtual LANs and Trunking | 277

VLANs increases, VLAN administration becomes complex, and the task of efficiently
configuring VLANs on multiple switches becomes increasingly difficult.

GVRP learns VLANs on a particular 802.1Q trunk port, and adds the corresponding
VLAN to the trunk port if the learned VLAN is locally defined on that switch. For
example, if two trunk-attached switches have a local VLAN 10 defined (the numeric
tag must match, not necessarily the local symbolic name), and one of them associates
its VLAN 10 with its trunk interface, the remote switch will automatically add its VLAN
10 to that trunk interface as well. The result is that one step is eliminated at an access
switch. You still have to define the trunk port, enable GVRP, and define a local VLAN.
But with GVRP, you are spared having to map the VLAN to the trunk interface.

Restating this a bit differently, in the current EX implementation, GVRP can automate
trunk VLAN membership on one end of a trunk as a result of changes to the local end’s
VLAN definition (removing the VLAN indicates no interest, and that VLAN is pruned),
or as a result of the remote end unbinding a VLAN from its trunk. In either case, that
VLAN is automatically removed from the local switch’s trunk interface. In addition to
reducing administration overhead, GVRP helps to preserve trunk bandwidth by prun-
ing VLANs that are of no interest to the downstream switch, thus eliminating any
flooding of broadcast traffic for that VLAN over that trunk.

Cisco and GVRP

Although some IOS versions claim to support GVRP, most in-place boxes continue to
use Dynamic Trunking Protocol (DTP) and VLAN Trunking Protocol (VTP) to auto-
mate trunk and VLAN administration. DTP first negotiates and ensures compatible
trunk parameters (i.e., encapsulation type and native VLAN), and after trunk estab-
lishment VTP kicks in (when so configured) to automatically propagate VLAN mem-
bership information.

JUNOS devices do not support either DTP or VTP. You should disable both protocols
to ensure proper operation in an EX network. This is especially true for DTP, which
when run over a trunk attached to a non-IOS device will typically fail to activate the
trunk. You should disable DTP on trunks that attach to an EX device using an interface-
level switchport nonegotiate command.

It should be stressed that, unlike Cisco’s VTP, GVRP does not support a client/server
model, and the current implementation offers no support for authentication or en-
cryption. Also, although VTP actually propagates VLAN definitions from the server to
client switches, GVRP currently only handles trunk membership for VLANs that must
still be locally defined on each switch.

VLAN and Trunking Summary
This section detailed the concept of virtual LANs, the related use of tagging to instan-
tiate, and the use of trunk versus access interfaces in the role of a switch VLAN.

278 | Chapter 5: Virtual LANs and Trunking

Although this is not a Cisco book, the reality is that many EX switches will be installed
alongside some form of IOS-based switching device. This section detailed the Cisco
and Juniper defaults for Layer 2 interfaces, and how these relate to interoperability and
out-of-the-box operation.

In the next section, we put the theory to good use when we deploy VLANs and trunking
in a Cisco/Juniper switching environment.

EX to Catalyst VLAN Integration
Having once again muddled our way through the boring background, it’s time to jump
on the test bed and put all this information to use. Figure 5-4 details the test topology
used in the VLAN trunking integration task.

Before going any further, the following topology characteristics should be duly noted:

• There is a mix of IOS and Juniper EX devices; note that integration is fun.

• The switches and links are chosen to be loop-free and STP is disabled; STP is
detailed in the next chapter.

• All switches are running a factory-default configuration with regard to Layer 2
interfaces, with the exception that STP is explicitly disabled.

• The four host machines share an IP subnet that permits full connectivity if allowed
by the switched backbone.

Disabling STP in a Switched Network! Are You Crazy?
In a word, yes. That being said, STP serves a useful purpose in a switched Layer 2
network, and failing to run it when it’s actually needed will quickly generate a deluge
of flooded traffic that will crash your network. Loops are bad: very, very bad. But so
too is running with a pair of scissors, usually.

In this case, we have specific pedagogical reasons for doing this. Chief among them is
that STP is covered in the next chapter, it’s not technically needed in a physically loop-
free network, and it has little to do with the topics of VLAN tagging and trunking
proper. Given that this is not a production network and the topology is known to be
loop-free, and considering the flow of material coverage, it makes perfect sense to dis-
able STP in this context.

In a similar fashion, a highly trained individual wearing appropriate safety attire in a
controlled environment that’s free of innocents may well have a good reason for want-
ing to run with a pair of scissors, and by golly, with these constraints, he ought to be
free to do so!

EX to Catalyst VLAN Integration | 279

Figure 5-4. VLAN trunking topology: default behavior

Default VLAN/Trunking Behavior
Before making changes to add VLANs and trunking, it’s a good idea to first get your
head around each vendor’s out-of-the-box Layer 2 behavior. Note again that aside from
disabling STP, both the IOS and JUNOS EX boxes are in their factory-default mode of
operation, which is based on Layer 2 switching.

The relevant portions of Whiskey, an IOS-based Catalyst 3550 switch, are shown here:

Whiskey#show running-config
Building configuration...
. . .
spanning-tree mode pvst

280 | Chapter 5: Virtual LANs and Trunking

spanning-tree extend system-id
no spanning-tree vlan 1-4094
!
. . .
interface FastEthernet0/1
 switchport mode dynamic desirable
!
. . .
interface FastEthernet0/7
 switchport mode dynamic desirable
!
. . .
interface FastEthernet0/24
 switchport mode dynamic desirable
!
. . .
end

Based on the configuration, it can be said that STP has been disabled on all VLANs,
that no specific VLAN definitions exist, and that all interfaces are in their default mode,
which means they try to form a trunking relationship (via DTP), or the port falls back
to access mode. Knowing that JUNOS does not speak DTP, it’s safe to assume that
Whiskey’s Fa0/1 port is in access mode, which is confirmed:

Whiskey#show interfaces Fa0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
Voice VLAN: none
. . .
Trunking VLANs Enabled: ALL
Pruning VLANs Enabled: 2-1001
Capture Mode Disabled
Capture VLANs Allowed: ALL

The highlighted portions of the code confirm the port’s dynamic/desirable setting,
which makes it trunking-capable and always looking to establish a trunk when a com-
patible device is detected. The port is currently in access mode, which is expected given
that the remote end does not speak DTP. As an access port, the current encapsulation
is native, indicating that no tagging is in effect on this port.

Some other trunk defaults, such as default support for the native VLAN and allowed
VLAN range, are also highlighted. The results are compared to the state of Whiskey’s
Fa0/24 port, which is attached to another IOS device, and therefore was able to form a
trunk via DTP:

EX to Catalyst VLAN Integration | 281

Whiskey#show interfaces Fa0/24 switchport
Name: Fa0/24
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: trunk
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: isl
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
. . .

The output confirms that DTP has found a soul mate in Gin, and as a result established
an operational trunk. In this case, the default encapsulation is the proprietary ISL rather
than the standards-based .1Q, but that’s no great surprise, as this is a Cisco-to-Cisco
link, and ISL is Cisco’s own brand of dog food, so they may as well dine on it. Even
though Fa0/24 is an operational trunk, given that only the native VLAN currently exists,
the net result is that no VLAN tagging occurs on this port, either.

The default VLAN state for IOS is confirmed with a show vlan brief command; note
that the Fa0/24 interface is omitted from the port listing due to its trunk status:

Whiskey#show vlan brief
VLAN Name Status Ports
---- ---------------------- --------- -------------------------------
1 default active Fa0/1, Fa0/2, Fa0/3, Fa0/4
 Fa0/5, Fa0/6, Fa0/7, Fa0/8
 Fa0/9, Fa0/10, Fa0/11, Fa0/12
 Fa0/13, Fa0/14, Fa0/15, Fa0/16
 Fa0/17, Fa0/18, Fa0/19, Fa0/20
 Fa0/21, Fa0/22, Fa0/23, Fa0/25
 Fa0/26, Fa0/27, Fa0/28, Fa0/29
 Fa0/30, Fa0/31, Fa0/32, Fa0/33
 Fa0/34, Fa0/35, Fa0/36, Fa0/37
 Fa0/38, Fa0/39, Fa0/40, Fa0/41
 Fa0/42, Fa0/43, Fa0/44, Fa0/45
 Fa0/46, Gi0/1, Gi0/2
. . .

The display confirms that only the default VLAN is defined, which here is also the
native VLAN by virtue of its tag 1 assignment. Note that all non-trunk interfaces are
listed as members of the default/native VLAN, to include the link to switch Vodkila
given that trunking was not successfully negotiated there. Recall that the ISL trunk
between Whiskey and Gin, the only trunk in the current network, has already been con-
firmed to support VLAN 1 as its native VLAN. The output of a show interfaces
trunk command confirms its status:

Whiskey#show interfaces trunk
Port Mode Encapsulation Status Native vlan
Fa0/24 desirable n-isl trunking 1

Port Vlans allowed on trunk
Fa0/24 1-4094

282 | Chapter 5: Virtual LANs and Trunking

Port Vlans allowed and active in management domain
Fa0/24 1

Port Vlans in spanning tree forwarding state and not pruned
Fa0/24 1

As noted in a previous section, the net result here is that there will be no VLAN tagging
because only the native VLAN is in effect, all access ports belong to the native VLAN,
and all trunk ports consider VLAN 1 as their native VLAN and support trunking of this
VLAN. Security issues aside, the net result is a plug-and-play switch that provides con-
nectivity among all devices. In fact, to an external observer, the current operation of
the IOS devices mirrors that of a non-VLAN-aware switch. All ports are allowed to
communicate, both locally and via the “uplink” (ISL trunk) to remote ports; there is
no tagging; and there is a single broadcast domain by virtue of there being only one
virtual LAN, the native/default one.

Having seen the IOS default behavior, you do the same for the JUNOS switch
Vodkila. First, the relevant bits of its configuration:

[edit]
lab@Vodkila# show interfaces
ge-0/0/0 {
 description "To Rum";
 unit 0 {
 family ethernet-switching;
 }
}
ge-0/0/3 {
 description "To Whiskey";
 unit 0 {
 family ethernet-switching;
 }
}
ge-0/0/7 {
 description "To Host 1";
 unit 0 {
 family ethernet-switching;
 }
}
. . .

[edit]
lab@Vodkila# show protocols
. . .
stp {
 disable;
}

[edit]
lab@Vodkila# show vlans

[edit]
lab@Vodkila#

EX to Catalyst VLAN Integration | 283

Seems fair enough. STP is disabled globally, as was the case with Cisco; the pertinent
interfaces are operating in their default mode; and no explicit VLAN configuration has
been performed. In the Juniper case, all ports default to access mode. Although not the
most direct characteristic to view, adding the extensive switch to a show vlans
command does the trick:

[edit]
lab@Vodkila# run show vlans extensive
VLAN: default, Created at: Sat Jan 1 17:54:05 2005
Internal index: 6, Admin State: Enabled, Origin: Static
Protocol: Port Mode
Number of interfaces: Tagged 0 (Active = 0), Untagged 3 (Active = 3)
 ge-0/0/0.0*, untagged, access
 ge-0/0/3.0*, untagged, access
 ge-0/0/7.0*, untagged, access
. . .

The highlighted portions of this snippet confirm that no trunks are enabled in the
default VLAN. The Protocol field identifies whether a VLAN is operating in the default
port rather than MAC-based VLAN mode. Also note that all three interfaces associated
with the default VLAN are in access mode and are operating in an untagged mode.
Although the default VLAN is similar to IOS’s native VLAN, a key difference here is
that no VLAN ID is assigned to the default VLAN, and the default VLAN is not con-
sidered synonymous with a native VLAN, which in JUNOS has to be explicitly con-
figured on each trunk. This all assumes, of course, that a native VLAN is even desired.
It’s IOS that seems to get wrapped around the whole native VLAN axle, after all.

Note that in the JUNOS case we have no trunk ports, even on the Juniper-to-Juniper
link between Vodkila and Rum; this is expected given no support for a dynamic trunking
protocol such as DTP in the 9.2 release being tested.

There are significant differences in the two vendors’ defaults: for example, native VLAN
1 versus an untagged default VLAN, or IOS having ports that want to be trunks, and
in fact actually having an active ISL trunk to its IOS brethren, while the EX switches
have only access ports. The irony is that outside the respective chassis, no one is the
wiser. Although the Cisco switch feels it has a trunk, the association with the native
VLAN means there is no tagging, so in effect, the ISL trunk ends up operating as though
it were an access port anyway!

In the factory-default integration scenario, you discover the same overall connectivity
and forwarding behavior with both operating systems, which is to say that all ports are
able to talk to all others, forming a single logical IP subnet (LIS) that permits open
communications among all four hosts. The communications bit is confirmed from the
viewpoint of Host1:

Host1#ping 200.2.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.2, timeout is 2 seconds:
!!!!!

284 | Chapter 5: Virtual LANs and Trunking

Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/8 ms
Host1#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/14/48 ms
Host1#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms

Host1#show ip arp
Protocol Address Age (min) Hardware Addr Type Interface
Internet 200.2.2.1 - 0010.7b3a.02ea ARPA Ethernet0
Internet 200.2.2.2 1 0060.7015.9576 ARPA Ethernet0
Internet 200.2.2.3 1 0010.7b3a.0404 ARPA Ethernet0
Internet 200.2.2.4 1 0010.7b3a.0399 ARPA Ethernet0

The pings to all three remote hosts succeed, and the Address Resolution Protocol (ARP)
cache at Host1 reflects direct reachability at the IP layer, as no gateway (router) is used.
A traceroute confirms a single hop, belying the Layer 2 forwarding nature of the current
network:

Host1#traceroute 200.2.2.2

Type escape sequence to abort.
Tracing the route to 200.2.2.2

 1 200.2.2.2 4 msec 4 msec *

Before moving on, clear the switching table of learned entries at Rum. Note that this
command clears learned entries for all VLANs, which is currently only the default
VLAN:

[edit]
lab@Rum# run clear ethernet-switching table

[edit]

The now-empty table is confirmed:

lab@Rum# run show ethernet-switching table
Ethernet-switching table: 1 entries, 0 learned
 VLAN MAC address Type Age Interfaces
 default * Flood - All-members

Well, it’s empty save for the flood entry used for unknown/multicast MAC addresses,
which results in the sending of that frame to all interfaces that are members of that
VLAN. Without STP enabled, there is really no reason for an interface to be blocked.
The forwarding state is confirmed on both of Rum’s interfaces with a show ethernet-
switching interfaces command:

EX to Catalyst VLAN Integration | 285

lab@Rum# run show ethernet-switching interfaces
Interface State VLAN members Blocking
ge-0/0/0.0 up default unblocked
ge-0/0/4.0 up default unblocked

To validate MAC address learning, you quickly generate another set of pings from
Host1 to Host4:

Host1#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/29/128 ms
Host1#

and again display the switching table at Rum:

[edit]
lab@Rum# run show ethernet-switching table
Ethernet-switching table: 4 entries, 3 learned
 VLAN MAC address Type Age Interfaces
 default * Flood - All-members
 default 00:0b:5f:c3:cc:81 Learn 31 ge-0/0/0.0
 default 00:10:7b:3a:02:ea Learn 29 ge-0/0/0.0
 default 00:10:7b:3a:03:99 Learn 26 ge-0/0/4.0

Good; three MAC addresses have been learned, and two appeared as SMACs on Rum’s
ge-0/0/0 interface. Given the different OUI values, it’s a safe bet that 00:0b:5f:c3:cc:
81 belongs to Host1 and 00:10:7b:3a:02:ea belongs to Vodkila. We can make this as-
sumption because the third MAC address, which was learned on Rum’s ge-0/0/4 inter-
face, has the same 00:10:7b vendor (OUI) code, and from the topology it’s safe to say
that Rum does not connect to two Cisco switches. The theory is quickly confirmed
with a show chassis mac-addresses command:

[edit]
lab@Vodkila# run show chassis mac-addresses

 FPC 0 MAC address information:
 Public base address 00:1f:12:3d:b4:c0
 Public count 64
 FPC 1 MAC address information:
 Public base address 00:1f:12:3d:d2:80
 Public count 64

The chassis MAC at Vodkila indeed matches one of the two addresses learned on Rum’s
ge-0/0/0 interface. Therefore, the other MAC must belong to Host1, which in this lab
is actually a Cisco router, thus explaining the use of the 0010.7b OUI, a value that is
registered to our good friends over on Tasman Drive (Cisco Systems, Inc.):

Host1#show interface ethernet 0 | include Hardware
 Hardware is Lance, address is 0010.7b3a.02ea (bia 0010.7b3a.02ea)

Having analyzed the default out-of-the-box Layer 2 behavior for both Cisco and Juni-
per, and finding it more or less the same despite some differences, you decide in all

286 | Chapter 5: Virtual LANs and Trunking

your pluckiness to proceed with the addition of VLAN and trunk interfaces. After all,
what could go wrong?

Define VLANs
In this section, you’ll modify the default configuration by adding VLAN definitions and
associating access ports with the correct VLAN. Figure 5-5 details the logical parti-
tioning needed in this example.

Figure 5-5. VLAN topology for the Sales and Admin groups

Figure 5-5 confirms that two VLANs are needed: one for the Sales group supporting
Host1 and Host2, and another for the Admin group with Host3 and Host4. Two user
communities, two VLANs: seems simple enough. In this example, IDs 10 and 20 are
used for the Sales and Admin groups, respectively. Because of the specifics in this top-
ology, some switches need to support both VLANs on their trunks whereas others need
to support one trunked VLAN.

EX to Catalyst VLAN Integration | 287

Perhaps noteworthy, if only by virtue of its omission, is the absence of trunking support
for Cisco’s native VLAN. Given that the native VLAN is primarily an issue for Cisco
and its litany of proprietary signaling protocols, there is no real need for a native VLAN
here, as the only two IOS devices are directly connected and most of the signaling that
happens on the native VLAN is not supported by EX switches, and in this example
there is no need to “trunk” CDP or the like over the EX core.

The plan in this example is to omit native VLAN definition at the EX switches, and
disallow trunking of the native VLAN on the Cisco switches. In this manner, the native
VLAN remains unchanged in the Cisco switches, but now functions as a type of quar-
antine used by unassigned access ports, which default to VLAN 1. By disabling trunk
support, you ensure that “unused” access ports cannot communicate with core switch
ports, or other remote “unused” access ports over the native VLAN.

Configure and confirm IOS VLANs and trunking

As usual, we start with the configuration needed for the Cisco switches, in this example
Whiskey:

Whiskey#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Whiskey(config)#interface fastEthernet 0/7
Whiskey(config-if)# switchport mode access
Whiskey(config-if)#switchport access vlan 10
% Access VLAN does not exist. Creating vlan 10

The first set of configuration commands forces the Fa0/7 switch port into access mode,
and associates the port with VLAN 10. The software notes that the related VLAN does
not exist, and kindly creates one for you:

Whiskey(config-if)#exit
Whiskey(config)#vlan 10
Whiskey(config-vlan)#name "Sales_vlan"

The next set of commands adds a description to denote the VLAN’s association with
the sales team. So far, so good; you move on to configure the Admin VLAN. Although
there are no local access ports for this VLAN, Whiskey still needs to trunk VLAN 20 to
Vodkila to permit communications between Host3 and Host4, and therefore must know
of the VLAN so that it can be made active:

Whiskey(config-vlan)#exit
Whiskey(config)#vlan 20
Whiskey(config-vlan)#name "Admin_vlan"

Although the vlan commands are entered in configuration mode, sub-
sequent display of the running configuration does not reflect the VLAN
definitions. The output of a show vlan command confirms that they
persist through reloads, however. To see locally defined VLANs in the
running configuration you must be in VTP transparent mode.

288 | Chapter 5: Virtual LANs and Trunking

With both VLANs defined, and the Host1 access port configured, confirm the access
and trunk port settings at Whiskey:

Whiskey#show interfaces fastEthernet 0/7 switchport
Name: Fa0/7
Switchport: Enabled
Administrative Mode: static access
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: Off
Access Mode VLAN: 10 (Sales_vlan)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
. . .

The output confirms that the access port is correctly configured. This leaves only the
trunk definitions at Whiskey. Given that both Whiskey and Gin are compatible IOS de-
vices, you opt to leave the defaults in place and initially focus on the shared trunk. The
default settings are expected to yield a dynamically negotiated ISL trunk. The switch
port settings are displayed with a show interfaces <name> switchport command:

Gin#show inter fastEthernet 0/24 switchport | include Trunking
Administrative Trunking Encapsulation: negotiate
Negotiation of Trunking: On
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: ALL

The results confirm that things pretty much “just worked” on the Cisco-to-Cisco trunk,
with the exception that the trunk supports only the native VLAN, which is the default.
This condition is quickly remedied with a switchport trunk allowed statement omitting
VLAN 1:

. . .
Whiskey(config)#interface fa0/24
Whiskey(config-if)#switchport trunk allowed vlan 2-4094
Whiskey(config-if)#^Z

The modified trunk status is displayed:

Whiskey#show interfaces fastEthernet 0/24 switchport
Name: Fa0/24
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: trunk
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: isl
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
. . .
Trunking VLANs Enabled: 2-4094
Pruning VLANs Enabled: 2-1001
. . .

EX to Catalyst VLAN Integration | 289

The show interfaces <name> trunk command is also useful when confirming IOS trunk
status and VLAN settings. Here’s some sample output:

Whiskey#show interfaces fastEthernet 0/24 trunk

Port Mode Encapsulation Status Native vlan
Fa0/24 desirable n-isl trunking 1

Port Vlans allowed on trunk
Fa0/24 2-4094

Port Vlans allowed and active in management domain
Fa0/24 10,20,666

Port Vlans in spanning tree forwarding state and not pruned
Fa0/24 10,20,666

However, you notice that things are not so rosy on Whiskey’s “trunk” connection to EX
switch Vodkila:

Whiskey#show interfaces fastEthernet 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: dynamic desirable
Operational Mode: static access
Administrative Trunking Encapsulation: negotiate
Operational Trunking Encapsulation: native
Negotiation of Trunking: On
Access Mode VLAN: 1 (default)
. . .

The display confirms the expected: Cisco’s proprietary DTP/ISL protocols failed to
successfully negotiate a trunk link to a JUNOS device. There’s no real surprise here, it
would seem. To interoperate, you must configure compatible trunking parameters,
which in this case require that you manually set trunk mode and use .1Q tagging.

You move on to make the changes needed for an interoperable VLAN trunk between
an IOS- and JUNOS-based device:

Whiskey#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Whiskey(config)#interface fastEthernet 0/1
Whiskey(config-if)#no switchport
1d22h: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
1d22h: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed
state to up
Whiskey(config-if)#switchport
Whiskey(config-if)#switchport mode trunk
1d22h: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up
1d22h: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed
state to down
1d22h: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed
state to up
Whiskey(config-if)#switchport trunk encapsulation dot1q
Whiskey(config-if)#switchport nonegotiate

290 | Chapter 5: Virtual LANs and Trunking

Whiskey(config-if)#switchport trunk allowed vlan 2-4094
Whiskey(config-if)#^Z

In this example, the no switchport command is issued first to clear previous switch
port defaults, which in turn ensures no conflicts with the configuration commands that
are then entered. Note that the trunk is set to switchport nonegotiate, which “nails
up” the trunk’s status while also ensuring that no resources are wasted on attempts to
dynamically negotiate trunk mode and parameters; disabling negotiation can prevent
unpredictable operation that may occur when both ends of a trunk don’t support the
same negotiation protocols. Note that native VLAN trunking is disabled via the switch
port trunk allowed vlan 2-4094 statement, which is in keeping with the deployment
plans described previously.

The new trunk settings at Whiskey are confirmed:

Whiskey#show interfaces fastEthernet 0/1 switchport
Name: Fa0/1
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: Off
Access Mode VLAN: 1 (default)
Trunking Native Mode VLAN: 1 (default)
Administrative Native VLAN tagging: enabled
. . .
Trunking VLANs Enabled: 2-4094
Pruning VLANs Enabled: 2-1001
. . .

Similar changes are now made at switch Gin. Specifically, both the Sales and Admin
VLANs are defined, and the Fa0/3 trunk to Brandy is configured for static .1Q operation.
In this example, CDP is disabled on Gin’s Fa0/3 link using a no cdp enable interface-
level configuration statement, because CDP is not supported by the EX, and therefore
the protocol would just waste bandwidth here. The VLAN settings are confirmed at Gin:

Gin#show vlan brief

VLAN Name Status Ports
---- ---------------------- --------- -------------------------------
1 default active Fa0/1, Fa0/2, Fa0/4, Fa0/5
 Fa0/6, Fa0/7, Fa0/8, Fa0/9
 Fa0/10, Fa0/11, Fa0/12, Fa0/13
 Fa0/14, Fa0/15, Fa0/16, Fa0/17
 Fa0/18, Fa0/19, Fa0/20, Fa0/21
 Fa0/22, Fa0/23, Fa0/25, Fa0/26
 Fa0/27, Fa0/28, Fa0/29, Fa0/30
 Fa0/31, Fa0/32, Fa0/33, Fa0/34
 Fa0/35, Fa0/36, Fa0/37, Fa0/38
 Fa0/39, Fa0/40, Fa0/41, Fa0/42
 Fa0/43, Fa0/44, Fa0/45, Fa0/46
 Gi0/1, Gi0/2

EX to Catalyst VLAN Integration | 291

10 Sales_vlan active
20 Admin_vlan active

You can assume that Gin’s ISL and .1Q trunks are configured as described for
Whiskey, and are confirmed operational. With the IOS devices configured and con-
firmed, it’s time to direct attention to getting JUNOS and the EX switches up and
running in the trunking topology.

JUNOS VLAN and trunk configuration

Before moving on with the VLAN trunking configuration, first assess the state of host
communications; recall that previously, with the default configurations, connectivity
was confirmed among all four hosts:

Host1#ping 200.2.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.2, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host1#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host1#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms
Host1#

The limited connectivity matches expectations, given the partial trunking configs now
in place. Host1 and Host3 can still communicate because the EX switches they transit
are still in the default any-to-any untagged mode. The other pings fail because this
traffic leaves Vodkila untagged, and it is therefore assumed to be part of the native
VLAN upon receipt at Whiskey. Because native VLAN trunking has been disabled, this
traffic is dropped.

A similar fate befalls Host2 to Host3 pings:

Host2#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host2#

292 | Chapter 5: Virtual LANs and Trunking

This traffic belongs to the Sales VLAN at Whiskey, and therefore arrives at Brandy with
a VLAN tag of 10. However, Brandy has no such VLAN configured, and no trunk ports,
for that matter, so the tagged traffic is dropped at ingress.

The JUNOS configuration begins at switch Vodkila, where the two VLANs are defined
at the [edit vlans] hierarchy. The supported options to the vlan statement are dis-
played with the command-line interface’s (CLI’s) ? help function:

[edit]
lab@Vodkila# edit vlans

[edit vlans]
lab@Vodkila# set ?
Possible completions:
 <vlan-name> VLAN name
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> traceoptions VLAN trace options
[edit vlans]

The context-based help implies that the software is looking for a name, so one is
provided:

lab@Vodkila# set Sales_vlan ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 description Text description of the VLAN
> filter Packet filtering
> interface Name of interface that uses this VLAN
 l3-interface Layer 3 interface for this VLAN
 mac-limit Number of MAC addresses allowed on this VLAN (1..65535)
 mac-table-aging-time MAC aging time (60..1000000 seconds)
 vlan-id 802.1Q tag (1..4094)
 vlan-range VLAN range in the form '<vlan-id-low>-<vlan-id-high>'
 | Pipe through a command

The output confirms that a number of VLAN-specific options are available. In JUNOS
you can map a VLAN name to a specific tag, or to a range of tags, using the vlan-id or
vlan-range keyword, respectively. In addition, you can apply Layer 2/Layer 3 filters on
a VLAN basis with the filter hierarchy. You can also set MAC address limits and aging
parameters under the mac-limit and mac-table-aging-time hierarchies. We cover
VLAN-based filters in Chapter 8.

The interface keyword is used to link the VLAN to an RVI (a.k.a. an SVI in IOS) that
provides Layer 3 services (i.e., routing) for the VLAN. We cover the use of RVIs in
Chapter 7.

For now, define the two VLANs needed in this example:

[edit vlans]
lab@Vodkila# set Sales_vlan vlan-id 10

EX to Catalyst VLAN Integration | 293

[edit vlans]
lab@Vodkila# set Admin_vlan vlan-id 20

The result is confirmed:

[edit vlans]
lab@Vodkila# show
Admin_vlan {
 vlan-id 20;
}
Sales_vlan {
 vlan-id 10;
}

While in VLAN definition mode, add a single VLAN definition for Admin_vlan to Rum,
Brandy, and Bourbon. Only Brandy is shown:

[edit]
lab@Brandy# edit vlans

[edit vlans]
lab@Brandy# load merge terminal relative
[Type ^D at a new line to end input]
Admin_vlan {
 vlan-id 20;
}
^D
load complete

[edit vlans]
lab@Brandy#

Only the Admin VLAN is defined on these three switches because all three service
only Admin users. Adding full VLAN definitions to all switches is sometimes considered
a good practice because it simplifies adds and changes, especially when using GVRP,
as demonstrated in “Troubleshoot a VLAN problem” on page 301.

In this example, we are keeping things minimal, so only the needed VLAN definition
is added.

The symbolic names used to reference VLAN tag values are locally sig-
nificant. For proper operation, the tag value must match between
switches; the names used to reference these tags are not communicated
between switches. For obvious reasons, it’s considered a good practice
to adopt a global naming strategy to avoid confusion as the network
grows.

Meanwhile, back at Vodkila, the ge-0/0/7 interface is configured to belong to the Sales
VLAN. This action removes the interface from the default VLAN, which is where the
remaining access ports still reside:

[edit vlans]
lab@Vodkila# top

294 | Chapter 5: Virtual LANs and Trunking

[edit]
lab@Vodkila# edit interfaces ge-0/0/7

[edit interfaces ge-0/0/7]

lab@Vodkila# set unit 0 family ethernet-switching vlan members Sales_vlan

Note that when configuring VLAN assignments to an interface, you can use either a
symbolic name, as shown here, or the corresponding numeric tag value. The result is
displayed:

[edit interfaces ge-0/0/7]
lab@Vodkila# show
description "To Host 1";
unit 0 {
 family ethernet-switching {
 vlan {
 members Sales_vlan;
 }
 }
}

With the VLANs and access link defined, all that remains is trunk definition. You start
with the ge-0/0/3 link to IOS device Whiskey:

[edit interfaces ge-0/0/7]
lab@Vodkila# up

[edit interfaces]
lab@Vodkila# edit ge-0/0/3

[edit interfaces ge-0/0/3]
lab@Vodkila# set unit 0 family ethernet-switching port-mode trunk

[edit interfaces ge-0/0/3]
lab@Vodkila# set unit 0 family ethernet-switching vlan members Sales_vlan

[edit interfaces ge-0/0/3]
lab@Vodkila# set unit 0 family ethernet-switching vlan members Admin_vlan

The port-mode statement is used to place the interface’s logical unit into trunk mode;
recall that the JUNOS default is access mode. The trunk settings are confirmed for the
ge-0/0/3 interface:

[edit interfaces ge-0/0/3]
lab@Vodkila# show
description "To Whiskey";
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [Sales_vlan Admin_vlan];
 }
 }
}

EX to Catalyst VLAN Integration | 295

Note that in this case, there is no native VLAN defined on the trunk interface. This is
the JUNOS default, and is fine for our purposes; it’s one less VLAN to have to later
remove (i.e., prune in IOS-speak) from the trunks, after all. The CLI supports the notion
of the native VLAN, as well as a wildcard match-all function, via the native and all
keywords. A set unit 0 family ethernet-switching vlan members all statement
quickly adds all defined VLANs to a trunk interface, which saves a significant degree
of work when dealing with large numbers of VLANs.

This example shows the configuration of a single logical interface (ifl) that is assigned
unit number 0. Note that in the 9.2 release used for this book, EX switches do not
support the notion of flexible Ethernet encapsulation. The result is the mandate that
any interface configured to support the ethernet-switching family must be assigned a
single unit that is assigned number 0. This limitation is demonstrated at Rum:

[edit interfaces ge-0/0/0]
lab@Rum# show
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 }
}
unit 1 {
 family inet {
 address 200.0.0.1/24;
 }
}

[edit interfaces ge-0/0/0]
lab@Rum# commit check
[edit interfaces ge-0/0/0]
 'unit 1'
 Only unit 0 is valid for this encapsulation
error: configuration check-out failed

To better illustrate this point, the following example is taken from a significantly more
expensive MX platform that does offer support for flexible Ethernet services:

{master}[edit interfaces ge-5/0/3]
user@mx960# run show chassis hardware | match mx
Chassis JN10868FCAFA MX960
. . .

{master}[edit interfaces ge-5/0/3]
regress@auror# show
vlan-tagging;
encapsulation flexible-ethernet-services;
unit 0 {
 encapsulation vlan-bridge;
 vlan-id-range 3-4094;
 family bridge;
}
unit 1 {
 vlan-id 2;

296 | Chapter 5: Virtual LANs and Trunking

 family inet {
 address 200.0.0.1/24;
 }
}

{master}[edit interfaces ge-5/0/3]
user@mx960# commit check
configuration check succeeds

Getting back to the task at hand, the configuration of the ge-0/0/0 trunk is similar,
except that it specifies only the Admin VLAN:

[edit interfaces ge-0/0/0]
lab@Vodkila# show
description "To Rum";
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members Admin_vlan;
 }
 }

The configuration is committed at Vodkila, which should provide a working VLAN for
hosts in the Sales VLAN. Proper operation is verified at Host1:

Host1#ping 200.2.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.2, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 4/5/8 ms

The pings succeed, thereby confirming proper Sales VLAN operation. This is a good
sign. You confirm VLAN status back at Vodkila with a show vlans command:

[edit]
lab@Vodkila# run show vlans
Name Tag Interfaces
Admin_vlan 20
 ge-0/0/0.0*, ge-0/0/3.0*
Sales_vlan 10
 ge-0/0/3.0*, ge-0/0/7.0*
default
 None
mgmt
 bme0.32770, me0.0*

The output from the show vlans command confirms the presence of the default, Sales,
and Admin VLANs. In this configuration, no unused interfaces are enabled for the
ethernet-switching family, and as a result the default VLAN has no interface associa-
tions; the default VLAN still exists, however, and cannot be deleted. The asterisk (*)
in the display denotes that unknown (BUM) traffic is flooded over the interface to
facilitate learning and provide ongoing connectivity for traffic that can never be

EX to Catalyst VLAN Integration | 297

learned—for instance, Open Shortest Path First (OSPF) routing updates, which are
multicast-based.

Ethernet switching information is displayed to complete validation of the Sales VLAN:

[edit]
lab@Vodkila# run show ethernet-switching interfaces
Interface State VLAN members Blocking
bme0.32770 down mgmt unblocked
ge-0/0/0.0 up Admin_vlan unblocked
ge-0/0/3.0 up Admin_vlan unblocked
 Sales_vlan unblocked
ge-0/0/7.0 up Sales_vlan unblocked
me0.0 up mgmt unblocked

The display confirms that the ge-0/0/3 interface is operating as a trunk, albeit somewhat
indirectly by virtue of the interface having more than one VLAN association. In this
case, ge-0/0/0 is also a trunk, but due to the single VLAN assignment, you cannot
confirm the port’s role as access versus trunk interface in this display. For easy access
to that information, use the extensive switch to the show vlans command:

[edit]
lab@Vodkila# run show vlans extensive Sales_vlan
VLAN: Sales_vlan, Created at: Wed Jan 5 00:09:42 2005
802.1Q Tag: 10, Internal index: 8, Admin State: Enabled, Origin: Static
Protocol: Port Mode
Number of interfaces: Tagged 1 (Active = 1), Untagged 1 (Active = 1)
 ge-0/0/3.0*, tagged, trunk
 ge-0/0/7.0*, untagged, access

This output clearly indicates that the Sales VLAN has a single untagged access link and
one tagged trunk, which is in accordance with the test topology. The show ethernet-
switching table detail command is executed to confirm forwarding and learning be-
havior for each active VLAN:

[edit]
lab@Vodkila# run show ethernet-switching table detail
Ethernet-switching table: 3 entries, 1 learned

 Admin_vlan, *
 Interface(s): ge-0/0/0.0
 Interface(s): ge-0/0/3.0
 Type: Flood
 Nexthop index: 1283

 Sales_vlan, *
 Interface(s): ge-0/0/3.0
 Interface(s): ge-0/0/7.0
 Type: Flood
 Nexthop index: 1293

 Sales_vlan, 00:10:7b:3a:02:ea
 Interface(s): ge-0/0/7.0
 Type: Learn, Age: 0, Learned: 39:08
 Nexthop index: 1285

298 | Chapter 5: Virtual LANs and Trunking

The output confirms that Admin_vlan has two flood interfaces, as denoted by the *
character that denotes a wildcard (match-all) entry. As noted previously, the wildcard
entries use a flood-style next hop, which confirms that BUM traffic associated with this
VLAN will be flooded out of both the ge-0/0/3.0 and ge-0/0/7.0 interfaces; given this
topology, this behavior ensures proper ARP flooding and resulting IP operation. Note
that a flood next hop is always associated with an interface in Ethernet-switching mode,
even when that interface is not forwarding, for example. The lack of a learned MAC
entry on either of these ports implies there is no direct end-station attachment, which
in turn indicates both trunk ports (as was confirmed previously). Sales_vlan also shows
two flood next hops, but in addition displays a learned MAC address for its ge-0/0/7
access port.

With Sales_vlan now confirmed, it’s time to shift your attention to the steps needed
to get Admin_vlan up and running. Recall that you have already added the Admin_vlan
definition to all switches, including Rum, Brandy, and Bourbon:

[edit]
lab@Rum# show vlans
Admin_vlan {
 vlan-id 20;
}

This means all that’s left to get things up and running is trunk definition at all three
switches, and of course, the access port definitions for VLAN 20 at Brandy and
Bourbon. You begin at Brandy with both access and trunk port definition:

[edit interfaces]
lab@Brandy# set ge-0/0/4 unit 0 family ethernet-switching port-mode trunk

[edit interfaces]
lab@Brandy# set ge-0/0/7 unit 0 family ethernet-switching vlan members Admin_vlan

That wasn’t too difficult, was it? You display the results and commit the changes:

[edit interfaces]
lab@Brandy# show
ge-0/0/4 {
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 }
 }
}
ge-0/0/7 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members Admin_vlan;
 }
 }
 }
}
. . . .

EX to Catalyst VLAN Integration | 299

[edit interfaces]
lab@Brandy# commit

Next, define both trunks at Rum:

[edit interfaces]
lab@Rum# set ge-0/0/0 unit 0 family ethernet-switching port-mode trunk

[edit interfaces]
lab@Rum# set ge-0/0/4 unit 0 family ethernet-switching port-mode trunk

[edit interfaces]
lab@Rum# show
ge-0/0/0 {
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 }
 }
}
ge-0/0/4 {
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 }
 }
}
. . .

The changes are committed, and you complete the configuration with the access and
trunk port definitions at Bourbon:

[edit interfaces]
lab@Bourbon# set ge-0/0/3 unit 0 family ethernet-switching port-mode trunk

[edit interfaces]
lab@Bourbon# set ge-0/0/7 unit 0 family ethernet-switching vlan members 20

[edit interfaces]
lab@Bourbon# show
ge-0/0/3 {
 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 }
 }
}
ge-0/0/7 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members 20;
 }
 }

300 | Chapter 5: Virtual LANs and Trunking

 }
}

After committing the changes, test connectivity over the nascent Admin_vlan with a
Host3 to Host4 ping:

Host3#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host3#

The results are less than satisfactory. It seems something is wrong, so you get to do
some extra-credit troubleshooting.

Troubleshoot a VLAN problem

You begin fault analysis by displaying the VLAN status at Brandy:

[edit interfaces]
lab@Brandy# run show vlans
Name Tag Interfaces
Admin_vlan 20
 ge-0/0/7.0*
default
 None

The results seem pretty clear: only one interface, the ge-0/0/7 access port, is associated
with Admin_vlan. But why; what could be wrong here?

The issue stems from the JUNOS default that effectively sets the allowed VLAN range
to null on all trunk interfaces, which, note again, is the opposite of Cisco trunk defaults.
So, although you have functional trunk interfaces on the EXs, they are currently not
associated with any VLANs, so they do you little good. This condition is confirmed at
Rum, where both of its VLANs are shown to have no interface associations:

[edit]
lab@Rum# run show vlans extensive
VLAN: Admin_vlan, Created at: Mon Aug 11 03:41:29 2008
802.1Q Tag: 20, Internal index: 7, Admin State: Enabled, Origin: Static
Protocol: Port Mode
Number of interfaces: Tagged 0 (Active = 0), Untagged 0 (Active = 0)

VLAN: default, Created at: Thu Aug 7 01:36:26 2008
Internal index: 6, Admin State: Enabled, Origin: Static
Protocol: Port Mode
Number of interfaces: Tagged 0 (Active = 0), Untagged 0 (Active = 0)

Given that Brandy is isolated from the remaining EX switches by a Cisco cloud, there
is not much you can do there, except to add a static VLAN association to Brandy’s trunk
interface:

EX to Catalyst VLAN Integration | 301

[edit interfaces ge-0/0/4]
lab@Brandy# set unit 0 family ethernet-switching vlan members 20

[edit interfaces ge-0/0/4]
lab@Brandy# commit
commit complete

After the change is committed, the result of a show vlans command confirms that tag
20 is now correctly associated with Brandy’s trunk:

[edit interfaces ge-0/0/4]
lab@Brandy# run show vlans 20 detail
VLAN: Admin_vlan, 802.1Q Tag: 20, Admin State: Enabled
Number of interfaces: 2 (Active = 2)
 Untagged interfaces: ge-0/0/7.0*
 Tagged interfaces: ge-0/0/4.0*

While you are here, you decide to disable LLDP (i.e., 802.1ab) on the links that attach
to Cisco switches, because their IOS version does not understand the protocol—so
nothing is gained by running them on the Cisco attached links:

[edit]
lab@Brandy# show protocols lldp
interface all;
interface ge-0/0/7.0 {
 disable;
}
interface ge-0/0/4.0 {
 disable;
}

This completes the configuration of Brandy, and you begin to mull what’s needed at
the remaining EX switches. Thinking back to the previous discussion of GVMP, and
the fact that Vodkila, Rum, and Bourbon share an all-EX path and share the Admin_vlan
definition, this seems like a classic case of letting GVRP do some of the work by letting
it automatically add interested VLANs to trunk interfaces. The current GVRP imple-
mentation is very basic, and pretty much only allows you to enable or disable the pro-
tocol and adjust some timers. Given there is little effort involved, you opt to deploy
GVRP. Things begin at Vodkila, where you display the GVRP options:

[edit protocols gvrp]
lab@Vodkila# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable GVRP
> interface Configure interface options
 join-timer Join timer interval (milliseconds)
 leave-timer Leave timer interval (milliseconds)
 leaveall-timer LeaveAll timer interval (milliseconds)

It seems that there’s not much there, as previously noted. Seeing no need to alter the
default timer, it seems that the interface hierarchy is where you want to go. You enable
GVRP on Vodkila’s trunk interface to Rum:

302 | Chapter 5: Virtual LANs and Trunking

[edit protocols gvrp]
lab@Vodkila# set interface ge-0/0/0

[edit protocols gvrp]
lab@Vodkila# commit
fpc0:
. . .

After the commit, you confirm that GRVP is running with a few show gvrp commands:

[edit protocols gvrp]
lab@Vodkila# run show gvrp
Global GVRP configuration
 GVRP status : Enabled
 GVRP Timers (ms)
 Join : 200
 Leave : 600
 LeaveAll : 10000
Interface Name Protocol Status
-------------- ---------------
ge-0/0/0.0 Enabled

[edit protocols gvrp]
lab@Vodkila# run show gvrp statistics
GVRP statistics
 Join Empty received : 0
 Join In received : 0
 Empty received : 0
 Leave In received : 0
 Leave Empty received : 0
 LeaveAll received : 0
 Join Empty transmitted : 36
 Join In transmitted : 72
 Empty transmitted : 0
 Leave In transmitted : 0
 Leave Empty transmitted : 0
 LeaveAll transmitted : 16

The display confirms that GVRP is running on the ge-0/0/0 interface. However, sta-
tistics indicate that only transmit activity is occurring on the trunk. Adding GVRP to
Rum should remedy this:

[edit]
lab@Rum# set protocols gvrp interface all

[edit]
lab@Rum# commit
. . .

After the change, the statistics at Rum confirm that GVRP messages are now being ex-
changed in both directions on the trunk:

[edit]
lab@Rum# run show gvrp statistics
GVRP statistics
 Join Empty received : 4

EX to Catalyst VLAN Integration | 303

 Join In received : 4
 Empty received : 0
 Leave In received : 0
 Leave Empty received : 0
 LeaveAll received : 1
 Join Empty transmitted : 4
 Join In transmitted : 0
 Empty transmitted : 0
 Leave In transmitted : 0
 Leave Empty transmitted : 0
 LeaveAll transmitted : 2

The result is that Rum automatically adds the Admin VLAN to its ge-0/0/0 trunk
interface:

[edit]
lab@Rum# run show vlans
Name Tag Interfaces
Admin_vlan 20
 ge-0/0/0.0*
default
 None

You’re definitely getting close, but you’re not quite there yet; the lack of GVRP oper-
ation on Rum’s ge-0/0/4 trunk to access the Bourbon switch means there’s no automatic
tag association with this interface, given that GVRP cannot determine whether any
interested switches are attached to the trunk. Adding GVRP to Bourbon is the final piece
to this puzzle:

[edit]
lab@Bourbon# set protocols gvrp interface ge-0/0/3

[edit]
lab@Bourbon# commit

After the change, the VLAN-to-trunk associations are again displayed at Rum:

[edit]
lab@Rum# run show vlans
Name Tag Interfaces
Admin_vlan 20
 ge-0/0/0.0*, ge-0/0/4.0*
default
 None

Awesome! Both of Rum’s trunks now have the correct tag association. Things should
really turn around for the Admin folks. The ping is repeated at Host3 to confirm:

Host3#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 4/5/8 ms

304 | Chapter 5: Virtual LANs and Trunking

As hoped for, the machines in the Admin VLAN are now able to communicate. For a
final check, you confirm that no inter-VLAN communication is possible with a ping
attempt from Host3 in the Admin group to Host2 in the Sales group:

Host3#ping 200.2.2.2
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.2, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host3#

As expected, the pings fail. For these stations to communicate, they will need to share
a VLAN, or a router will need to provide Layer 3 forwarding. We cover the use of an
RVI to provide Layer 3 routing between VLANs in Chapter 7.

These results conclude the VLAN and trunking integration verification.

When All Looks Good but Things Don’t Work
In some rare instances after making VLAN-related changes, you may find that switching
is not working as expected. In many cases, you can issue a restart ethernet-
switching operational mode command to restart the Layer 2 switching process to regain
normal operation without having to reboot the switch:

lab@Rum> restart ethernet-switching
Ethernet Switching Process started, pid 665

lab@Rum>

This concept is similar to restarting the routing process when something goes awry at
Layer 3. The modular nature of JUNOS software makes such incremental recovery
possible, and in turn helps to minimize negative impact to the network.

Early adopters of any new product may find that they need to avail themselves of a
restart function more often than they would like; as always, a Problem Report should
be opened with the Juniper Technical Assistance Center (JTAC) to open a support case
and get the defect repaired.

Add Native VLAN Support
Typically, folks are never happy with “good enough.” In this case, after you successfully
deploy the required VLAN connectivity, you are asked to support CDP between the
two Cisco switches. Because CDP is sent and received on the native VLAN, this task
requires that you add native VLAN support to the EX switches; you can leave native
VLAN trunking disabled at both Cisco devices because the CDP traffic is locally ori-
ginated and is not switched between trunk interfaces. Figure 5-6 provides details on
the current task, along with the topology changes that need to be made.

EX to Catalyst VLAN Integration | 305

Figure 5-6. Native VLAN support

Figure 5-6 shows a simplified version of the VLAN topology. Note that the ISL trunk
between the two Cisco devices is shut down, for reasons that will become clear shortly:

Whiskey#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Whiskey(config)#interface fastEthernet 0/24
Whiskey(config-if)#sh
2d04h: %LINK-5-CHANGED: Interface FastEthernet0/24, changed state to
administratively down
. . .

The reason for this change will become obvious a bit later. Also, a new link has been
added between Gin and Rum. The trunk has been configured on both ends as per the
previous EX examples. At the IOS end:

Gin(config-if)#switchport
Gin(config-if)# switchport trunk encapsulation dot1q
Gin(config-if)# switchport trunk allowed vlan 2-4094
Gin(config-if)# switchport mode trunk

306 | Chapter 5: Virtual LANs and Trunking

Gin(config-if)# switchport nonegotiate
Gin(config-if)#no sh
2d04h: %LINK-3-UPDOWN: Interface FastEthernet0/2, changed state to up
. . .

And at the Juniper end:

[edit interfaces ge-0/0/2]
lab@Rum# show
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members 20;
 }
 }
}

The modified topology is confirmed with a host ping over the Admin VLAN:

Host3#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/8 ms

You now confirm baseline CDP operation at IOS switch Whiskey:

Whiskey#show cdp interface fa0/1
FastEthernet0/1 is up, line protocol is up
 Encapsulation ARPA
 Sending CDP packets every 60 seconds
 Holdtime is 180 seconds

The display confirms that CDP is enabled on its fa0/1 trunk, as is also the case with
Gin’s Fa0/2 trunk (not shown). Yet for some reason CDP has failed to detect the two as
neighbors:

Whiskey#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone

Device ID Local Intrfce Holdtme Capability Platform Port ID
INTERVLAN-SWITCH Fas 0/48 173 S I WS-C3550- Fas 0/21

These results confirm that although CDP is enabled, it’s not being trunked through the
EX segment of the network. Thinking back on that native VLAN stuff, and the differ-
ences in default handling of all things native, a solution presents itself. You must enable
native VLAN trunking on EX switches so that they can correctly process the untagged
CDP traffic that’s being sent by the Cisco devices. By adding VLAN 1 support as a
native VLAN to the EX trunks, you enable them to switch this untagged traffic end to
end.

EX to Catalyst VLAN Integration | 307

You start by defining a native VLAN on the Vodkila and Rum switches. The VLAN does
not technically have to be called native, but why not? This business is hard enough
without additional complexity.

lab@Vodkila# show vlans
Admin_vlan {
 vlan-id 20;
}
Sales_vlan {
 vlan-id 10;
}
native {
 vlan-id 1;
}

Note again that, unlike IOS, JUNOS does not define a native VLAN in a default config,
and by default the native VLAN is not trunked. To add trunking support, you must
define the native VLAN on each trunk interface (or use config groups to catch them all):

[edit]
lab@Vodkila# show interfaces ge-0/0/0
description "To Rum";
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members Admin_vlan;
 }
 native-vlan-id 1;
 }
}

[edit]
lab@Vodkila# run show vlans native
Name Tag Interfaces
native 1
 ge-0/0/0.0*, ge-0/0/3.0*

The results confirm that native VLAN support is added to both of Vodkila’s interfaces.
Similar changes are added to Rum, and a few moments later CDP status is again checked
at the IOS switches:

Whiskey#show cdp neighbors
Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge
 S - Switch, H - Host, I - IGMP, r - Repeater, P - Phone

Device ID Local Intrfce Holdtme Capability Platform Port ID
Gin.rtp.ietraining.net
 Fas 0/1 152 S I WS-C3550- Fas 0/2
INTERVLAN-SWITCH Fas 0/48 155 S I WS-C3550- Fas 0/21

The display confirms that CDP has formed a neighbor relationship between Whiskey
and Gin, showing that the EX switches are now correctly handling native VLAN traffic
on their trunk interfaces. Congratulations!

308 | Chapter 5: Virtual LANs and Trunking

Trunking CDP Through a VLAN
In this section, we tried to get CDP running between the Host machines, as they are
also IOS-based. This effort was foiled by the Catalyst 3550 switches used in the lab,
which seemed bent on intercepting this traffic, even though it had been received on an
EX access port and was not sporting a non-native VLAN tag. This traffic would pass
end to end through an EX-only switch path, but upon ingress to the Cisco switch, the
CDP messages were locally intercepted, ostensibly due to the use of a well-known
Ethernet multicast address (0100.0ccc.cccc). This condition is shown here for Host4
and Whiskey, which have CDP enabled but are not directly connected:

Host4(config)#interface ethernet 0
Host4(config-if)#cdp enable
Host4(config-if)#
3d23h: CDP-PA: version 2 packet sent out on
Ethernet0^Z
Host4#

And back at Whiskey, we have a new CDP neighbor and an accompanying console
warning that reports a (bogus) duplex mismatch, stemming from the belief that the two
neighbors are directly connected when in fact they are not:

15:50:54: %CDP-4-DUPLEX_MISMATCH: duplex mismatch
discovered on FastEthernet0/1 (not half duplex), with Host4
Ethernet0 (half duplex).

Whiskey#show cdp neighbor
Capability Codes: R - Router, T - Trans Bridge, B -
Source Route Bridge
 S - Switch, H - Host, I - IGMP, r -
Repeater, P - Phone

Device ID Local Intrfce Holdtme
Capability Platform Port ID
Gin.rtp.ietraining.net
 Fas 0/24 162 S I
WS-C3550- Fas 0/24
INTERVLAN-SWITCH Fas 0/48 178 S I
WS-C3550- Fas 0/21
Host4 Fas 0/1 151 R
2520 Eth 0

IOS supports a feature called Layer 2 Protocol Tunneling (L2PT) that allows the tun-
neling of STP, CDP, and other control plane messages over a Layer 2 switched infra-
structure. This feature is not needed on EX switches, as shown in this section. On the
EX, you simply tag such traffic at ingress, where it can be trunked normally.

Getting Loopy with It
Before we part ways in this chapter, a word on Layer 2 switching and loops is in order.
Recall that STP was disabled in this network, thereby eliminating any automatic pro-
tection from loops. Forwarding loops are particularly disastrous in a Layer 2 switched

EX to Catalyst VLAN Integration | 309

network because there is no Time to Live (TTL) mechanism to break the loop—so
things tend to just keep getting worse until the weak link in the chain breaks, which
temporarily breaks the loop, allowing a brief respite and return to normalcy. This relief
is short-lived and lasts only until the next BUM packet, which, given the chatty nature
of most LAN-based protocols, won’t be long.

Currently, the test network is loop-free due to the disabling of the ISL trunk link be-
tween Whiskey and Gin. Before making any changes, get an idea of the normal baseline
for host pings by starting pings from Host3 to Host4, while also monitoring traffic at
Brandy’s trunk interface:

Host3#ping
Protocol [ip]:
Target IP address: 200.2.2.4
Repeat count [5]: 500000
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:
Type escape sequence to abort.
Sending 500000, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!
. . .

And back at Brandy, here are the effects:

 Delay: 8/0/26
Interface: ge-0/0/4, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 100mbps
Traffic statistics: Current delta
 Input bytes: 324127 (144048 bps) [131106]
 Output bytes: 139459 (143472 bps) [128100]
 Input packets: 3694 (148 pps) [1089]
 Output packets: 1101 (147 pps) [1050]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 0 [0]
 L2 channel errors: 0 [0]
 . . .

The display confirms a rate of approximately 150 packets per second (pps). Big wow,
I know. The pings at Host3 are stopped, and the ISL trunk is reenabled:

Whiskey(config)#inter fastEthernet 0/24
Whiskey(config-if)#no sh
Whiskey(config-if)#
2d05h: %LINK-3-UPDOWN: Interface FastEthernet0/24, changed state to up

Remember, folks, please don’t try this at home. With redundant paths and no STP
active, this is a recipe for disaster. That being said, clear the ARP cache at Host3, which
should generate a single ARP broadcast at the next ping:

310 | Chapter 5: Virtual LANs and Trunking

Host3#clear arp

The ping is started, and you notice that it fails:

Host3#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)

The failure stems from loss related to the resulting broadcast storm; note that in this
network we have 10 Mbps access links and a 1,000-fold multiplication factor when the
packet starts looping through a GE-enabled core. Meanwhile, back at Brandy, things
are looking mighty wet given that there is a lot of rain in this “storm”:

Interface: ge-0/0/4, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 100mbps
Traffic statistics: Current delta
 Input bytes: 994191979 (16288856 bps) [78485889]
 Output bytes: 9914725 (0 bps) [204]
 Input packets: 11759148 (26425 pps) [943254]
 Output packets: 81231 (0 pps) [3]
Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]
 Input framing errors: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 0 [0]
 L2 channel errors: 0 [0]
 L2 mismatch timeouts: 0 Carrier transitions [0]
 Input framing errors: 0 [0]
 Policed discards: 0 [0]
. . .

A total of 26,425 pps is a lot of traffic to stem from a few wafer-thin ARP packets! Note
that each new BUM message simply piles on to increase the aggregate rate, until some-
thing gives. In this example, the following warnings are noted on the Cisco console:

2d05h: %SW_MATM-4-MACFLAP_NOTIF: Host 001d.b50e.9603 in vlan 666 is flapping
between port Fa0/24 and port Fa0/48
2d05h: %SW_MATM-4-MACFLAP_NOTIF: Host 0010.7b3a.0404 in vlan 20 is flapping between
port Fa0/24 and port Fa0/1
. . .

The messages are an indication that a MAC address is seen to be moving between ports
too often, which is a sure sign of a loop. In this case, as the messages are logged, the
forwarding loop is broken, which does save the network from the indefinite pain of a
“death by a million floods.” This IOS flood-protection feature works to break the loop,
but kicks in only after the threshold is crossed and does nothing to prevent or limit the
effect of the next loop until the threshold is triggered, again forcing a cessation of traffic
on the affected VLAN to break the loop.

EX to Catalyst VLAN Integration | 311

Note that during the storm, MAC learning errors are also reported by the EX switches
in the output of a show ethernet-switching statistics mac-learning command:

[edit]
lab@Brandy# run show ethernet-switching statistics mac-learning
Learning stats: 9579 learn msg rcvd, 1204 error
 Interface Local pkts Transit pkts Error
 ge-0/0/4.0 90 390 381
 ge-0/0/7.0 1 7 0

Here, the errors are incrementing on the trunk interface because the attached host’s
SMAC keeps oscillating between the access and trunk ports thousands of times per
second—a behavior that is deemed unnatural.

EX switches offer a storm-control feature that allows you to block all broadcast and all
unknown unicast traffic, or to rate-limit both to some percentage of interface speed.
You configure storm-control at the [edit ethernet-switching-options] hierarchy:

[edit]
lab@Rum# set ethernet-switching-options ?
Possible completions:
> analyzer Analyzer options
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> bpdu-block Block BPDU on interface (BPDU Protect)
> redundant-trunk-group Redundant trunk group
> secure-access-port Access port security options
> static Static forwarding entries
> storm-control Storm control configuration
> traceoptions Global tracing options for access security
> voip Voice-over-IP configuration
[edit]
lab@Rum#

Storm control is configured on a per-interface basic. The options are displayed:

[edit]
lab@Rum# edit ethernet-switching-options

[edit ethernet-switching-options]
lab@Rum# set storm-control interface ge-0/0/4 ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 level Percentage of link bandwidth (0..100)
 no-broadcast Disable broadcast storm control
 no-unknown-unicast Disable unknown unicast storm control
 | Pipe through a command

The CLI help function confirms options to block all broadcast or all unlearned unicast
traffic:

edit ethernet-switching-options]
lab@Rum# set storm-control interface ge-0/0/4 ?
Possible completions:

312 | Chapter 5: Virtual LANs and Trunking

 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 level Percentage of link bandwidth (0..100)
 no-broadcast Disable broadcast storm control
 no-unknown-unicast Disable unknown unicast storm control
 | Pipe through a command

In this example, we crank down BUM traffic to 1%, a low rate that still allows normal
operation, assuming, of course, that for most networks BUM is the exception rather
than the rule:

[edit ethernet-switching-options]
lab@Rum# show
storm-control {
 interface ge-0/0/0.0 {
 level 1;
 }
 interface ge-0/0/2.0 {
 level 1;
 }
 interface ge-0/0/4.0 {
 level 1;
 }
}

With the limits in place, the error messages cease to be logged on the Cisco devices.
Although 1% of a 1,000 Mbps link is still a boatload of traffic, in this case the storm-
control feature, applied on a single switch, greatly reduces the severity of the storm,
almost tamping it down to the level of a refreshing spring shower. The interface monitor
is started while pings are again attempted:

Brandy Seconds: 201 Time: 01:07:38
 Delay: 0/0/18
Interface: ge-0/0/4, Enabled, Link is Up
Encapsulation: Ethernet, Speed: 100mbps
Traffic statistics: Current delta
 Input bytes: 996537526 (178976 bps) [80831436]
 Output bytes: 9915473 (544 bps) [952]
 Input packets: 11790031 (329 pps) [974137]
 Output packets: 81242 (1 pps) [14]
Error statistics:
 Input errors: 0 [0]
. . .

And as expected, the display confirms a dramatic decrease in packet count, which now
hovers at a paltry 329 pps.

Even though the EX platform’s storm-control feature has been demonstrated to work,
every effort should be made to keep a Layer 2 network loop-free. Storm control is a
safeguard that prevents total meltdown, but the presence of a Layer 2 loop is always
disruptive and never beneficial. At the same time, you often need a rich interconnection
to ensure no single points of failure. This is where STP comes in. It lets you have as
many redundant paths as you can pay for, while ensuring that the end-to-end

EX to Catalyst VLAN Integration | 313

forwarding topology remains loop-free. When all goes well with the STP plan, storm
control is an insurance policy you will never need.

Interested? I bet. And that’s great because guess what’s covered in the next chapter?

Enjoy the ride.

VLAN Integration Summary
This section examined out-of-the-box VLAN and trunking behavior for IOS and
JUNOS, and went on to demonstrate a VLAN trunking scenario in a multivendor en-
vironment. Along with configuration, the various operational mode commands used
to verify and troubleshoot a VLAN configuration on EX switches were also shown.

The section ended with the purposeful creation of a forwarding loop and demonstration
of the mitigating EX storm-control feature, and hopefully motivated the reader for the
ensuing STP discussion in the following chapter.

Conclusion
VLANs and trunking are the norm in today’s Layer 2 switched networks. VLANs have
standards-based support in multivendor networks, offering the ability to perform vir-
tual adds, moves, and changes, and inherently limit BUM traffic to the interested user
communities to help improve both performance and security.

This chapter demonstrated best-practice VLAN and trunking concepts for EX switches
operating in a multivendor network.

Chapter Review Questions
1. In a default Layer 2 configuration, all EX interfaces:

a. Belong to the native VLAN, which is untagged

b. Belong to the native VLAN, which is VLAN 1

c. Belong to the default VLAN, which is untagged

d. Belong to the default VLAN, which is VLAN 1

2. Which of the following is true for the native VLAN?

a. It is not always required

b. It is defined by default on EX switches because switch-to-switch protocols use
it

c. User traffic can never use the native VLAN

d. EX switches support native VLAN trunking by default, for interoperability
with IOS devices

314 | Chapter 5: Virtual LANs and Trunking

3. True or false: an access port is mapped to its VLAN through explicit tagging.

4. What is required for communications to occur between stations assigned to dif-
ferent VLANs?

a. You must run multi-instance STP

b. A standalone Layer 3 device is required

c. This is never allowed, which is why the users are in different VLANs to start
with

d. A Layer 3 device, possibly housed within the switch itself, is required

5. What setting is required on an IOS switch to successfully trunk with an EX?

a. Nothing; the defaults on the IOS device will automatically negotiate compat-
ible settings

b. You must manually configure ISL trunking because EX switches do not
support VTP

c. You must manually configure .1Q trunking because EX switches do not
support DTP

d. This is possible only through tentative VLAN, which requires no explicit
configuration

6. Which are true regarding GVRP on EX switches?

a. It can automate the addition and removal of a local VLAN to a trunk

b. It can automate both the propagation of VLAN definitions and trunk binding

c. It performs propagation of VLAN definitions only

d. It operates in a client/server model with the ability to authenticate exchanges

e. Both A and D

7. By default, when you pair two EX switches the link will be in:

a. Trunk mode

b. Access mode, untagged

c. Down until you define either an access or a trunk mode role at both ends

d. Access mode using native VLAN tagging

8. Based on the following capture, which is true?

[edit]
lab@Brandy# run show ethernet-switching interfaces
Interface State VLAN members Blocking
ge-0/0/4.0 up Admin_vlan unblocked
 foo unblocked
ge-0/0/7.0 up Admin_vlan unblocked

a. Interface ge-0/0/4 is an access link

b. Interface ge-0/0/7 is a trunk

c. Interface ge-0/0/4 is a trunk

Chapter Review Questions | 315

d. Not enough information is given to determine the interface’s trunking status

9. Which is true with regard to MAC learning and VLANs on an EX?

a. Learning is performed on a per-VLAN basis

b. You can set MAC limits on a per-VLAN basis

c. You can define storm-control parameters on a per-VLAN basis

d. When configuring VLAN properties, you can specify either a symbolic name
or its numeric tag

e. Both A and B

10. Which of the following correctly assigns Admin_vlan to the ge-0/0/0 interface?

lab@Rum# show vlans
Admin_vlan {
 vlan-id 20;
}

[edit interfaces ge-0/0/0 unit 0]

a. set family ethernet-switching vlan members Admin_vlan

b. set family ethernet-switching vlan members 20

[edit interfaces ge-0/0/0]

c. set unit 0 vlan-id 20

d. set unit 0 vlan-id Admin_vlan

e. Either A or B

Chapter Review Answers
1. Answer: C. In the default EX configuration, there is no native VLAN. The default

VLAN is untagged, and in this manner it is similar but not equal to a native VLAN.

2. Answer: A. A native VLAN is not technically required, depending on what switch-
to-switch protocols and what types of equipment you are working with. On the
EX, you must specifically define and then add trunk support for a native VLAN
when one is desired.

3. Answer: False. Traffic on access links is untagged. The access link is mapped to a
VLAN at the [edit interfaces <name> unit <number> family ethernet-
switching] hierarchy using the vlan members statement.

4. Answer: D. A Layer 3 device (a router) is needed, but this function does not have
to be external and can be instantiated through the EX switch’s RVI.

5. Answer: C. Only C is correct. EX switches do not have any dynamic trunking
negotiation protocols, and do not support ISL encapsulation.

316 | Chapter 5: Virtual LANs and Trunking

6. Answer: A. Currently, GVRP functions only to automate VLAN-to-trunk bindings.
It does not operate in a client/server model, nor does it propagate VLAN definitions
themselves, and it does not support authentication.

7. Answer: B. With no trunk negotiation protocols, the default is access mode, even
on switch-to-switch links. As there is no native VLAN in a default configuration,
the access port defaults to the default VLAN, and does not use tagging.

8. Answer: C. Only a trunk interface is allowed to have multiple VLAN associations.
Use the output of a show vlans extensive command when in doubt:

[edit]
lab@Brandy# run show vlans extensive
VLAN: Admin_vlan, Created at: Sat Aug 9 22:05:10 2008
802.1Q Tag: 20, Internal index: 7, Admin State: Enabled, Origin: Static
Protocol: Port Mode
Number of interfaces: Tagged 1 (Active = 1), Untagged 1 (Active = 1)
 ge-0/0/4.0*, tagged, trunk
 ge-0/0/7.0*, untagged, access

9. Answer: E. Each VLAN provides the ability to specify MAC limits and aging. Storm
control is done on an interface rather than VLAN basis. When you assign a VLAN
to an interface you can use either a name or a tag, but when configuring the VLAN
and its properties at the [edit vlans] hierarchy you must use the symbolic name.

10. Answer: E. When you assign VLAN membership to an interface you can use the
symbolic name or numeric tag value, and this is done under the Ethernet-switching
hierarchy. The VLAN ID at the interface’s unit level is used to support a VLAN
tagged interface, which is not the same thing as binding an access or trunk link to
VLAN membership.

Chapter Review Answers | 317

CHAPTER 6

Spanning Tree Protocol

Switches have been used in networking for years and at times seem like a perfect sol-
ution to your problems. However, switches do have some limitations, and that is that
they do exactly what they are told. (Don’t you wish everybody did?) This can lead to
some undesirable results and often can lead to network meltdowns. To avoid this,
protocols such as Spanning Tree Protocol (STP) were developed to add some intelli-
gence to the physical switching architecture—in other words, “Do what you are told,
unless what I am telling you is incorrect.”

The following topics are examined in this chapter:

• Switches and loop issues

• STP

• Rapid Spanning Tree Protocol (RSTP)

• Configuring and monitoring the spanning tree

• Multiple Spanning Tree Protocol (MSTP)

• Redundant Trunk Groups (RTGs)

Feeling a Little Loopy
Before diving into the problem, let’s recap how a switch works:

• It uses Media Access Control (MAC) addresses to forward traffic toward its
destinations.

• It “learns” station locations based on the Source MAC (SMAC) addresses.

• If a destination is not known, it will send the frame out all ports in that broadcast
domain.

With these fundamental concepts in mind, consider the network in Figure 6-1. At first
glance, it may seem like a very redundant, well-designed network. Let’s examine what
happens when unicast, multicast, and broadcast frames are sent from Station A to
Station C.

319

First, the unicast packet is sent from A to C, both switches on the LAN. They will
perform a Destination MAC (DMAC) lookup for Station C and determine that the
outgoing port is Segment 2. In this case, it does not matter whether Station C had been
learned yet, as there is only one possible forwarding direction onto Segment 2, since a
frame will not be forwarded from the port that was received. The end result of this is
that Station C receives two copies of the frame. This violates the duplication definition
that a LAN should never receive multiple frames to a destination for a single frame
transmission. Also, duplicate frames could place quite a burden on the upper layer
protocols (perhaps breaking many), as well as increasing the network bandwidth on
the LAN by a factor of two.

If things are not ominous enough yet, consider what happens if a multicast or broadcast
frame is sent from Station A. Once again, both switches receive that frame and forward
it on toward Segment 2. However, both switches will receive the broadcast frame from
each other on Segment 2, and will forward it on to Segment 1. Then they will see the
frame on Segment 1 and forward it back to Segment 2, and so on, and so forth, and a
loop will be created. This will continue forever or until the switches’ resources are
consumed and they stop working properly.

Even worse, when the frame is circulating, the switches have to update their MAC table,
and it appears that a station has moved. For example, Switch 1 will see Segment 1 as
the source for Station A, but when receiving the broadcast frame on Segment 2, it will
update its table to reflect the “move” even though the actual physical station has not
moved. Then, moments later, Switch 1 will see a frame with Station A as a source on
Segment 1, so it will update its MAC table. Then it will receive a frame on Segment 2
with the source of Station A—oh, the confusion! In other words, the switches see either
Station A on two different segments at the same time, or two Station As, which causes
enough uncertainty for the switches to want to stop working and head to the bar.

Stupid Is As Stupid Does
You may just say to yourself, “Well, I would never configure my LAN for such a harmful
situation. I am the best network engineer in the world!” Before you start handing out
blue ribbons to yourself (hey, you can’t lose if nobody else is competing), consider these
fundamental network rules:

• Two of anything is usually better than one (increased capacity).

• People will make mistakes, and they may connect the wrong physical port.

• Redundancy is good, and you need to design around the possibility of element
failure.

320 | Chapter 6: Spanning Tree Protocol

Figure 6-1. Sample LAN topology

Based on these rules, it is quite easy to create a loop in a network topology. So, how do
you avoid this? Ideally, you will simply never configure the network to perform a loop,
but with redundancy requirements this is often not possible. Manually disabling/
enabling certain ports could be a solution, but not a very scalable one in large networks.
The answer? A simple protocol: Spanning Tree Protocol.

Loop Issue Summary
Loops can be an issue in a LAN environment based on even simple topologies. Loops
can cause:

• Unicast frame duplication

• Multicast and broadcast storms

• Flapping of switching tables

Loops are sometimes unavoidable due to a network’s physical topology and require-
ments, so STP was created to intelligently avoid loops. We examine this protocol in
detail in the next section.

Feeling a Little Loopy | 321

Spanning Tree Protocol
The loop issue was detected early on and many switch vendors developed their own
loop detection protocols. In 1985, the IEEE set out to develop switching standards that
could be used on any vendor, and part of the standard (IEEE 802.1D) included STP.

STP Basics
So, how does STP prevent loops? In simple terms it creates a tree topology with only
one available path between the root of a tree and a leaf (Figure 6-2). As the physical
switched network evolves, STP reconverges and rebuilds the tree. It does this by electing
a single “root” bridge and building paths with this bridge as the starting/ending point.

Although a single root bridge will be elected, the bridge can change over
time due to topology or bridge alterations.

The root bridge itself does not prevent loops in our two-switch topology (as in Fig-
ure 6-1). The issue is that each bridge forwards a duplicate frame onto the same LAN
segment. An easy fix is to simply elect a single switch to forward the frame onto the
segment. In STP terminology, a single switch should be elected to forward from the
root bridge to any single branch. This ensures that there is only a single path from one
end station to another end station. The switch that is responsible for this is called the
designated bridge (Figure 6-3).

In this chapter, we use the words switch and bridge interchangeably.
Historically, a bridge has two ports and is used to interconnect LANs,
usually in software-based devices. A switch is really a multiport bridge
and is usually a hardware-based device. Because there is not much of a
market for a two-port switch, bridges are no longer manufactured.

Since the designated bridge connects many paths between end stations, there can be
many designated bridges. These are decided on a link-by-link basis. So, a switch can
be a designated bridge for one link, many links, or no links at all. Also, the root bridge
is always the designated bridge for all of its directly connected ports.

322 | Chapter 6: Spanning Tree Protocol

Figure 6-2. Roots and trees

Figure 6-3. Designated bridge

Spanning Tree Protocol | 323

The designated bridge can have three types of ports:

Designated port
This is the port chosen for forwarding from the root bridge to a local segment
(Figure 6-4).

Root port
This is the port closest to the root bridge. Traffic is forwarded from the root port
to the designated port and vice versa.

Inactive port
If a port is not the designated or root port, it is not used for forwarding, so it is
inactive.

Figure 6-4. Link-by-link designated bridges

For the entire network to learn about the tree topology, messages called Bridge Protocol
Data Units (BPDUs) are sent around the network, describing each bridge/switch. To
identify each switch, a unique value called the bridge identifier is used. The original
specification states that the bridge identifier is a 64-bit field consisting of a 16-bit bridge
priority and a 48-bit MAC address. Since the switch will have many MAC addresses
for each interface, switches usually choose the lowest numbered port in the broadcast
domain as the bridge identifier. Since MAC addresses are simply identifiers, and do not
carry any numerical significance, the 16-bit priority plays a very important role. The
priority field is what gives the network administrator the control needed for spanning
tree control. The bridge priority default value is in the center of the range, at 32,768.

Bridge Priority and STP
In 2004, the bridge priority was redefined to be four bits of priority and 12 bits of system
ID. This system ID is used for 802.1Q MSTP, discussed later in this chapter. To be
compatible with older implementations, the priority component is still considered, for
management purposes, to be a 16-bit value. However, the values are restricted to the
four most significant bits. So, in practice the bridge priority must be set in the range of
0 to 61,140 in increments of 4,096.

324 | Chapter 6: Spanning Tree Protocol

Although MAC address OUIs are not assigned in any particular order,
the manufacturer-assigned field in the MAC address is generally as-
signed in numerical order as the switch is made. As a result, older
switches usually have an advantage, due to default behaviors and STP
tiebreaking rules. This is why the priority field plays such an important
role, as an older, less-powerful switch may continue as the root bridge
using default parameters.

Each port on the bridge is also assigned a 16-bit port identifier, which consists of an 8-
bit port priority field and an 8-bit port number (see the sidebar “Port Numbers in
STP” on page 326). The port priority is a value in the range of 0 to 255 with a default
value of 128. The port number identifies the port on the switch, and can be any value
depending on the vendor.

Cisco switches begin counting at a value of 1, and Juniper begins at a
value of 512.

Each link also receives a corresponding cost. In the original STP standard, the equation
was very simple:

Link cost = 1,000 / Data rate (Mbps)

However, the IEEE 802.1 committee soon realized that LAN speeds were steadily in-
creasing past 1 Gbps. Therefore, in 1998 they recommended a non-linear relationship
between data rates and link costs while maintaining backward compatibility with the
original specification. Table 6-1 lists STP link costs.

Table 6-1. STP link costs

Link speed (Mbps) STP cost

4 250

10 100

16 62

45 39

100 19

155 14

200 12

622 6

1,000 4

2,000 3

10,000 2

Spanning Tree Protocol | 325

These costs were updated yet again in 2004 when Rapid Spanning Tree Protocol was
defined (we discuss RSTP later in this chapter).

Port Numbers in STP
In the original specification, the port number field was set to 8 bits. This seemed like
an ample size, since most switches were two, four, or eight ports. The emergence of
switched LANs, microsegmentation, and freaking big switches changed all of that, and
the IEEE specification in 1998 set the port number field to 12 bits. However, to maintain
backward compatibility with older implementations’ management, the priority is still
considered 8 bits but with restricted values; only the most significant 4 bits can be set.

In practical terms, this means priority values must be set in increments of 16 (0, 16, 32,
64, 128, 144, 160, 176, 192, 208, 224, 240).

Calculating and Maintaining the Spanning Tree
Now that the exciting definitions are out of the way, let’s get down to the dirty business
of how STP actually works. When STP is configured, each switch must perform three
very simple functions:

1. Determine the root bridge.

2. Determine the designated bridges and ports for each link.

3. Maintain and react to topology changes.

All of the functions are done in parallel and independently on each switch. In step 1,
determining the root bridge, an election occurs (Figure 6-5). The election is very simple:
whichever bridge has the lowest bridge identifier becomes the root bridge. This root
bridge maintains its monarchist status until another bridge with a lower identifier enters
the fray, or the current root bridge is removed (or somebody unplugs it to use the outlet
for a phone charger). You control the root bridge and root responsibilities by setting
the bridge priority.

Figure 6-5. Root bridge election

326 | Chapter 6: Spanning Tree Protocol

After the election process, there is a root bridge for every link in the broadcast domain.
By definition, the root bridge is the designated bridge for every attached link. For other
switches, the designated bridge will be elected based on the cost back toward the root.
The lowest cost (based on interface speed) will be the designated bridge. If two switches
have the same cost back to the root bridge, the bridge with the lowest bridge identifier
will become the bridge with the designated port, and thus will become the designated
bridge (Figure 6-6).

Figure 6-6. Election of designated ports

If a bridge has multiple ports on the same LAN segment (Figure 6-7), the port with the
lowest port identifier becomes the designated port.

Figure 6-7. Multiple ports on the same segment

Once the tree has been created, it needs to be maintained to keep the topology loop-
free. This is done by having the root bridge and all designated bridges advertise the
current understanding of the spanning tree via configuration messages encoded as
BPDUs. Every bridge listens for the configuration messages and compares the infor-
mation it receives with its own internal information. If the bridge’s internal information
indicates that it is a better choice for the root bridge or designated bridge, it takes action

Spanning Tree Protocol | 327

to change the topology. In addition, these configuration messages act as keepalives for
a segment. If no messages are received on a certain port, it could indicate a switch failure
and cause that port to become a forwarding port and reconverge to a new topology.

In steady state operation, the root bridge is the source of the configuration messages.
At every “Hello” instance (the default is two seconds), the root bridge will send out a
configuration message indicating that it is the root (the root identifier will equal the
bridge identifier) and the path cost is zero. All bridges sharing links with the root bridge
receive the message, and the designated bridges create a new message based on the
information from the root bridge.

BPDUs are never forwarded through a bridge, but rather are re-created
and updated based on received information.

The designated bridges, in turn, transmit this message out of their designated ports.
Then the designated bridge for the next tier sends a message from its designated ports.
This process continues until there are no more designated bridges and the tree has
reached its final leaf.

During this process, each bridge compares the received information to its own internal
information. In particular, each bridge will compare:

• The root identifier in the received message to its own root identifier. If the bridge
has a better root identifier than that in the received configuration message, the
bridge will attempt to become the root by issuing a topology change configuration
message.

• The path cost received to the path cost available through any other ports. If the
bridge believes it has a better path cost than the designated bridge, it will attempt
to become the designated bridge by issuing a topology change configuration
message.

Bridge Protocol Data Units
BPDUs are the messages that the switches send to learn about each other, create the
spanning tree, and send configuration changes. There are two BPDUs: the configura-
tion message and the topology change message. BPDUs have changed over time (see
“Rapid Spanning Tree Protocol” on page 338), but the original fields are as follows
(Figure 6-8).

328 | Chapter 6: Spanning Tree Protocol

Figure 6-8. Original STP BPDU

Protocol Identifier
Identifies STP, and is always set to 00000000. Generic Attribute Registration Pro-
tocol (GARP) uses the same BPDU format with a different protocol identifier.

Protocol Version
Gives the version of the protocols, and is set to 00000000.

BPDU Type
Indicates the type of message (0 = configuration and 1 = topology change).

Flags
Specify bit 1 for the topology change indicator and bit 8 for the topology change
acknowledgment.

Root Identifier
Specifies the current root bridge.

Root Path Cost
Specifies the total cost back to the root bridge.

Bridge Identifier
Provides the sender’s bridge ID.

Port Identifier
Provides the sending port’s ID.

Message Age
Indicates the amount of time that has elapsed since the root sent the configuration
message on which the current configuration message is based.

Max Age
Indicates when the current configuration message should be deleted.

Spanning Tree Protocol | 329

Hello Time
Indicates the time between root bridge configuration messages.

Forward Delay
Indicates the length of time bridges should wait before transitioning to a new state
after a topology change. This timer is also used to age-out MAC addresses more
quickly than normal during a topology change.

The topology change BPDU shown in Figure 6-9 is much more basic and contains only
the following fields:

• Protocol Identifier (set to 0)

• Protocol Version (set to 0)

• BPDU Type (set to 1)

Figure 6-9. Topology change BPDU

BPDUs are encapsulated using Logical Link Control (LLC) Type 1 with a Destination
Service Access Point (DSAP) and a Source Service Access Point (SSAP) of 0x42. The
MAC source is the port in which the frame is transmitted, and the DMAC address is a
well-known link local multicast address of 01-80-C2-00-00-00. This means a bridge
does not need to know the unicast address of other bridges to run STP. Due to the link
local scope, bridges running STP will not forward BPDUs beyond the significant link.

Although STP uses a link local DMAC address, it is possible for devices
not running STP to forward the BPDU as a normal multicast address.

BPDU Learning and Port States
When BPDUs are sent out from each switch, each port can be in one of five possible
states: disabled, listening, learning, forwarding, or blocking (Figure 6-10).

330 | Chapter 6: Spanning Tree Protocol

Figure 6-10. Port states

The disabled state is just as described—it is not involved in STP. A port is in this state
due to a link failure, or if intentionally disabled by the administrator. A port in this state
does not send or receive any BPDUs.

The first state in which the port will normally initiate is called the blocking state. This
is a port that is neither the designated nor the root port. The blocking state will not
forward any data plans or send any BPDUs. However, it will listen for BPDUs to de-
termine whether it should be active in the spanning tree, as well as to make sure the
neighbor switch is still “alive.”

The first state a switch usually transitions to is the listening state. In this state, the port
will not forward traffic but will continue to receive BPDUs. The switch may also send
out BPDUs on this port to determine whether it should be the root or the designated
bridge. This is a transient state, as the port will then transition to either the blocking
state or the learning state.

The learning state indicates that the port is preparing to forward traffic. Since a new
switch will have an empty address table, it waits a certain amount of time, called the
forwarding delay, to build its address table. This is the same time a system will wait in
the listening state.

After the switch’s forwarding delay timer has expired, it is ready to forward data frames.
This state is called the forwarding state and is the steady state for a port that is part of
the active spanning tree. Table 6-2 shows the activity in each state.

Spanning Tree Protocol | 331

Table 6-2. Behavior of switches in different states

State Forward data Receive BPDU Send BPDU Important timers

Disabled No No No None

Blocking No Yes No Hello

Listening No Yes Yes Forwarding delay

Learning No Yes Yes Forwarding delay

Forwarding Yes Yes Yes Max age

Once the spanning tree is established, topology changes should not regularly occur.
The most common reasons for a topology change include the following:

• A new bridge or port is added to the network.

• An active link in the spanning tree fails.

• A root or designated bridge fails.

• A new link is added into the network.

• The administrator adjusts the bridge priorities, port priorities, or link costs that
affect the current spanning tree.

Since a topology change can cause a temporary disruption in service, do not add any
new switches or ports or change configurations until you reach a planned maintenance
window. A failure can never be planned, though, so STP has timers in place to avoid
transient loops as well as explicit topology change detection and notification. When a
topology change is detected (due to better configuration data than what is available in
the internal database), the switch will transmit a topology change message from its root
port toward its designated bridge. It sends this message until an explicit acknowledg-
ment from the designated bridge is received. This acknowledgment is determined by
the tc ac bit being set in the topology change BPDU. The designated bridge then sends
a topology change BPDU to its root port and waits for an acknowledgment. This process
continues all the way up the tree until it reaches the root bridge. The root bridge then
sets the topology change message in all of its configuration messages for some period
of time so that all bridges are informed of the change (Figure 6-11). When this bit is
set, the bridges will use a shorter address-aging time for their address tables.

Protocol Timers
A few important timers need to be adjusted for STP to operate efficiently. Some of these
we have touched upon, but not fully examined. These timers affect convergence and
are configurable as needed. The specification has recommended default values, how-
ever, which usually exhibit the needed behavior.

332 | Chapter 6: Spanning Tree Protocol

Figure 6-11. Topology change

Table age

Recall that switches are based on SMAC and DMAC addresses and receiving and send-
ing port numbers. Since there could be thousands of stations on the segment and new
ones arriving and leaving the network, it is important to keep the table as small and
efficient as possible. Unlike IP routing, which can accomplish this efficiency via route
summarization, MAC addresses cannot be summarized into blocks because a station
can choose to be wired to just about any switch port. In order to increase table effi-
ciency, switches use an aging rule, removing entries that have not been heard from for
some time, called the table aging time. As in any relationship, a delicate balance of time
and removal must be maintained. If the aging time is too short, the table will purge
quickly and constant flooding will be required for learning (nag, nag). If the timer is
too long, the table size may approach maximum limits due to stations that have not
transmitted for hours (ignore, ignore). The most common aging time is 5 minutes, but
this value is adjustable from 10 seconds up to several days.

Spanning Tree Protocol | 333

Hello time

The hello time is the time between configuration messages sent by the root bridge,
which in turn correlates to the time between configuration messages established by the
designated bridges. Faster hello times will speed up topology changes, but will also
increase messaging. The default hello time is 2 seconds, with a configurable range from
1 to 10 seconds.

Message age

Since there may be many switches in the network, propagation of new topology changes
takes time. During this time, it is entirely possible that a new topology change could
occur. This means before this new switch receives the information, it could be using
stale information and making the incorrect spanning tree decision, forming transient
loops. In order to prevent this eventuality, each configuration message carries a message
age that starts from zero at the root bridge and increments at each designated bridge.
When a bridge accepts the configuration data, the timer starts, and the message is aged
out if no refresh message is received within the maximum age (the default is 20 seconds).

Forwarding delay

The forwarding delay is the time a switch waits to transition to a new state, as well as
the MAC address aging time during a topology change. It’s necessary because some-
times stations appear to move based on a spanning tree topology change.

In Figure 6-12, if Link 1 fails, Link 2 will be activated and added to the spanning tree.
From the view of Switch 3, the stations appear to move from Port 1 to Port 2. In normal
operations, the switch would have to wait five minutes to age-out the old entries or
wait to receive data from each station and enable correct data flow. To remedy this,
when switches receive a topology change they enter a “fast aging” time indicated by
the forwarding delay, which is usually set to 15 seconds but can be in a range of 4 to
30 seconds. As previously mentioned, the forwarding delay takes on a dual role, as it
is also the time that the switch is waiting to transition to each state (listening to learning,
and learning to forwarding).

Putting the Theory Together
We have tossed a lot of concepts at you in this chapter, so let’s look at an example and
see how a spanning tree is built. Figure 6-13 shows a sample network. The bridge IDs,
port IDs, and link costs are all specified. Please note that Figure 6-13 is for learning
purposes only and is not necessarily what you will see in a real network. Also, notice
that Segment A is attached via a hub that is not shown in the diagram.

334 | Chapter 6: Spanning Tree Protocol

Figure 6-12. The incredible moving station

Figure 6-13. Spanning tree example

Spanning Tree Protocol | 335

The first step is to determine the root bridge. In this example, the root bridge is Bridge
122, as it has the lowest bridge ID. By definition, all ports on that bridge will be des-
ignated ports, and the root ports of Bridge 200 and Bridge 423 will be on Port 1 Link
A, as that is the lowest-cost path back to the root bridge.

Next, determine the root port—that is, the lowest cost back to the root bridge for each
switch:

• Bridge 200 is Port 1 with a cost of 19.

• Bridge 423 is Port 1 with a cost of 19.

• Bridge 347 is Port 1 with a cost of 100.

• Bridge 572 is Port 4 with a cost of 19.

• Bridge 347 is Port 1 with a cost of 100.

• Bridge 224 is Port 1 with a cost of 119.

Lastly, calculate the designated bridge for Segment B, Segment C, and Segment D, as
all other segments are connected to the root bridge.

Recall that the root bridge is always the designated bridge for its local
ports.

Segment B has two possible options, and both bridges have a cost of 19 back to the
root bridge. In this case, the bridge with the lowest bridge ID, 423, wins. Bridge 572 is
the designated bridge for Segment C because it has a lower cost. The same goes for
Bridge 347, with a lower cost for Segment D. All other bridge ports that are not root or
designated bridges will transition to the blocking state. Figure 6-14 shows the resulting
topology. We highly suggest that you draw out Figure 6-13 and see whether you get
the same spanning tree result.

STP Issues
STP seems like the perfect little protocol, right? It was created under the assumption
that topology changes do not happen often, and as a result, it was designed for stability
and loop-free reliability as opposed to speed.

336 | Chapter 6: Spanning Tree Protocol

Figure 6-14. Spanning tree result

However, it does have limitations, some of which include the following:

• Sometimes suboptimal paths are taken. STP chooses all of its paths based on link
speed, with no influence on the size or reliability of the link or switch.

• Convergence can be slow. Sometimes it can take up to 30 seconds for the spanning
tree to reconverge after a change.

• There is no per-link protocol. As a result, “hellos” essentially originate from the
root bridge and propagate to each designated bridge, which can slow down the
detection of link failure.

• The transition to the forwarding state can be slow, based on the forwarding delay
timer.

Spanning Tree Protocol | 337

These issues are addressed in RSTP (IEEE 802.1w), and we discuss them shortly. Today
most switches follow the 801.1D-2004 specification, which sets RSTP as the default
mode for switches.

STP Summary
Spanning Tree Protocol was made to solve the “loop” issues in bridges by creating a
single path between hosts with the reference point of the root bridge. It does some
simple calculations based on user-controllable parameters, which creates a single path
from one host to another to avoid any loops in the topology. However, STP was not
written for fast convergence, a major drawback for modern-day networks. Rapid Span-
ning Tree Protocol, examined next, was created to fix those deficiencies.

Rapid Spanning Tree Protocol
In order to fix some of the deficiencies in the original STP, the IEEE defined 802.1w,
Rapid Spanning Tree Protocol, later described in the 802.1D-2004 specification.

STP converges very slowly, after a topological change. When using default values for
the max age (20 sec) and the forward delay (15 sec) parameters, it takes 50 seconds for
the bridge to finally converge:

convergence delay = 2 × forward delay + max age

This setup was OK for early networks, but like the Commodore 64, it became unac-
ceptable as technology advanced. RSTP vastly improves that time, often providing
subsecond transitions.

Essentially, the major difference is a centralized versus distributed model. In STP, the
root bridge has most of the responsibility for spanning tree maintenance and change
notifications and is the “central” point. In RSTP, all bridges take an active role in the
network’s connectivity. This and other new protocol specifications lead to increased
reconvergence times.

New BPDU Definition and Function
RSTP slightly modifies the BPDUs’ format and function and sends them out at a quicker
rate (two-second default). They are now used as “hellos,” as opposed to in original STP,
where BPDUs were relayed from the root bridge. Every bridge will send out the BPDU
with current information every hello time, even if it does not receive a BPDU from the
root bridge. This method is quicker and more distributed.

The first change is that the BPDU and type field are now version 2, which means a
switch that does not support RSTP will drop the BPDU. The biggest change, however,
is the flags field. STP defines only two bits, but in RSTP, all bits are defined. Three of

338 | Chapter 6: Spanning Tree Protocol

the bits are used to indicate the port role, and two of the bits are for port states, as
shown in Figure 6-15.

Figure 6-15. Option bits

The final two bits are used for proposal and agreement, which we discuss in the sections
on topology change and transitions later in this chapter.

Interface Types and States
RSTP defines new interface types, as well as new port states. This allows for quicker
direct and indirect link failure and recovery. The first new features define new interface
types:

Point-to-point (P-to-P)
Direct connections between switches

Edge port
Port connection to end stations and not receiving BPDUs

Shared/non-edge
Connection to a LAN that is a shared medium and is receiving BPDUs, mostly
likely a simple hub

Depending on the interface type, RSTP acts differently, based on the port roles. The
port roles in RSTP are as follows:

Root port
Indicates the port with the lowest cost to the root bridge, as in original STP

Designated port
Indicates the designated port, as in original STP

Alternate port
Provides an alternate port to the root port in case of a failure

Backup port
Provides a redundant path to a segment, and acts as a backup in case of a designated
port failure

Rapid Spanning Tree Protocol | 339

Figure 6-16 shows the alternate and backup ports.

Figure 6-16. Alternate and backup ports

RSTP uses fewer port states than STP, defining only three states: discarding, learning,
and forwarding. The discarding state is comparable to three of STP’s states: disabled,
blocking, and listening. Table 6-3 compares the states.

Table 6-3. RSTP versus STP port states

STP RSTP

Disabled Discarding

Blocking Discarding

Listening Discarding

Learning Learning

Forwarding Forwarding

340 | Chapter 6: Spanning Tree Protocol

RSTP Convergence
As previously mentioned, RSTP speeds up convergence by decreasing transition time
and topology change notifications. Whereas STP relied heavily on timers, RSTP allows
a feedback mechanism in order to transition a port. A new root port or designated port
that is connected to a P-to-P link or configured as an edge port can be transitioned to
the forwarding state without waiting for the timer to expire. The edge port connects
directly to end stations and thus cannot create loops. Therefore, it can be placed in the
forwarding state without any delay. Also, an alternate port and backup port can im-
mediately transition to the root port or designated port in the event of a link failure.

A P-to-P link can transition to the forwarding state after it receives an acknowledgment
from the neighboring bridge that it is attached to the link in the agreement/proposal
mechanism. Basically, when a bridge needs to transition a port into the forwarding
state, it sends out a configuration message with the proposal bit set. If a bridge receives
this message and verifies that the information in the message is superior, it begins the
sync operation. This operation places all non-edge ports in the blocked state and sends
a configuration message with the agreement bit set to the original bridge. The agree-
ment bit setting causes the interface to immediately transition to the forwarding state.
If a bridge does not receive an acknowledgment of a proposal message it has sent, it
returns to the original 802.1D convention and slowly transitions its port to the for-
warding state through listening and then learning intermediate states.

This method works only for P-to-P links; shared media follow the legacy
STP method.

As an example, take a look at Figure 6-17. The root bridge and Bridge A exchange
BPDUs. Initially, the link between the root bridge and Bridge A is in the blocked/learn-
ing state, as is normal for the initialization process. The BPDUs have the proposal bit
set. Bridge A notices that the BPDU from the root bridge is superior, so it begins the
sync process (Figure 6-18).

The sync process causes the bridge to put its links to Bridge B and Bridge C in the
discarding state. It also sends a BPDU to the root bridge with the agreement bit set.
This is a copy of the BPDU that was received from the root with only the agreement bit
set. This causes the ports between the root bridge and Bridge A to go to the forwarding
state.

Rapid Spanning Tree Protocol | 341

Next, Bridge B and Bridge C receive the BPDU with the proposal bit set. Bridge B
contains only edge ports, so it has no ports to block for the sync process. Bridge C has
two edge ports and one non-edge port to Bridge D, which it blocks. Again, Bridge B
and Bridge C send BPDUs back to Bridge A, which sets the ports to the forwarding
state (Figure 6-19).

Figure 6-17. RSTP convergence, step 1

Figure 6-18. RSTP convergence, step 2

342 | Chapter 6: Spanning Tree Protocol

Finally, Bridge C sends a BPDU to Bridge D, which examines the BPDU and notices
that it is inferior. It responds to Bridge C with its superior BPDU, which causes Bridge
C to remain in the blocking state.

Figure 6-19. RSTP convergence, step 3

Topology changes

As mentioned previously, when an STP bridge detects that a topology change has oc-
curred, it transmits a TCN message toward the root bridge and sets the TC flag in the
configuration messages it transmits to the network. When network bridges receive a
configuration message with the TC flag on, they also set this flag in the configuration
messages they transmit on their designated ports toward the root bridge. This process
continues until the root bridge is notified of the change. The root bridge then sets the
TC flag in its BPDUs so that all bridges are notified of the event and the shortened aging
time can be used.

RSTP bridges, on the contrary, use TCN messages only if an STP bridge needs to be
notified of the topology change. Instead, each RSTP bridge that has detected a topology
change starts a timer equal to twice the hello time for all its non-edge designated ports
and its root port if needed, and then constantly transmits configuration messages on
these ports with the TC flag on until the timer expires.

Rapid Spanning Tree Protocol | 343

When a bridge receives a configuration message with the TC flag set, it first flushes all
the entries in its filtering database except the entries containing MAC addresses that
were learned via the port that received the configuration message with the TC flag on.
Then that bridge starts a timer and transmits its own configuration messages with the
TC flag set on all its designated ports and the root port until the timer expires.

This is another example of RSTP’s efficiency. STP sets a timer (forward-
ing delay) when the TC flag is received in order to age-out entries; in
RSTP, on the other hand, the bridge ages out its database as soon as it
receives the TC flag.

In this way, the news of the topology change quickly spreads over the entire network.
This mechanism is faster and much more efficient than the one used by STP bridges.
First, there is no need to wait until the TCN message reaches the root bridge, and then
wait still longer until a configuration message with the TC flag on is received on the root
port, and even longer until the shorter aging timer expires in order to delete old entries
from the filtering database. Instead, the RSTP bridge immediately deletes old entries
and notifies the other bridges to do the same. Second, a receipt of a configuration
message with the TC flag set causes an STP bridge to age-out all the entries of its filtering
database. The RSTP bridge, on the contrary, does not flush entries containing MAC
addresses that were learned via the port that received the configuration message with
the TC flag on. As a result, the number of flushed MAC addresses during a topology
change is reduced.

Link failures

Let’s look at two examples of direct link failures between switches and the root bridge.
These scenarios are often known as “backbone fast” in the Cisco world. Figure 6-20
depicts the first scenario. The link between the root and Switch B fails. The process
goes like this:

1. As soon as Switch B detects the link failure, the alternate port assumes the new role
of root port. Depending on the failure type, this could be a subsecond transition.

2. Switch B sends out BPDUs with the TC flag on to Switch A, which sends the BPDU
to the root. This causes the switches to age-out the MAC addresses and start the
relearning process.

344 | Chapter 6: Spanning Tree Protocol

Figure 6-20. Failure with alternate port

A slightly different failure is observed if we look at the link between Switch A and the
root bridge. The process, shown in Figure 6-21, is as follows:

1. Switch A’s root port fails, assuming it’s a new root, since it has no previous alternate
port.

2. Switch B receives inferior BPDUs from Switch A on its alternate port, and sends a
root link query to verify that the root bridge is still alive.

3. Upon root verification, Switch B immediately moves from the alternate port to the
designated port role, and begins sending stored superior BPDUs to the downstream
Switch A.

4. Switch A receives superior BPDUs, knows it is not the root, and places the port
connecting to Switch B in the root port role.

Rapid Spanning Tree Protocol | 345

Figure 6-21. Failure without alternate port

Link Cost in RSTP
The original STP specification used a 16-bit unsigned integer for link speed, but RSTP
uses the full 32 bits of range. This causes the default values to change according to the
rules laid out in Table 6-4. If a bridge is encountered that uses the old 16-bit link speed
field, it will use a 65,535 cost for any link speeds greater than 100 Mbps.

Table 6-4. RSTP link costs

Link speed Recommended value

≤100 Kbps 200,000,000

1 Mbps 20,000,000

10 Mbps 2,000,000

100 Mbps 200,000

1 Gbps 20,000

10 Gbps 2,000

100 Gbps 200

346 | Chapter 6: Spanning Tree Protocol

Link speed Recommended value

1 Tbps 20

10 Tbps 2

Compatibility with STP
As previously mentioned, RSTP is backward compatible with STP. If there are three
bridges on the segment, A, B, and C, and Bridge C runs legacy STP, Bridge A and Bridge
B will fall back to STP mode.

For instance, suppose Bridge A and Bridge B both run RSTP, with Switch A designated
for the segment (Figure 6-22). Bridge C is brought online and runs legacy STP. Because
802.1D bridges ignore RSTP BPDUs and drop them, C believes there are no other
bridges on the segment and starts to send its inferior 802.1D-format BPDUs. Switch A
receives these BPDUs and, after twice the hello-time seconds maximum, changes its
mode to 802.1D on that port only. As a result, C now understands the BPDUs of Switch
A and accepts A as the designated bridge for that segment.

Figure 6-22. STP compatibility

Notice that in this particular case, if Bridge C is removed, Bridge A runs in STP mode
on that port even though it is able to work more efficiently in RSTP mode with its
unique neighbor B. This is because A does not know Bridge C is removed from the
segment. In this situation, you’d have to manually restart the STP process in order for
Bridge A and Bridge B to revert to RSTP.

Interoperability Between Juniper and Cisco
Before RSTP and MSTP (discussed shortly) were standardized, Cisco implemented its
own proprietary protocols to try to solve these issues. One such protocol on Cisco is
PVST+, which implements “multi-instance” spanning trees that allow multiple instan-
ces of STP on a single trunk. Essentially, virtual LAN (VLAN) 1 traffic uses the standard
spanning tree destination multicast address 01:80:C2:00:00:00. The other VLAN(s) on
the trunk advertise tagged PVST+ BPDUs to Cisco’s reserved multicast address,
01:00:0C:CC:CC:CD. This allows Cisco to have a per-VLAN instance that can utilize
multiple redundant trunk links by load-balancing the VLANs across them. The disad-
vantage of this protocol is that it has scaling issues, in addition to being proprietary.

Rapid Spanning Tree Protocol | 347

Since this is the default configuration for many Cisco switches, it is important to note
that any non-VLAN 1 traffic will simply be forwarded like any other multicast address
and flooded on all forwarding ports within the VLAN in which the respective BPDUs
are received (Figure 6-23). If the port is in the blocked state, no traffic will be forwarded,
as usual.

Figure 6-23. Juniper forwarding with PVST+

In Figure 6-24, Switch 1 and Switch 2 are Cisco switches running PVST+. Switch 1 is
the STP root for VLANs 1, 5, and 77, with a bridge priority of 4096. It is also the STP
backup root switch for VLANs 20 and 66, with a bridge priority of 8192. Switch 2 is
the STP root switch for VLANs 20 and 66, with a bridge priority of 4096, and is the
STP backup root switch for VLANs 1, 5, and 77, with a bridge priority of 8192.

Figure 6-24. Juniper at the access layer

348 | Chapter 6: Spanning Tree Protocol

There is one additional caveat to PVST+. By default, the path cost as-
signed by PVST+ is based on Cisco’s STP cost convention, not the IEEE
STP cost. You must change the path cost so that it complies with the
IEEE STP path cost and all similar links (such as FastE and GbE) have
the same link-cost value. On the Cisco devices, the command spanning-
tree pathcost method long must be entered to make it compliant with
the current IEEE STP path cost. This command will be applied to all
Cisco switch ports.

Switch 3, shown in Figure 6-25, is a Juniper Networks EX Series switch running RSTP.
Since RSTP has only a single spanning tree instance for all VLANs across a trunk and
there is no VLAN awareness, all traffic will be forwarded or blocked based on the VLAN
1 topology. Therefore, the link between Switch 1 and Switch 3 will be forwarded for
all VLANs.

The net result is that Switch 3 is blocking one of the uplinks; there is no logical Layer
2 loop in the topology presented in Figure 6-25, regardless of which Cisco switch is the
root for any of the VLANs (except VLAN 1) and regardless of the fact that these Cisco
switches are running PVST+.

Figure 6-25. Cisco at the access layer

Again, RSTP is enabled on the EX Series switches (Switch 1 and Switch 2) and PVST+
is enabled on the Cisco switch (Switch 3). Switch 1 is the root of RSTP with a priority
of 4096; Switch 2 is the backup root switch of the Common Spanning Tree (CST,
discussed shortly) with a priority of 8192.

Rapid Spanning Tree Protocol | 349

Switch 3 (the Cisco switch running PVST+) recognizes Switch 1 as the STP root for
VLAN 1 and recognizes Switch 2 as having a lower bridge priority than itself on VLAN
1, therefore blocking its uplink trunk port to Switch 2 on VLAN 1.

For VLANs 5, 77, 20, and 66, Switch 3 sends out Cisco proprietary PVST+ BPDUs on
the trunks. Because Switch 1 and Switch 2 do not understand PVST+ BPDUs, the
switches will treat them as regular Layer 2 multicast packets and flood them out of the
switch ports. Switch 3 is the PVST+ root for VLANs 5, 77, 20, and 66 and receives its
own PVST+ BPDUs for the VLANs on both of its uplinks; so it ends up blocking one
of these two uplink trunk ports.

Therefore, the result is a forwarding topology similar to that in Figure 6-25 with only
one uplink trunk port forwarding on all VLANs on Switch 3 and the other uplink trunk
port blocking on all VLANs.

RSTP Summary
Rapid Spanning Tree Protocol fixes the convergence issues found in the original Span-
ning Tree Protocol. It accomplishes this by simplifying states and eliminating the timers
needed to transition from one state to another. Why not take a quick break and make
sure you understand these concepts as we prepare to take a swan dive into a real live
network.

Spanning Tree Configuration
To configure spanning in JUNOS software, first navigate to the [edit protocols
stp] level. Enable each interface on which you would like to run STP, or alternatively,
if you would like to run STP on every interface with Ethernet switching, simply enable
the protocol itself:

[edit]
lab@Brandy# set protocols stp

[edit]
lab@Brandy# show protocols
lldp {
 interface all;
}
stp;

350 | Chapter 6: Spanning Tree Protocol

The all keyword is not configured, as every interface with Ethernet
switching will have STP enabled.

This is also where timers, priorities, and other STP parameters can be set. Notice
that some aspects of RSTP configuration are shown, since JUNOS implements
802.1D-2004:

lab@Brandy# set protocols stp ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 bpdu-block-on-edge Block BPDU on all interfaces configured as edge (BPDU
 Protect)
 bridge-priority Priority of the bridge (in increments of 4k - 0,4k,8k,..60k)
 disable Disable STP
 forward-delay Time spent in listening or learning state (4..30 seconds)
 hello-time Time interval between configuration BPDUs (1..10 seconds)
> interface
 max-age Maximum age of received protocol bpdu (6..40 seconds)
> traceoptions Tracing options for debugging protocol operation
 | Pipe through a command

Let’s look at how STP operates with default parameters. Recall the topology in Fig-
ure 6-25. All interfaces are enabled for STP using the default configuration.

Figure 6-26 shows the resulting STP topology, with Rum as the root bridge, since it has
the lowest bridge ID (MAC address). Since all default parameters are used, the root
bridge (Rum) is determined by the MAC address.

Spanning Tree Configuration | 351

Figure 6-26. Physical topology

352 | Chapter 6: Spanning Tree Protocol

Figure 6-27 shows the default spanning tree.

Figure 6-27. Default spanning tree

Spanning Tree Configuration | 353

The loop-free paths between the hosts are as follows:

Host1→Vodkila, Rum, Bourbon→Host4
Host1→Vodkila, Rum, Gin, Whiskey→Host2
Host1→Vodkila, Rum, Brandy→Host3
Host2→Whiskey, Gin, Rum, Brandy→Host3
Host2→Whiskey, Gin, Rum, Bourbon→Host4
Host3→Brandy, Rum, Bourbon→Host4

Let’s take a closer look at a few of the switches in the topology, namely, Rum, Brandy,
and Gin, and see how some of the ports were assigned the states.

First, look at the default parameters for each switch. On Rum, notice that the bridge ID
and the root ID are identical, indicating that it is indeed the root bridge:

lab@Rum> show spanning-tree bridge detail
STP bridge parameters
Context ID : 0
Enabled protocol : STP
 Root ID : 32768.00:19:e2:56:ee:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Message age : 0
 Number of topology changes : 1
 Time since last topology change : 1328 seconds
 Local parameters
 Bridge ID : 32768.00:19:e2:56:ee:80
 Extended system ID : 0
 Internal instance ID : 0
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Path cost method : 32 bit

In Juniper, the bridge ID is chosen as the first public MAC address assigned to the
switch. A show chassis mac-addresses command will show you the first public address:

lab@Rum> show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 00:19:e2:56:ee:80
 Public count 64

Brandy also sees Rum as the root bridge with a MAC address of 32768.00:19:e2:56:ee:80:

lab@Brandy> show spanning-tree bridge
STP bridge parameters
Context ID : 0
Enabled protocol : STP
 Root ID : 32768.00:19:e2:56:ee:80
 Root cost : 20000
 Root port : ge-0/0/3.0
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds

354 | Chapter 6: Spanning Tree Protocol

 Message age : 1
 Number of topology changes : 1
 Time since last topology change : 1402 seconds
 Local parameters
 Bridge ID : 32768.00:1f:12:30:96:80
 Extended system ID : 0
 Internal instance ID : 0

On Gin, the same timers are observed with this default configuration:

spanning-tree mode pvst
spanning-tree extend system-id

Notice there are two VLANs configured—the default VLAN 1 and management VLAN
666, as PVST+ is enabled by default:

Gin#show spanning-tree bridge de
VLAN0001
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
VLAN0666
 Bridge ID Priority 33434 (priority 32768 sys-id-ext 666)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

It also sees the root bridge as Rum:

Gin#show spanning-tree root

 Root Hello Max Fwd
Vlan Root ID Cost Time Age Dly Root Port
------------ -------------------- --------- ----- --- --- -----------
VLAN0001 32768 0019.e256.ee80 19 2 20 15 Fa0/2
VLAN0666 33434 000b.5f01.f380 19 2 20 15 Fa0/48

Now examine the interface states on the switches. First, on the root bridge Rum, we
expect to see all interfaces as designated ports and in the forwarding state, and this is
the case except for ge-0/0/8, which is an administratively disabled port:

lab@Rum> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 32768.0019e256ee80 20000 FWD DESG
ge-0/0/1.0 128:514 128:514 32768.0019e256ee80 20000 FWD DESG
ge-0/0/2.0 128:515 128:515 32768.0019e256ee80 200000 FWD DESG
ge-0/0/3.0 128:516 128:516 32768.0019e256ee80 20000 FWD DESG
ge-0/0/4.0 128:517 128:517 32768.0019e256ee80 20000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.0019e256ee80 20000 BLK DIS

Notice the port cost is using the updated recommended values in 802.1D-2004. All 1
Gbps links have a port cost of 20,000, while the link to ge-0/0/2, which is a 100 Mbps
link, has a port cost of 200,000.

Spanning Tree Configuration | 355

Next, looking at Brandy, we see that it is the designated bridge for most of its ports, as
it has a lower bridge ID (MAC address) than its neighbor switches. The priorities are
the same, since they have not been configured, so this is the tiebreaker calculation. Also
observe that ge-0/0/3 is the root port, as it is the lowest-cost path back to Rum. We
also see a path cost of 2,000,000 for ge-0/0/7 and ge-0/0/12 because they connect to a
10 Mbps port:

lab@Brandy> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/1.0 128:514 128:514 32768.001f12309680 20000 FWD DESG
ge-0/0/2.0 128:515 128:515 32768.001f12309680 20000 FWD DESG
ge-0/0/3.0 128:516 128:516 32768.0019e256ee80 20000 FWD ROOT
ge-0/0/4.0 128:517 128:3 32769.000b5fc69180 200000 BLK ALT
ge-0/0/5.0 128:518 128:518 32768.001f12309680 20000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f12309680 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.001f12309680 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f12309680 20000 FWD DESG
ge-0/0/12.0 128:525 128:525 32768.001f12309680 2000000 FWD DESG

In a Juniper device, port IDs begin counting at 513, whereas Cisco de-
vices begin counting at 0.

Brandy’s ge-0/0/4 interface is in the blocking state. Let’s look at the neighbor switch to
see why:

lab@Brandy> show spanning-tree interface ge-0/0/4 detail

Spanning tree interface parameters for instance 0

Interface name : ge-0/0/4.0
Port identifier : 128.517
Designated port ID : 128.3
Port cost : 200000
Port state : Blocking
Designated bridge ID : 32769.00:0b:5f:c6:91:80
Port role : Alternate
Link type : Pt-Pt/NONEDGE
Boundary port : NA

Gin is the designated bridge on all its interfaces and has a root port of Fa0/2. One
important difference from the Juniper switches is that the default cost is based on the
STP cost and not the IEEE recommended cost. Notice the cost of 19 on the interfaces,
which causes Gin to appear as the best root path cost for all ports:

356 | Chapter 6: Spanning Tree Protocol

Gin# show spanning-tree

VLAN0001
 Spanning tree enabled protocol ieee
 Root ID Priority 32768
 Address 0019.e256.ee80
 Cost 19
 Port 2 (FastEthernet0/2)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 300

Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- ---------------------
Fa0/1 Desg FWD 19 128.1 P2p
Fa0/2 Root FWD 19 128.2 P2p
Fa0/3 Desg FWD 19 128.3 P2p
Fa0/4 Desg FWD 19 128.4 P2p
Fa0/24 Desg FWD 19 128.24 P2p

VLAN0666
 Spanning tree enabled protocol ieee
 Root ID Priority 33434
 Address 000b.5f01.f380
 Cost 19
 Port 48 (FastEthernet0/48)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 Bridge ID Priority 33434 (priority 32768 sys-id-ext 666)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 300

Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- ---------------------
Fa0/48 Root FWD 19 128.48 P2p

In order to have a consistent view and to link costs in the topology, the Cisco switches
should enable IEEE recommendations with the spanning-tree pathcost method long
command. This small alteration causes the STP topology to change, as now slower 100
Mbps links have a higher link cost. Also notice that this enables the RSTP roles, as we
saw on the Juniper switches (alternate, backup, etc.). However, RSTP is still not enabled
on the switches:

Spanning Tree Configuration | 357

Gin(config)#spanning-tree pathcost method long
Gin(config)#

Gin#show spanning-tree

VLAN0001
 Spanning tree enabled protocol ieee
 Root ID Priority 32768
 Address 0019.e256.ee80
 Cost 200000
 Port 2 (FastEthernet0/2)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 300

Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- ---------------------
Fa0/1 Altn BLK 200000 128.1 P2p
Fa0/2 Root FWD 200000 128.2 P2p
Fa0/3 Altn BLK 200000 128.3 P2p
Fa0/4 Altn BLK 200000 128.4 P2p
Fa0/24 Desg FWD 200000 128.24 P2p

VLAN0666
 Spanning tree enabled protocol ieee
 Root ID Priority 33434
 Address 000b.5f01.f380
 Cost 200000
 Port 48 (FastEthernet0/48)
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec

 Bridge ID Priority 33434 (priority 32768 sys-id-ext 666)
 Address 000b.5fc6.9180
 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Aging Time 300

Interface Role Sts Cost Prio.Nbr Type
------------------- ---- --- --------- -------- ---------------------
Fa0/48 Root FWD 200000 128.48 P2p

This changes the paths over which each host communicates (see Figure 6-28). For
example, Host2 now reaches Host3 via Whiskey, Vodkila, Rum, and then Brandy.

358 | Chapter 6: Spanning Tree Protocol

Figure 6-28. Default STP with IEEE settings

Spanning Tree Configuration | 359

Failures with Default Parameters
Let’s see how quickly the current topology can converge when there is a link failure
between Host1 and Host4. Currently, Vodkila forwards the frames out its root port of
ge-0/0/0 to get to Host4:

[edit]
lab@Vodkila# run show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 32768.0019e256ee80 20000 FWD ROOT
ge-0/0/3.0 128:516 128:516 32768.001f123dd280 200000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f123dd280 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.001f123dd280 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f123dd280 200000 FWD DESG
ge-0/1/1.0 128:610 128:610 32768.001f123dd280 20000 BLK DIS
ge-1/0/0.0 128:625 128:514 32768.0019e256ee80 20000 BLK ALT
ge-1/0/1.0 128:626 128:514 32768.001f12309680 20000 BLK ALT
ge-1/0/2.0 128:627 128:514 32768.001f1230c480 20000 BLK ALT
ge-1/0/3.0 128:628 128:628 32768.001f123dd280 200000 FWD DESG
ge-1/0/8.0 128:633 128:633 32768.001f123dd280 20000 BLK DIS

Host1 is going to ping Host4, while the ge-0/0/0 interface is disabled on Vodkila. This
causes port ge-1/0/0 to transition to the new root port. However, this transition does
not happen instantaneously. Recall that the port must transition from the blocking
state to the forwarding state. Before this happens, it stays in the learning state for the
length of the forwarding delay, which defaults to 15 seconds. The following sequence
shows these states on Vodkila:

lab@Vodkila# run show spanning-tree interface ge-1/0/0 detail

Spanning tree interface parameters for instance 0

Interface name : ge-1/0/0.0
Port identifier : 128.625
Designated port ID : 128.514
Port cost : 20000
Port state : Blocking
Designated bridge ID : 32768.00:19:e2:56:ee:80
Port role : Root
Link type : Pt-Pt/NONEDGE
Boundary port : NA
lab@Vodkila# run show spanning-tree interface ge-1/0/0 detail

Spanning tree interface parameters for instance 0

Interface name : ge-1/0/0.0
Port identifier : 128.625
Designated port ID : 128.514
Port cost : 20000
Port state : Learning

360 | Chapter 6: Spanning Tree Protocol

Designated bridge ID : 32768.00:19:e2:56:ee:80
Port role : Root
Link type : Pt-Pt/NONEDGE
Boundary port : NA

[edit]
lab@Vodkila# run show spanning-tree interface ge-1/0/0 detail

Spanning tree interface parameters for instance 0

Interface name : ge-1/0/0.0
Port identifier : 128.625
Designated port ID : 128.514
Port cost : 20000
Port state : Forwarding
Designated bridge ID : 32768.00:19:e2:56:ee:80
Port role : Root
Link type : Pt-Pt/NONEDGE
Boundary port : NA

If you need more verification, notice that the ping from Host1 to Host4 times out and
15 pings are lost:

Reply to request 464 (4 ms)
Reply to request 465 (4 ms)
Request 466 timed out
Request 467 timed out
Request 468 timed out
Request 469 timed out
Request 470 timed out
Request 471 timed out
Request 472 timed out
Request 473 timed out
Request 474 timed out
Request 475 timed out
Request 476 timed out
Request 477 timed out
Request 478 timed out
Request 479 timed out
Request 480 timed out
Request 481 timed out
Reply to request 482 (172 ms)

This seems like a great time to deploy RSTP!

Configuring RSTP
In order to move from STP to RSTP on Juniper switches, simply delete the old STP
configuration on each switch and move to RSTP. Here is an example taken from Rum:

[edit]
lab@Rum# delete protocols stp

[edit]
lab@Rum# set protocols rstp

Spanning Tree Configuration | 361

[edit]

lab@Rum# commit
commit complete

The options are similar to what was shown in STP:

lab@Rum# set protocols rstp ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 bpdu-block-on-edge Block BPDU on all interfaces configured as edge (BPDU
 Protect)
 bridge-priority Priority of the bridge (in increments of 4k - 0,4k,8k,..60k)
 disable Disable STP
 forward-delay Time spent in listening or learning state (4..30 seconds)
 hello-time Time interval between configuration BPDUs (1..10 seconds)
> interface
 max-age Maximum age of received protocol bpdu (6..40 seconds)
> traceoptions Tracing options for debugging protocol operation
 | Pipe through a command

On the Cisco devices, enable rapid-pvst:

Whiskey(config)#spanning-tree mode rapid-pvst

Verify that RSTP is running in the Juniper switches:

[edit]
lab@Rum# run show spanning-tree bridge
STP bridge parameters
Context ID : 0
Enabled protocol : RSTP
 Root ID : 32768.00:19:e2:56:ee:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Message age : 0
 Number of topology changes : 4
 Time since last topology change : 141 seconds
 Local parameters
 Bridge ID : 32768.00:19:e2:56:ee:80
 Extended system ID : 0
 Internal instance ID : 0

Also verify that RSTP is running for VLAN 1 on the Cisco switches:

Whiskey#show spanning-tree bridge
 Hello Max Fwd
Bridge Group Bridge ID Time Age Dly Protocol
---------------- --------------------------------- ----- --- --- --------
Bridge group 1 128 000b.5fc3.cc80 1 15 30 dec
 Hello Max Fwd

Vlan Bridge ID Time Age Dly Protocol
---------------- --------------------------------- ----- --- --- --------

362 | Chapter 6: Spanning Tree Protocol

VLAN0001 32769 (32768, 1) 000b.5fc3.cc80 2 20 15 rstp
VLAN0666 33434 (32768, 666) 000b.5fc3.cc80 2 20 15 rstp

The topology has not changed from Figure 6-28. However, notice that on Vodkila,
ge-1/0/0, ge-1/0/1, and ge-1/0/2 are in the alternate port roles. This means that upon
a root port failure, the alternate port will automatically switch to the root port. Since
Vodkila has multiple alternate ports, the default behavior is for the numerically lowest
port to take precedence, which in this case is ge-1/0/0:

lab@Vodkila# run show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 32768.0019e256ee80 20000 FWD ROOT
ge-0/0/3.0 128:516 128:516 32768.001f123dd280 200000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f123dd280 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.001f123dd280 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f123dd280 200000 FWD DESG
ge-0/1/1.0 128:610 128:610 32768.001f123dd280 20000 BLK DIS
ge-1/0/0.0 128:625 128:514 32768.0019e256ee80 20000 BLK ALT
ge-1/0/1.0 128:626 128:514 32768.001f12309680 20000 BLK ALT
ge-1/0/2.0 128:627 128:514 32768.001f1230c480 20000 BLK ALT
ge-1/0/3.0 128:628 128:628 32768.001f123dd280 200000 FWD DESG
ge-1/0/8.0 128:633 128:633 32768.001f123dd280 20000 BLK DIS

Let’s invoke the link failure again:

[edit]
lab@Vodkila# set interfaces ge-0/0/0 disable
[edit]
lab@Vodkila# commit
fpc1:
configuration check succeeds
fpc0:
commit complete
fpc2:
commit complete
fpc1:
commit complete

The interface switches over to the root port and forwarding mode without any timers
expiring:

lab@Vodkila# run show spanning-tree interface ge-1/0/0 detail

Spanning tree interface parameters for instance 0

Interface name : ge-1/0/0.0
Port identifier : 128.625
Designated port ID : 128.514
Port cost : 20000
Port state : Forwarding
Designated bridge ID : 32768.00:19:e2:56:ee:80
Port role : Root

Spanning Tree Configuration | 363

Link type : Pt-Pt/NONEDGE
Boundary port : NA

The Port Fast Feature
The port fast feature is enabled on non-edge P-to-P interfaces, which is the majority of
connections in modern networks. Since the port was set for full duplex (FD) and BPDUs
were received from neighbor switches, it is automatically set to P-to-P. In contrast,
interface ge-0/0/7 does not receive BPDUs, as it contains only a host and is put in edge
mode:

[edit]
lab@Vodkila# run show spanning-tree interface ge-
0/0/7 detail
Spanning tree interface parameters for instance 0

Interface name : ge-0/0/7.0
Port identifier : 128.520
Designated port ID : 128.520
Port cost : 2000000
Port state : Forwarding
Designated bridge ID : 32768.00:1f:12:3d:d2:80
Port role : Designated
Link type : SHARED/EDGE
Boundary port : NA

On Host1, a single ping packet is dropped, which is a vast improvement over what
happens in the STP case (15 drops). Also, remember that the switches will flush out
their MAC tables in order to achieve proper forwarding. This is likely the cause for the
single lost packet in the following code:

Reply to request 452 (8 ms)
Reply to request 453 (8 ms)
Reply to request 454 (8 ms)
Reply to request 455 (8 ms)
Reply to request 456 (4 ms)
Reply to request 457 (4 ms)
Request 458 timed out
Reply to request 459 (148 ms)
Reply to request 460 (4 ms)
Reply to request 461 (4

Notice that ge-0/0/0 is now disabled and is blocking, whereas ge-1/0/0 is now for-
warding and is the root port. If that port failed, ge-1/0/1 would be next in line to succeed
as the root port:

364 | Chapter 6: Spanning Tree Protocol

[edit]
lab@Vodkila# run show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 32768.0019e256ee80 20000 BLK DIS
ge-0/0/3.0 128:516 128:516 32768.001f123dd280 200000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f123dd280 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.001f123dd280 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f123dd280 200000 FWD DESG
ge-0/1/1.0 128:610 128:610 32768.001f123dd280 20000 BLK DIS
ge-1/0/0.0 128:625 128:514 32768.0019e256ee80 20000 FWD ROOT
ge-1/0/1.0 128:626 128:514 32768.001f12309680 20000 BLK ALT
ge-1/0/2.0 128:627 128:514 32768.001f1230c480 20000 BLK ALT
ge-1/0/3.0 128:628 128:628 32768.001f123dd280 200000 FWD DESG
ge-1/0/8.0 128:633 128:633 32768.001f123dd280 20000 BLK DIS

When RSTP isn’t going to be rapid

Remember that this rapid transition happens only for ports that are in P-to-P mode.
Ports in other modes, such as edge ports or shared LANs, do not enjoy this quick
failover. For example, the shared LAN between Brandy, Bourbon, and Ethanol will simply
use the standard STP timers due to the shared status of the interface:

[edit]
lab@Brandy# run show spanning-tree interface ge-0/0/12 detail

Spanning tree interface parameters for instance 0

Interface name : ge-0/0/12.0
Port identifier : 128.525
Designated port ID : 128.525
Port cost : 2000000
Port state : Forwarding
Designated bridge ID : 32768.00:1f:12:30:96:80
Port role : Designated
Link type : SHARED/NONEDGE
Boundary port : NA

RSTP design consideration

So far in the example we have relied on the default parameters to calculate the spanning
tree, but often the default parameters are not sufficient. This usually corresponds to
the root bridge as well as interface costs. STP takes into account only link speeds, and
not other important items such as monetary link cost or link reliability. In order for
STP to use these factors in the calculation, you may have to manually configure the link
cost:

Spanning Tree Configuration | 365

lab@Rum# set protocols rstp interface ge-0/0/1 ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> bpdu-timeout-action Define action on BPDU expiry (Loop Protect)
 cost Cost of the interface (1..200000000)
 disable Disable Spanning Tree on port
 edge Port is an edge port
 mode Interface mode (P2P or shared)
 no-root-port Enable root-protect feature on this port
 priority Interface priority (in increments of 16 - 0,16,..240)

You also define and set the location of the root bridge. In the default topology (Fig-
ure 6-29), Rum was chosen as the root bridge simply because it has the lowest bridge ID,
due to having the lowest MAC address. In general, the root bridge should be your most
powerful switch since much of the forwarding of the frame will transit this switch. Also,
it makes sense to choose a bridge that has some significance for being the central point
of the tree. This could be where the highest-speed interfaces connect or where the
multiple intercampus or WAN links exist. In our topology, Vodkila would seem like a
logical choice, as it is the largest switch due to its Virtual Chassis (VC) configuration
and because it connects to the default gateway, which is Scotch.

To configure Vodkila to be the root bridge, simply set the bridge priority to a lower
value than the default:

[edit]
lab@Vodkila# set protocols rstp bridge-priority 4k

After this change is committed, the first portion of the bridge ID changes to 4096 on
the active ports:

lab@Vodkila> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 4096.001f123dd280 20000 FWD DESG
ge-0/0/3.0 128:516 128:516 4096.001f123dd280 200000 FWD DESG
ge-0/0/7.0 128:520 128:520 4096.001f123dd280 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 4096.001f123dd280 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 4096.001f123dd280 200000 FWD DESG
ge-0/1/1.0 128:610 128:610 32768.001f123dd280 20000 BLK DIS
ge-1/0/0.0 128:625 128:625 4096.001f123dd280 20000 FWD DESG
ge-1/0/1.0 128:626 128:626 4096.001f123dd280 20000 FWD DESG
ge-1/0/2.0 128:627 128:627 4096.001f123dd280 20000 FWD DESG
ge-1/0/3.0 128:628 128:628 4096.001f123dd280 200000 FWD DESG
ge-1/0/8.0 128:633 128:633 32768.001f123dd280 20000 BLK DIS

366 | Chapter 6: Spanning Tree Protocol

Figure 6-29. Default STP topology

Spanning Tree Configuration | 367

Verify that Vodkila is the root bridge by checking that the root ID equals the bridge ID:

lab@Vodkila>

lab@Vodkila> show spanning-tree bridge
STP bridge parameters
Context ID : 0
Enabled protocol : RSTP
 Root ID : 4096.00:1f:12:3d:d2:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Message age : 0
 Number of topology changes : 13
 Time since last topology change : 24 seconds
 Local parameters
 Bridge ID : 4096.00:1f:12:3d:d2:80
 Extended system ID : 0
 Internal instance ID : 0

When BPDUs Attack
It is possible that an edge port could receive BPDUs as a result of a misconfiguration
or even an attack. These could be from a PC, a simple switch bought from your local
electronics store, or an access switch. In these cases, the receipt of the BPDU could
result in a spanning tree calculation, or worse, a root bridge recalculation. Two JUNOS
features help guard against this issue: BPDU protection and root protection. In BPDU
protection, the receipt of a BPDU will cause the port to transition to the blocking state
and stop forwarding frames. The command to enable this is set ethernet-switching-
options bpdu-block interface <interface name>. To verify whether the port is blocked,
issue the show ethernet-switching interfaces command. In order to transition the
interface out of the blocked state, either set a timer value (disable-timeout <seconds>)
for the blocking and wait for the timeout to expire, or issue the clear ethernet-
switching bpdu-error command.

Another alternative is to block the port only if it is receiving superior BPDUs on that
port. This is the case when you have a small switch on which you may want to run STP
but you don’t want to allow it to become the root bridge, which could happen due to
a misconfiguration or faulty software (sorry, electronics store). In order to ensure that
a port cannot receive superior BPDUs, set the no-root-port command after the interface
in [edit protocols rstp]. If the port receives a superior BPDU, it will transition into
the blocking state and will not leave that state until it no longer receives superior
BPDUs.

Spanning Tree Configuration Summary
We looked at how to configure Spanning Tree Protocol as well as Rapid Spanning Tree
Protocol. Although RSTP solves many convergence issues, it does have a major problem
when you are dividing your LAN segment into multiple VLANs. RSTP allows only a

368 | Chapter 6: Spanning Tree Protocol

single instance of a spanning tree, causing all of your VLANs to traverse a single link.
If you want to use multiple links, Multiple Spanning Tree Protocol, examined next,
would be your solution.

Multiple Spanning Tree Protocol
RSTP solves many of STP’s limitations, but it does have one major drawback, in that
it is not “VLAN-aware.” In other words, only one spanning tree is created for the entire
LAN, and there is only a single path for all VLANs to use. This causes underutilization
of links that are in the blocking state and results in no load balancing. MSTP (or 802.1s)
provides for a new spanning tree instance per VLAN or per group of VLANs, allowing
more links in the LAN to be utilized. MSTP was originally defined in IEEE 802.1s and
later merged into IEEE 802.1Q-2003. That specification describes the operation of
MSTP as follows:

MSTP allows frames assigned to different VLANs to follow separate paths, each based
on an independent Multiple Spanning Tree Instance (MSTI), within Multiple Spanning
Tree (MST) Regions composed of LANs and or MST Bridges. These Regions and the
other Bridges and LANs are connected into a single Common Spanning Tree (CST).

Figure 6-30 gives an example of the goal of MSTP; here, it allows certain VLANs to
utilize the link from A to D1, while others utilize the link from A to D2. This would be
a common topology if Switch A were an access switch.

Figure 6-30. VLAN issue

PVST+ was created to solve the multiple-STP issue on Cisco devices.
However, PVST+ creates an instance per VLAN, which can have mas-
sive scaling issues as the number of VLANs grows. Consequently, Cisco
also recommends the use of MSTP over PVST+.

MSTP allows VLANs 501–1000 to be classified into one instance, and VLANs 1–500
to be classified into another region, resulting in a setup such as the one in Fig-
ure 6-31. Notice that each instance is blocked on the opposite port due to the spanning
tree.

Multiple Spanning Tree Protocol | 369

Figure 6-31. MSTP solution

MSTP groups switches together in an MSTP region. Figure 6-32 depicts an MSTP re-
gion. A region is defined by three parameters:

Region name
User-defined name for the region.

Revision level
User-defined value that defines the region.

Element table
Provides mapping of VLANs to instances. This information is not actually sent out
in the BPDU, but rather is a numerical digest that is generated from the local
configuration.

Figure 6-32. MSTP region

370 | Chapter 6: Spanning Tree Protocol

Each region defines the boundary for the MSTI BPDUs that will be sent out. Up to 64
regions can be configured. Each region is interconnected via a Common Spanning Tree
(CST), shown in Figure 6-33. The CST interconnects MSTP regions or even devices
that are simply running RSTP. Since the BPDUs that are sent out in each region are
standard RSTP BPDUs with the MSTI messages placed at the end of the BPDU, stand-
ard RSTP switches will interpret the MSTP BPDUs as RSTP and will view the entire
region as a single spanning tree instance. CST’s role is to manage these regions and
RSTP islands in order to ensure an accurate LAN topology. CST turns each MSTP
region into a virtual bridge. So, from a logical point of view, it appears that there are
multiple switches running STP, while in fact, physically they are the same switch. CST
creates the “magic” by managing these logical separations.

Figure 6-33. Common Spanning Tree

Within an MSTP region, standard RSTP operation applies. The only difference is that
on a given link both ends of a link can send and receive BPDUs simultaneously. This
is because, as shown in Figure 6-34, each bridge can be designated for one or more
instances and needs to transmit BPDUs. In other words, STP changes its view from
operating on a per-port basis to operating on a per-instance basis.

Multiple Spanning Tree Protocol | 371

Figure 6-34. RSTP in an MSTP region

MSTP allows 64 instances to be created. This was increased from an
older value of 16.

MSTP Configuration
MSTP is configured under [edit protocols mstp]. We already discussed most of the
configuration options elsewhere in this chapter:

lab@Bourbon# set protocols mstp ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 bpdu-block-on-edge Block BPDU on all interfaces configured as edge (BPDU
 Protect)
 bridge-priority Priority of the bridge (in increments of 4k - 0,4k,8k,..60k)
 configuration-name Configuration name (part of MST configuration identifier)
 disable Disable MSTP
 forward-delay Time spent in listening or learning state (4..30 seconds)
 hello-time Time interval between configuration BPDUs (1..10 seconds)
> interface
 max-age Maximum age of received protocol bpdu (6..40 seconds)
 max-hops Maximum number of hops (1..255)
> msti Per-MSTI options
 revision-level Revision level (part of MST configuration identifier)

372 | Chapter 6: Spanning Tree Protocol

> traceoptions Tracing options for debugging protocol operation
 | Pipe through a command

We are going to configure the example topology as shown in Figure 6-35. Brandy has
three access ports, each with a single VLAN 10, 20, or 30. It also is connected to a host
on port ge-0/0/7, which is untagged. The goal is to send all VLAN 30 traffic toward
Rum, and all other traffic toward Vodkila.

Figure 6-35. Sample MSTP topology

The VLANs are defined on Brandy:

lab@Brandy> show configuration vlans
v10 {
 vlan-id 10;
}
v20 {
 vlan-id 20;
}
v30 {
 vlan-id 30;
}

The interfaces of ge-0/0/1 and ge-0/0/3 are defined as trunk ports:

lab@Brandy> show configuration interfaces ge-0/0/1
unit 0 {
 family ethernet-switching {
 port-mode trunk;

Multiple Spanning Tree Protocol | 373

 vlan {
 members [v10 v20];
 }
 }
}

lab@Brandy> show configuration interfaces ge-0/0/3
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members v30;
 }
 }
}

The MSTP parameters are then defined. The first information that you must decide on
is the revision level and configuration name. These values must be the same on each
switch in order to identify the MSTP region and translate the incoming BPDUs:

lab@Brandy# show protocols mstp
configuration-name book-example;
revision-level 1;
msti 10 {
 vlan [10 20];
}
msti 30 {
 vlan 30;
}

After the configuration is committed, examine the MSTP configuration. Notice that
proper VLANs assigned to MSTI 10 and 30 and the rest of the VLANs automatically
mapped to the default MSTI of 0:

lab@Brandy> show spanning-tree mstp configuration
MSTP information
Context identifier : 0
Region name : book-example
Revision : 1
Configuration digest : 0x53973bbb358bdb2d6dcab806a189064f

MSTI Member VLANs
 0 0-9,11-19,21-29,31-4094
 10 10,20
 30 30

 30 30

Then examine the spanning tree bridge parameters. Notice that Brandy is the root bridge
for MSTI 10 and 30, but not for instance 0:

lab@Brandy> show spanning-tree bridge
STP bridge parameters
Context ID : 0
Enabled protocol : MSTP

374 | Chapter 6: Spanning Tree Protocol

STP bridge parameters for CIST
 Root ID : 32768.00:19:e2:56:ee:80
 Root cost : 20000
 Root port : ge-0/0/1.0
 CIST regional root : 32768.00:1f:12:3d:d2:80
 CIST internal root cost : 20000
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Hop count : 19
 Message age : 1
 Number of topology changes : 7
 Time since last topology change : 250 seconds
 Local parameters
 Bridge ID : 32768.00:1f:12:30:96:80
 Extended system ID : 0
 Internal instance ID : 0

STP bridge parameters for MSTI 10
 MSTI regional root : 32778.00:1f:12:30:96:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Local parameters
 Bridge ID : 32778.00:1f:12:30:96:80
 Extended system ID : 0
 Internal instance ID : 1

STP bridge parameters for MSTI 30
 MSTI regional root : 32798.00:1f:12:30:96:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Local parameters
 Bridge ID : 32798.00:1f:12:30:96:80
 Extended system ID : 0
 Internal instance ID : 2

Looking at the forwarding states of the different spanning tree instances, notice that
instance 10 contains the access ports for VLANs 10 and 20 as well as the trunk port.
Instance 30 contains the access port for VLAN 30 and the trunk port. Instance 0 con-
tains all the interfaces and is the CST that is tying the MSTP regions together. Instance
0 is sometimes called the internal spanning tree for the system and is a portion of the
CST as a whole:

lab@Brandy> show spanning-tree interface

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/1.0 128:514 128:626 32768.001f123dd280 20000 FWD ROOT
ge-0/0/3.0 128:516 128:516 32768.001f12309680 20000 FWD DESG
ge-0/0/5.0 128:518 128:518 32768.001f12309680 20000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f12309680 2000000 FWD DESG

Multiple Spanning Tree Protocol | 375

ge-0/0/8.0 128:521 128:521 32768.001f12309680 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f12309680 20000 FWD DESG

Spanning tree interface parameters for instance 10

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/1.0 128:514 128:514 32778.001f12309680 20000 FWD DESG
ge-0/0/5.0 128:518 128:518 32778.001f12309680 20000 FWD DESG
ge-0/0/8.0 128:521 128:521 32778.001f12309680 20000 FWD DESG

Spanning tree interface parameters for instance 30

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/3.0 128:516 128:516 32798.001f12309680 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32798.001f12309680 20000 FWD DESG

The actual root for the CST is Rum:

lab@Rum> show spanning-tree bridge
STP bridge parameters
Context ID : 0
Enabled protocol : MSTP

STP bridge parameters for CIST
 Root ID : 32768.00:19:e2:56:ee:80
 CIST regional root : 32768.00:19:e2:56:ee:80
 CIST internal root cost : 0
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Number of topology changes : 5
 Time since last topology change : 371 seconds
 Local parameters
 Bridge ID : 32768.00:19:e2:56:ee:80
 Extended system ID : 0
 Internal instance ID : 0

STP bridge parameters for MSTI 30
 MSTI regional root : 32798.00:19:e2:56:ee:80
 Hello time : 2 seconds
 Maximum age : 20 seconds
 Forward delay : 15 seconds
 Local parameters
 Bridge ID : 32798.00:19:e2:56:ee:80
 Extended system ID : 0
 Internal instance ID : 1

It is also interesting to look at Vodkila as we see the ports toward Rum—for instance, 10
and 30—in the master state. The master state is a port on the shortest path from the
entire region to the common root bridge, connecting the MSTP region to the common
root bridge:

lab@Vodkila> show spanning-tree interface

376 | Chapter 6: Spanning Tree Protocol

Spanning tree interface parameters for instance 0

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-0/0/0.0 128:513 128:513 32768.001f123dd280 20000 FWD DESG
ge-0/0/3.0 128:516 128:516 32768.001f123dd280 200000 FWD DESG
ge-0/0/7.0 128:520 128:520 32768.001f123dd280 2000000 FWD DESG
ge-0/0/8.0 128:521 128:521 32768.001f123dd280 20000 FWD DESG
ge-0/0/9.0 128:522 128:522 32768.001f123dd280 200000 FWD DESG
ge-0/1/1.0 128:610 128:610 32768.001f123dd280 20000 BLK DIS
ge-1/0/0.0 128:625 128:514 32768.0019e256ee80 20000 FWD ROOT
ge-1/0/1.0 128:626 128:626 32768.001f123dd280 20000 FWD DESG
ge-1/0/2.0 128:627 128:627 32768.001f123dd280 20000 FWD DESG
ge-1/0/3.0 128:628 128:628 32768.001f123dd280 200000 FWD DESG
ge-1/0/8.0 128:633 128:633 32768.001f123dd280 20000 BLK DIS

Spanning tree interface parameters for instance 10

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-1/0/0.0 128:625 128:625 32778.001f123dd280 20000 FWD MSTR
ge-1/0/1.0 128:626 128:514 32778.001f12309680 20000 FWD ROOT

Spanning tree interface parameters for instance 30

Interface Port ID Designated Designated Port State Role
 port ID bridge ID Cost
ge-1/0/0.0 128:625 128:625 32798.001f123dd280 20000 FWD MSTR
ge-1/0/1.0 128:626 128:626 32798.001f123dd280 20000 FWD DESG

MSTP Summary
In order to balance multiple VLANs across the links in your LAN, you should deploy
MSTP. MSTP is essentially multiple instances of STP tied together efficiently. When
diving into the details, the complexity of the protocol becomes clear; however, that
complexity is not a burden due to the automatic learning built into the specification
itself.

Redundant Trunk Groups
Another feature that can help in loops is a feature called Redundant Trunk Groups
(RTGs). Essentially, RTGs provide a fast and simplified Layer 2 failover mechanism,
without introducing the complexity of running STP. RTG allows for one physical (or
LAG) interface to back up another in case of a failure.

In the Cisco world, RTG is often referred to as FlexLink.

Redundant Trunk Groups | 377

One of the most common situations in which to use RTG is when an access layer switch
is dual-homed to the aggregation or distribution switch (Figure 6-36). In this scenario,
configuration is needed only on the local Switch C, as Switch A and Switch B do not
need to know that RTG is enabled. However, if a link is enabled for RTG, it cannot
participate in STP nor does it need to, as you manually solved the issue that STP was
trying to solve. If STP was allowed on interfaces running RTG, confusion could occur
if the active link suddenly became blocked due to an STP calculation. JUNOS software
will display a commit error if STP and RTG are attempted at the same time:

[edit ethernet-switching-options]
lab@Brandy# commit
error: XSTP : msti 0 STP and RTG cannot be enabled on the same interface ge-0/0/1.0
error: configuration check-out failed

Figure 6-36. Common deployment scenario for RTG

RTG Configuration
RTG is configured under [edit ethernet-switching-options] and defines two interfa-
ces under a group: a primary interface and a backup. JUNOS software allows up to 16
RTGs to be configured.

In Figure 6-37, Brandy is dual-homed to Vodkila and Rum. The ge-0/0/3 interface should
be configured as primary and ge-0/0/1 should be configured as secondary:

[edit ethernet-switching-options]
lab@Brandy# show
redundant-trunk-group {
 group dual {
 interface ge-0/0/1.0;
 interface ge-0/0/3.0 {
 primary;

378 | Chapter 6: Spanning Tree Protocol

 }
 }
}

[edit ethernet-switching-options]
lab@Brandy# commit and-quit

Figure 6-37. RTG example

Verify that RTG is working as configured:

lab@Brandy> show redundant-trunk-group group-name dual

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Up/Pri/Act 1000 Mbps Never 0
ge-0/0/1.0 Up 1000 Mbps Never 0

Notice that ge-0/0/3 is set to primary and active under the State tag. The ge-0/0/3
interface fails, and the ge-0/0/1 interface becomes the active interface:

lab@Brandy# run show redundant-trunk-group group-name dual

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Dwn/Pri 1000 Mbps 2008-08-06 10:36:20 UTC (00:00:22 ago) 1
ge-0/0/1.0 Up/Act 1000 Mbps Never 0

Since the ge-0/0/3 interface is set as the primary interface, it has a revertive capability.
This means that if the primary interface fails and then returns, it will revert back to the
active link. In our example, ge-0/0/3 returns:

Redundant Trunk Groups | 379

lab@Brandy# run show redundant-trunk-group group-name dual

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Up/Pri/Act 1000 Mbps 2008-08-06 10:37:08 UTC (00:00:01 ago) 2
ge-0/0/1.0 Up 1000 Mbps Never 0

Although a backup RTG interface will not forward traffic, Layer 2 man-
agement protocols such as Link Layer Discovery Protocol (LLDP) will
still function across it.

It is possible to create a non-revertive RTG group by removing the primary flag. This
takes some planning, as the software will always set the interface with the higher in-
terface value to be the active link:

[edit ethernet-switching-options]
lab@Brandy# show
redundant-trunk-group {
 group dual {
 interface ge-0/0/1.0;
 interface ge-0/0/3.0;
 }
}

Without the primary knob, ge-0/0/3 becomes the active link as before, but with the
absence of the primary flag in the State field:

lab@Brandy# run show redundant-trunk-group group-name dual

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Up/Act 1000 Mbps Never 0
ge-0/0/1.0 Up 1000 Mbps Never 0

When the failure occurs, ge-0/0/1 takes over as the active link:

lab@Brandy# run show redundant-trunk-group group-name dual

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Dwn 1000 Mbps 2008-08-06 10:46:28 UTC (00:00:03 ago) 1
ge-0/0/1.0 Up/Act 1000 Mbps Never 0

However, when the ge-0/0/3 link comes back, the active link stays at ge-0/0/1. The
only way to switch back to ge-0/0/3 is to temporarily disable ge-0/0/1 and initiate a
switchover:

[edit]
lab@Brandy# run show redundant-trunk-group group-name dual

380 | Chapter 6: Spanning Tree Protocol

Interface State Bandwidth Time of last flap Flap
 count

ge-0/0/3.0 Up 1000 Mbps 2008-08-06 10:47:07 UTC (00:00:03 ago) 2
ge-0/0/1.0 Up/Act 1000 Mbps Never 0

RTG Summary
RTG is a simple alternative to the spanning tree and redundancy in simple topologies.
It eliminates all the complex messaging of STP and makes the link decision a purely
local matter. RTG is not designed for complex topologies, however, and is best used
when an access switch is multihomed to two distribution switches.

Conclusion
This chapter examined Spanning Tree Protocol and its evolution, namely, the creation
of the original Spanning Tree Protocol and the problems that it solved. It was evident
pretty early on that some improvements needed to be made, and Rapid Spanning Tree
Protocol was thus born. RSTP also had some limitations for VLANs and redundancy,
so finally, Multiple Spanning Tree Protocol was created.

The spanning tree is not the only way to prevent loops and provide redundancy, how-
ever, so we also examined Redundant Trunk Groups.

Now that you have the Layer 2 functionality established, you can start looking at some
Layer 3 functionality in the next chapters.

Chapter Review Questions
1. What is the primary purpose of Spanning Tree Protocol?

a. Load-balance across multiple links

b. Eliminate loops

c. Learn neighbor switch information

d. Create optimized paths throughout the LAN

2. Which bridge is the primary forwarder on a given link?

a. Designated

b. Primary

c. Active

d. Forwarder

3. By default, how is the root bridge chosen?

a. Based on the number of total ports

b. Port identifier

Chapter Review Questions | 381

c. Total port cost

d. Bridge ID

4. Which two port states are valid STP states:

a. Blocking

b. Waiting

c. Listening

d. Establishing

5. Which command is issued to view the STP port states on an EX Series switch?

a. show stp

b. show stp bridge

c. show stp interface

d. show stp ports

6. True or false: STP provides subsecond failover time.

a. True

b. False

c. There are no absolutes in the universe!

7. Which two new port types are introduced in RSTP?

a. Backup

b. Root

c. Blocking

d. Alternate

e. Fast

8. Choose two items that RSTP changes from the original STP specification:

a. More root bridges

b. Fewer port states

c. Different link costs

d. Faster tree algorithm

9. Which command protects the switch from receiving superior BPDUs?

a. Bpdu-block

b. inferior

c. no-root-port

d. edge port

10. How many regions are allowed when configuring MSTP?

a. 3

b. 32

382 | Chapter 6: Spanning Tree Protocol

c. 64

d. 100

e. 128

11. What is the maximum number of root bridges that can be configured in MSTP?

a. 1

b. 64

c. 65

d. 100

12. Which command allows a primary link to revert back after a failover in RTG?

a. primary

b. active

c. revert

d. master

Chapter Review Answers
1. Answer: B. STP’s primary goal is to create a loop-free topology. Answer D is close,

as it is an optimized topology, but that is not the primary goal of STP.

2. Answer: A. The designated bridge is the device chosen to forward local traffic on
a given link. This ensures that on a segment, a bridge does not receive a multicast
or broadcast packet and reinject it into the LAN.

3. Answer: D. The root bridge is the bridge with the lowest bridge ID. Remember that
the bridge ID consists of the MAC address and the priority field, which is user-
configurable.

4. Answer: A, C. Blocking and listening are the only valid STP states in the list.

5. Answer: C. The only other valid command is answer B, but that command lists
only local bridge parameters.

6. Answer: B. The failover times in STP could range as high as 30 seconds using default
timers. The convergence time of STP is a known issue that has been corrected in
RSTP.

7. Answer: A, D. The new ports in RSTP are the backup ports and the alternate ports.
Both provide rapid switchover in case of a root or designated port failure.

8. Answer: B, C. RSTP actually decreases the number of port states an interface can
be in. This allows for much quicker transition times. The port cost values were also
adjusted in order to include modern high-speed ports.

9. Answer: C. This command will place the port in the blocking state if a superior
BPDU is received.

Chapter Review Answers | 383

10. Answer: C. Sixty-four regions are allowed in MSTP, with each region allowing
multiple VLANs.

11. Answer: C. One root bridge is possible per MSTP region, as well as a single root
bridge for the common spanning tree.

12. Answer: A. The primary knob causes that interface to be revertive. In other words,
the switch will always use the primary interface to forward traffic if it is available.

384 | Chapter 6: Spanning Tree Protocol

CHAPTER 7

Routing on the EX

Wait, routing in a Layer 2/LAN switching book! What gives?

EX switches run JUNOS software, and therefore inherit a rich legacy of carrier-grade
routing support. EX routing support pretty much comes for free, which is to say IPv4
routing is included in the base EX chassis. There are no special “routing-enabled” EX
software images, or added hardware requirements, or any special commands to turn
on/enable IP routing. You simply have to decide that Layer 3 forwarding is desired,
determine which routing protocols to use, and then configure the EX to route as you
would any other JUNOS device.

In many network designs, the optimal solution combines Layer 2 switching at the edge
with Layer 3 routing in the distribution and core layers. The built-in (rather than bolted-
on) nature of EX routing support makes the deployment of such hybrid networks both
simple and reliable, given the known stability of JUNOS routing and the respectable
Layer 3 scaling limits supported by the EX platforms.

Large enterprise networks or service provider data centers may warrant the extended
routing capabilities of a purpose-built routing platform such as a J Series, MX Series,
or even M or T Series routing platform.

It should be noted that the goal here is to expose the reader to general EX routing
capabilities and basic configurations and operational verification examples. A detailed
discussion of IP routing and routing protocols, including aggregate and generated
routes, multicast, OSPF, IS-IS, BGP, and complex routing policy, is outside the scope
of this book. Readers interested in expanding on the topic of IP routing in a JUNOS
environment are encouraged to consult the companion volume to this book, JUNOS
Enterprise Routing, by Doug Marschke and Harry Reynolds (O’Reilly).

The topics covered in this chapter include:

• EX routing overview

• Inter-VLAN routing and the Routed VLAN Interface

• Static routing

385

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/

• RIP routing

EX Routing Overview
This section provides a high-level overview of key routing concepts, some JUNOS-
specific, that you need to understand before moving into any particular routing sce-
nario. Readers familiar with IP routing in a JUNOS environment are expected to be
familiar with the material presented here; the review may be worthwhile, nonetheless.

What Is Routing?
Recall that Chapter 1 provided a general overview of bridging and routing concepts.
Rather than reinvent that wheel, let’s do a quick review of the key differences between
bridging and routing. They are summarized in Table 7-1.

Table 7-1. Bridging versus routing summary

Bridge Router

Forwards frames based on flat Media Access Control
(MAC) address, limited scalability

Forwards packets based on variable length IP address (longest match),
supports addressing hierarchy for global scalability

Transparent to end stations (shared subnet, no Time
to Live [TTL] decrement)

End stations participate in routing via default gateway and local/non-
local decision, TTL decrement at each hop

Floods Broadcast, Unknown, or Multicast (BUM)
addresses

Filters BUM addresses

Prone to loops, uses Spanning Tree Protocol (STP) to
block redundant paths, no load balancing, slow
convergence

Tolerates loops, no blocking, load balancing over multiple paths, fast
convergence

Uses bridging protocols to find and block loops for a
single path

Uses routing protocols to find and select optimal paths; in some cases
unequal cost load balancing is possible

Limited filtering/firewall/services Rich set of filtering/firewall and enhanced services such as Dynamic
Host Configuration Protocol (DHCP) or stateful firewall/deep packet
inspection

Interior Gateway Protocol overview

Interior Gateway Protocols (IGPs) provide routing connectivity within the interior of a
given routing domain (RD). An RD is defined as a set of routers under common ad-
ministrative control that share a common routing protocol. Most multivendor IP net-
works use a standardized IGP to permit interoperability. Small networks tend to use
Routing Information Protocol (RIP), while larger, more complicated designs favor the
performance and scalability of a link state protocol such as Open Shortest Path First
(OSPF).

In general, an IGP functions to advertise and learn network prefixes (routes) from
neighboring routers. It uses this information to populate the routing table (RT) with

386 | Chapter 7: Routing on the EX

entries for all sources advertising reachability for a given prefix. A route selection al-
gorithm then selects the best (i.e., the shortest) path between the local router and each
destination, and the associated next hop is pushed into the forwarding table (FT) to
direct matching packets along that path.

When network conditions change, perhaps due to equipment failure or management
activity, the IGP both generates and receives updates and recalculates a new best route
to the affected destinations. Here, the concept of a “best” route is normally tied to a
route metric, which is the criterion used to determine the relative path cost of a given
route. Generally speaking, a route metric is significant only to the routing protocol it’s
associated with, and is meaningful only within a given RD. In some cases, a router may
learn multiple paths to an identical destination from more than one routing protocol.
Given that metric comparison between two different IGPs is meaningless, the selection
of the best route between multiple routing sources is controlled by a route preference.

In addition to advertising internal network reachability, IGPs are often used to advertise
routing information that is external to that IGP’s RD through a process known as route
redistribution. Route redistribution is performed via routing policy in JUNOS software.

EX Routing Capabilities
All EX platforms ship with support for basic IPv4 routing. While described as “basic,”
the EX’s support of static, RIP, and OSPF routing, most users will agree, is quite com-
plete, and more than they will ever need. An advanced routing license is needed to
support Border Gateway Protocol (BGP) and the Intermediate System to Intermediate
System (IS-IS) routing protocols; a single advanced routing license is used to unlock
both features simultaneously.

Table 7-2 reflects EX Layer 3 routing capabilities as of the 9.3 JUNOS release. Note
that the software demonstrated in this book is based on the 9.2 release, which means,
for example, that IPv6 routing is not supported in the current EX test bed.

Table 7-2. EX Layer 3 feature support circa JUNOS 9.3

Layer 3 feature License Release Comment

IPv4 No 9.0R2 IPv4 unicast and multicast offered in the initial 9.0R2 EX release.

Static routing No 9.0R2 Often frowned upon, but static routes have their place.

OSPF No 9.0R2 Link state (LS) IGP for IPv4. No support for Traffic Engineering (TE)
extensions.

RIPv1 and v2 No 9.0R2 Distance-vector-based IPv4 unicast routing protocol.

IS-IS Yes 9.0R2 LS IGP for IPv4, requires advanced license. No support for End System to
Intermediate System (ES-IS), IPv6 multicast, or TE.

BGP/MBGP Yes 9.0R2 Full BGP and Multiprotocol BGP support with advanced license.

SSM No 9.0R2 Single-Source Multicast support.

PIM SM No 9.0R2 Protocol Independent Multicast for IPv4 operating in Sparse mode.

EX Routing Overview | 387

Layer 3 feature License Release Comment

PIM DM/SSM No 9.3R2 Protocol Independent Multicast for IPv4 operating in Dense or Source-
Specific mode.

IGMPv1 through
v3

No 9.0R2 IPv4 host registration protocols for multicast.

IGMP snooping No 9.1R1/9.2R1 Allows Layer 2 switches to become multicast-group-aware; snooping
support on Routed VLAN Interface (RVI) added in 9.2R1.

Virtual router (VR) No 9.3R2 Virtual router instances for “VRF-Lite” support (multiple VRs in a single
CE router).

IPv6 unicast No 9.3R2 IPv6 multicast support to follow in a later release.

OSPF3, RIPng,
MBGP

No 9.3R2 IPv6 unicast routing support via OSPF3, RIPng, and MBGP.

Routed VLAN
Interface

Yes 9.0R2/9.4
(8200)

RVI is like an IOS SVI, used to route/support IGMP snooping between
virtual LANs (VLANs).

What’s missing?

Even when you factor in the latest 9.3 capabilities, a number of Layer 3 protocols are
supported in JUNOS routing platforms that are not supported in the EX JUNOS builds.
Some of the more significant Layer 3 features not supported include:

• IPv6 multicast

• IP Security (IPSec)

• Multiprotocol Label Switching (MPLS) in all forms, including Label Distribution
Protocol (LDP) and Resource Reservation Protocol (RSVP), TE, and by extension,
Virtual Private LAN Service (VPLS), Layer 2/Layer 3 virtual private network
(VPNs), and Layer 2 circuits

• Generic Routing Encapsulation (GRE) tunneling

• Logical routers

• Traffic sampling

The complete list of unsupported Layer 3 functionality for the 9.3 EX JUNOS release
is available at http://www.juniper.net/techpubs/en_US/junos9.3/topics/reference/general/
ex-series-l3-protocols-not-supported.html. Given the relatively recent release of the EX
platform, and its switching rather than routing focus, the lack of complete Layer 3 parity
with routing flavors of JUNOS is understandable. Additional Layer 3 capabilities are
likely to be added as the product matures; as always, you should check Juniper’s website
at http://www.juniper.net/products_and_services/switching.html to confirm the latest
feature and protocol support.

388 | Chapter 7: Routing on the EX

http://www.juniper.net/techpubs/en_US/junos9.3/topics/reference/general/ex-series-l3-protocols-not-supported.html
http://www.juniper.net/techpubs/en_US/junos9.3/topics/reference/general/ex-series-l3-protocols-not-supported.html
http://www.juniper.net/products_and_services/switching.html

Layer 3 scaling limits

Everything has a limit, and there is no exception to this universal rule afforded to the
EX Series. Generally speaking, the EX is designed to excel at Layer 2 filtering and for-
warding, and as a result, some compromises have been made with respect to EX Layer
3 scaling, at least when compared to Juniper’s purpose-built routing platforms. Then
again, as most JUNOS routing platforms do not offer any bridging (the MX is the
exception), the Layer 3 scaling limits for the EX are both understandable and
respectable.

Table 7-3 summarizes Layer 3 scaling guidelines for EX switches.

Table 7-3. EX Layer 3 scaling

Feature EX3200/4200 EX8200 Comment

IPv4 unicast routes 16K 512K FT entries for IPv4, RT is limited by RAM

IPv4 multicast routes 2K 256K FT entries for IPv4, RT is limited by RAM

IPv6 unicast routes 4K 128K FT entries for IPv6, RT is limited by RAM

IPv6 multicast routes 512 64K FT entries for IPv6, RT is limited by RAM

Multicast groups 2K 4K Active multicast group addresses

BGP peers 128 128 BGP peering limited by memory and number of routes per peer

Address Resolution Protocol
(ARP) entries

20K 64K ARP table holds Layer 3 to Layer 2 address bindings

JUNOS Routing Concepts
This section details generic JUNOS routing concepts that you must understand before
delving into any specific routing protocol examples. Many of these concepts exist in
other routing products, usually with a different name to keep the innocent guessing.

Global route preference

A router always seeks to forward a packet based on the longest match, and the longest
match always wins, regardless of how the longest matching route was learned. It’s
possible to learn routes of the same specificity from multiple sources. To break ties,
each source is assigned a global preference. It can be said that the global preference
determines the “goodness” of a routing source. Therefore, routes learned through local
administrative action—for example, static routes—are more believable than the same
routes learned through a routing protocol such as OSPF. In Cisco IOS, this concept is
called administrative distance. Table 7-4 shows the default protocol preferences for
JUNOS software.

EX Routing Overview | 389

Table 7-4. Global protocol preference values

Source Purpose Default preference

Local Local IP address of the interface 0

Directly connected network Subnet corresponding to the directly connected interface 0

Static Static routes 5

RSVP Routes learned from the Resource Reservation Protocol used in MPLS 7

LDP Routes learned from the Label Distribution Protocol used in MPLS 9

OSPF internal route OSPF internal routes, such as interfaces that are running OSPF 10

IS-IS Level 1 internal route IS-IS Level 1 internal routes, such as interfaces that are running IS-IS 15

IS-IS Level 2 internal route IS-IS Level 2 internal routes such as interfaces that are running IS-IS 18

Redirects Routes from Internet Control Message Protocol (ICMP) redirect 30

Kernel Routes learned via route socket from kernel 40

Simple Network Manage-
ment Protocol (SNMP)

Routes installed by Network Management System 50

Router discovery Routes installed by ICMP router discovery 55

RIP Routes from Routing Information Protocol (IPv4) 100

RIPng Routes from Routing Information Protocol (IPv6) 100

PIM Routes from Protocol Independent Multicast 105

DVMRP Routes from Distance Vector Multicast Routing Protocol 110

Aggregate Aggregate and generated routes 130

OSPF AS external routes Routes from Open Shortest Path First that have been redistributed into
OSPF

150

IS-IS Level 1 external route Routes from IS-IS Level 1 that have been redistributed into IS-IS 160

IS-IS Level 2 external route Routes from IS-IS Level 1 that have been redistributed into IS-IS 165

BGP Routes from Border Gateway Protocol 170

As with a route metric, numerically lower preference values are preferred. You can alter
the default preference values through configuration. Altering global route preference
should be considered only after careful thought and, better yet, testing—there can be
unpredictable side effects.

Routing tables and RIB groups

JUNOS automatically creates a number of RTs that are used for a variety of purposes.
In advanced routing scenarios, users can create their own RTs, either indirectly through
the use of virtual routers or Layer 2/Layer 3 VPNs, or directly through the use of Routing
Information Base (RIB) groups.

Generally speaking, each RT/RIB populates a designated portion of the FT. This creates
a single FT that’s partitioned based on each specific RT context. Packets are forwarded

390 | Chapter 7: Routing on the EX

based on this RT context. The ability to maintain separate RTs and FTs is a key com-
ponent of any VPN type of service.

You can view the contents of a particular RT using the command show route table
<table name>. The general naming convention for RTs takes the form of the protocol
family such as inet (Internet), followed by a period and a non-negative integer. Routing
instance table names are somewhat the exception here, taking the form of instance-
name.inet.0, where the first part consists of a user-assigned symbolic name, followed
by the protocol family and table ID, which is inet.0 in this example.

The inet.0 table

The inet.0 table is the default unicast RT for the IPv4 protocol. This is the main RT
used to store unicast routes such as interface local/direct, static, or dynamically learned
routes. When you issue a show route command, all tables are listed chronologically,
starting with inet.0:

lab@Rum> show route

inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.1.5/32 *[Direct/0] 2d 03:22:59
 > via lo0.0
172.16.69.0/24 *[Direct/0] 2d 03:22:59
 > via me0.0
172.16.69.5/32 *[Local/0] 2d 03:22:59
 Local via me0.0

__juniper_private1__.inet.0: 4 destinations, 6 routes (1 active, 0 holddown, 3
hidden)
+ = Active Route, - = Last Active, * = Both

128.0.0.0/2 *[Direct/0] 2d 03:22:59
 > via bme0.32768
 [Direct/0] 2d 03:22:59
 > via bme0.32768
 [Direct/0] 2d 03:22:59
 > via bme0.32768

In this example, you see that the inet.0 table has a total of three routes, all of which
are active; two of the routes are from a Direct routing source, which means the route
is directly connected and learned via IP address assignment to the related interface.
This type of route is referred to as connected in IOS-speak. The third inet.0 entry is an
automatically generated Local route, which is used to direct matching traffic to the local
host (the routing engine, or RE). A local route represents the /32 local host addresses
for the interface itself when a network’s mask that is less than 32 bits long is specified.
Here, the 172.16.69.5/32 route is the local host route resulting from the assignment of
a 172.16.69.5/24 network address to an interface.

EX Routing Overview | 391

In this example, there are no statically defined or learned routes at present, but this will
change shortly. The Direct routes stem from IP address assignment to the loopback
and Out of Band (OoB) management interfaces. The /32 local route is automatically
created for direct interface routes that represent a network rather than a host and are
used to direct matching traffic to the local host itself. A network’s routes will have a
network mask length that is less than /32, whereas a local route’s mask length is al-
ways /32.

Only active routes can be considered for packet forwarding. A route can be hidden
because of problems installing the route—for example, the inability to resolve the
route’s next hop to a local forwarding next hop. You can use the hidden switch to display
hidden routes; include the detail or extensive switch to see additional detail about
any matching routes.

This example also illustrates the presence of a second RT named juniper_private. This
table is automatically generated by JUNOS and is used for internal communications
with chassis components. Here the table is used to provide communications between
the three EX Packet Forwarding Engine (EX-PFE) complexes contained in the switch.

Routing policy

We demonstrate the JUNOS routing policy briefly later in this chapter, and we describe
it in detail in Chapter 8. For now, it’s important to note that routing policy is used to
control the exchange and redistribution of routes among various routing sources ac-
cording to your administrative policies and agreements. Policy gives you control over
what routes are accepted for advertisement by a given routing protocol, and allows you
to match on and manipulate or modify various route attributes such as metric, next
hop, preference, and so on.

On Cisco Systems platforms, these types of functions are often performed through some
combination of the redistribute command, distribute lists, or a route-map and its
associated IP access lists. While different, to be sure, JUNOS software routing policy
provides the same functionality with a consistent set of semantics/syntax, for all pro-
tocols, and all in one place!

Router ID and Autonomous System Number

Many routing protocols require that the source of routing information be uniquely
identified using the concept of a router ID (RID). A RID normally takes the form of an
IPv4 address, and in most cases does not have to be reachable to correctly function as
a RID. JUNOS permits one RID per routing instance, and the same value is used by all
protocols that require a RID in that instance (OSPF, OSPFv3, and BGP). The current
best practice is to base the RID on the router’s globally routable lo0 address, a process
that happens automatically. You can override this behavior and explicitly configure a
RID at the [edit routing-options] hierarchy.

392 | Chapter 7: Routing on the EX

An Autonomous System Number (ASN) is required for BGP operation; you cannot
commit a BGP-related configuration without also defining the router’s own ASN. In
this regard, it can be said that the ASN is not really protocol-independent, but for
whatever reason it is configured under [routing-options], rather than in the [protocols
BGP] stanza itself. We do not demonstrate BGP routing in this book, so an ASN will
not be necessary.

Summary of EX Routing Capabilities
This section reviewed key differences between bridging and routing, summarized the
Layer 3 support offered by EX switches in the 9.3 release, and defined general JUNOS
routing concepts that you need to understand before configuring and monitoring IP
routing.

Given their JUNOS pedigree, EX switches arrived at the party with a rich and sophis-
ticated set of Layer 3 features. The one JUNOS model means you can directly leverage
routing experience on Juniper M, MX, or T Series platforms on your new EX switch,
or vice versa, as the case may be.

The next section delves into the thick of it with a detailed look at the EX platform’s
Routed VLAN Interface (RVI), which will be used to link together the Sales and Admin
VLAN islands we discussed at the end of the preceding chapter.

Inter-VLAN Routing
EX switches support the notion of a Routed VLAN Interface used to route IP traffic
between VLANs. The RVI is a purely logical interface construct that does not require
any additional interface hardware or cabling.

Figure 7-1 depicts the VLAN topology example, which is pretty much the exit state
from Chapter 5.

Thinking back to Chapter 5, recall that things began with a single flat Layer 2 network
that encompassed all four hosts. This result was a single logical IP subnet (LIS) shared
among all hosts, which then had full IP layer connectivity.

Then, two VLANs were deployed, and continued connectivity within each VLAN was
confirmed, along with a lack of communications for inter-VLAN traffic. The original
LIS was intentionally not renumbered along with the VLAN deployment to help dem-
onstrate the inherent isolation of VLANs. After all, stations on separate subnets re-
quire a router to communicate, and there was no router in Chapter 5. Therefore, leaving
the stations on the same LIS gave them the maximum chance for continued connec-
tivity, which, as noted, failed after VLANs were deployed.

Inter-VLAN Routing | 393

Figure 7-1. VLAN switching topology

The failure to communicate is because VLAN-aware switches segregate traffic on access
links, permitting only traffic that is associated with the access link’s VLAN to be sent
out that port. With VLAN segregation successfully demonstrated, and in preparation
for routing, the machines in the Sales VLAN are renumbered to be on the 200.2.1.0/24
network, while Host3 and Host4 remain on their original 200.2.2.0/24 network. The
result is a distinct LIS per VLAN model, which represents the current best practice for
aligning Layer 3 network numbering to Layer 2 broadcast domains. While the extra
steps obviously did not matter from the viewpoint of the two VLANs and the Layer 2
network, a conventional IP network numbering scheme makes future deployment of
Layer 3 routing services relatively painless.

The isolation of VLAN traffic at Layer 2 creates the need for Layer 3 forwarding (i.e.,
routing) for inter-VLAN traffic. The need for routing between VLANs offers the inher-
ent advantage of tight control over what can be forwarded, and between which

394 | Chapter 7: Routing on the EX

endpoints, given that routers can impose firewall and policy restrictions at Layers 3 and
4, and because routers can provide enhanced services at the IP layer, such as IPSec-
based encryption, Network Address Translation (NAT), URL screening, and so on.

A Router on a Stick
Of course, the obvious downside to the need for a Layer 3 device to facilitate inter-
VLAN communications is the need for the routing device itself. This need led to a
somewhat novel solution known as a router on a stick, as shown in Figure 7-2.

Figure 7-2. The router on a stick

Figure 7-2 shows three VLAN communities that are provided Layer 3 connectivity via
a router that’s attached to all three VLANs. Note that each VLAN community is as-
signed a unique IP subnet, and that the router is attached to it via a single physical
interface (an interface device, or ifd in JUNOS); this is the stick part of the router-on-
a-stick model. This single interface is in turn carved into multiple logical interfaces
(subinterfaces, or interface logical, or ifl in JUNOS) through VLAN tagging. This
logical partitioning is shown in the sample interface configuration stanza. Actually,
deploying a router with a single interface, a device that historically was referred to as a
“boat anchor” (or “doorstop”), is the genesis of the router-on-a-stick concept, a situa-
tion that also explains why it’s sometimes called “lollipop” or “U-turn” routing.

Besides the cost of yet another lump of silicon, the packet-looping nature of the router
on a stick can have performance and reliability impacts, especially when some old
router that happened to be lying around is pressed into an extended tour of service—

Inter-VLAN Routing | 395

only this time while perched in a somewhat ungainly fashion high up on a stick, as it
were. A failure or performance bottleneck in this critical role affects all inter-VLAN
traffic, making this “stick” more like a throne, at least as far as your company’s intranet
is concerned!

It’s certainly possible to use a physically distinct interface per VLAN model. This ap-
proach can improve both reliability and performance, albeit oftentimes along with a
non-linear increase in solution cost. This is because in most cases, the majority of a
routing platform’s cost stems from its interfaces rather than the router’s chassis. When
reliability is a concern, multiple stick routers running Virtual Router Redundancy Pro-
tocol (VRRP) is generally the best bet; such a design eliminates single points of failure
in the Layer 3 access portion of the network. We demonstrate VRRP in a later section,
and discuss it in detail in Chapter 11.

Enter the Routed VLAN Interface
While lollipop routing has a certain aesthetic appeal, it was not long before a sharp
engineer realized that by adding some primitive Layer 3 functionality to the switch, a
purely software-based interface construct could be implemented to provide inter-
VLAN routing services without the need for an external routing device. Sort of a virtual
stick, if you will.

An integrated VLAN routing capability is attractive because it serves to lower cost while
increasing reliability. As long as the Layer 3 forwarding performance is on par with the
device’s Layer 2 capabilities, which isn’t always the case, there is very little drawback
to integrated routing; this is especially true when the device can provide Layer 3 services
such as firewall filters or policing, in addition to the basic routing function.

In the Juniper architecture, the Layer 3 interface that interconnects to VLAN instances
is called a Routed VLAN Interface (RVI). A similar function is provided on Cisco
switches via a Switched Virtual Interface (SVI).

Full Layer 3 functionality

In keeping with Juniper tradition, EX switches provide a high-performance solution to
the inter-VLAN routing problem. An EX forwards Layer 3 at wire rate, supports filtering
and policing, and offers a rich set of routing policy options so that you can tailor Layer
3 access and interconnectivity based on your specific needs.

In contrast, an IOS device may support the basic SVI interconnect while lacking full IP
routing capabilities; in other words, the full Enhanced Multilayer Software Image (EMI)
may not be installed, yielding extremely limited Layer 3 capabilities. Stated differently,
you can configure an SVI on an IOS build that does not permit the IP routing config-
uration statement, which is good, in that you can interconnect VLAN without a Layer
3-capable IOS version, but bad in that you wind up with limited Layer 3 functionality
that may end up forcing a software upgrade or use of a standalone router anyway. All

396 | Chapter 7: Routing on the EX

EX versions have full IP routing (BGP/IS-IS advanced routing license notwithstand-
ing), and these capabilities are available on the RVI, as well as any interfaces that are
configured for Layer 3 operation.

Deploy an RVI
In this section, you’ll configure an RVI on Vodkila to provide Layer 3 connectivity
between stations in the Sales and Admin VLANs. Before making any changes, refer
back to Figure 7-1, and again verify intra-VLAN connectivity for both the 200.2.1.0/24
and 200.2.2.0/24 subnets. Start at Host1:

Host1#ping 200.2.1.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.1.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms

The Host1 to Host2 pings succeed, so move on to Host3:

Host3# ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success

The results confirm the expected IP connectivity within each logical IP subnet. Given
that the current IP addressing does not accommodate direct communications between
machines in different VLANs, you quickly reassign Host1’s IP address to place it on the
LIS associated with the Admin VLAN. This allows a quick confirmation that, as before,
VLAN-aware switching successfully prevents inter-VLAN communications, as evi-
denced by the ping failure:

Host1#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Host1(config)#inter ethernet 0
Host1(config-if)#ip add 200.2.2.1 255.255.255.0
Host1(config-if)#^Z
Host1#sho ip inter brie
Interface IP-Address OK? Method Status
Protocol
. . .
Ethernet0 200.2.2.1 YES manual up up
. . .
Host1#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host1

Inter-VLAN Routing | 397

Since we’re satisfied with the baseline VLAN trunking behavior, Host1’s IP address is
reconfigured to reflect the Sales VLAN LIS:

Host1#show ip interface brief ethernet 0
Interface IP-Address OK? Method Status
Protocol
Ethernet0 200.2.1.1 YES manual up up

Configure and test an RVI

Figure 7-3 details the RVI deployment plans for this scenario.

Figure 7-3. RVI test topology

In this example, the Vodkila switch is chosen to house the RVI function because of its
somewhat central location, and the fact that it already has both VLANs defined—given
that it’s currently trunking both the Sales and Admin VLANs over to Whiskey. Also, as
a Virtual Chassis (VC), Vodkila represents the most resilient node in the network.
Figure 7-3 shows the two VLAN communities, along with their respective LISs.

The magic happens at Vodkila, where a virtual interface that must be named vlan is
defined with two logical units. This example shows the units matching their respective
VLANs; this is purely a best practice to help avoid confusion, given that there is no
significance to a unit number other than it having to be unique under a given interface
device. Each unit under the vlan interface is assigned a unique IP address, and a network
mask that places it into the LIS associated with its respective VLAN. This example sets
the VLAN interface host bits to the value .254, which is the highest usable host assign-
ment in this case. This, or using the lowest available host IP address (1), is a common
practice that helps make each LIS’s default gateway easy to compute.

398 | Chapter 7: Routing on the EX

With the host addressing and switched VLAN infrastructure already confirmed, the
only thing needed to complete this task is to configure the RVI at Vodkila. This is a
two-step process: first, define the RVI itself, and then associate the RVI’s units with the
desired VLAN domains.

Begin by defining the vlan interface, as you would any other interface, at the [edit
interfaces] hierarchy:

[edit]
lab@Vodkila# edit interfaces

[edit interfaces]
lab@Vodkila# set vlan unit 10 family inet address 200.2.1.254/24

[edit interfaces]
lab@Vodkila# set vlan unit 20 family inet address 200.2.2.254/24

[edit interfaces]
lab@Vodkila# show vlan
unit 10 {
 family inet {
 address 200.2.1.254/24;
 }
}
unit 20 {
 family inet {
 address 200.2.2.254/24;
 }
}

The changes are committed, and the instantiation of the vlan interface is confirmed:

[edit]
lab@Vodkila# run show interfaces vlan
Physical interface: vlan, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 109
 Type: 33, Link-level type: 71, MTU: 1518
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link flags : None
 Current address: 00:1f:12:3d:b4:c0, Hardware address: 00:1f:12:3d:b4:c0
 Last flapped : Never
 Input packets : 0
 Output packets: 0

 Logical interface vlan.10 (Index 65) (SNMP ifIndex 133)
 Flags: Link-Layer-Down SNMP-Traps 0x0 Encapsulation: Unspecified
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 200.2.1/24, Local: 200.2.1.254, Broadcast: 200.2.1.255

 Logical interface vlan.20 (Index 68) (SNMP ifIndex 137)

Inter-VLAN Routing | 399

 Flags: Link-Layer-Down SNMP-Traps 0x0 Encapsulation: Unspecified
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 200.2.2/24, Local: 200.2.2.254, Broadcast: 200.2.2.255

Note that the interface device is reported as up, while both logical units are reported
as down. This is the result of a lack of binding to a VLAN instance, and it’s easily
remedied with the l3-interface statement at the [edit vlans <vlan-name>] hierarchy:

[edit interfaces]
lab@Vodkila# top edit vlans

[edit vlans]
lab@Vodkila# set Sales_vlan l3-interface vlan.10

[edit vlans]
lab@Vodkila# set Admin_vlan l3-interface vlan.20

The configuration change is confirmed, and then committed:

[edit vlans]
lab@Vodkila# show
Admin_vlan {
 vlan-id 20;
 l3-interface vlan.20;
}
Sales_vlan {
 vlan-id 10;
 l3-interface vlan.10;
}

After the assignment to a VLAN, the RVI’s units are confirmed to be operational:

[edit]
lab@Vodkila# run show interfaces vlan.10 detail
 Logical interface vlan.10 (Index 65) (SNMP ifIndex 133) (Generation 139)
 Flags: SNMP-Traps 0x0 Encapsulation: Unspecified
 Traffic statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Protocol inet, MTU: 1500, Generation: 158, Route table: 0
 Flags: None

400 | Chapter 7: Routing on the EX

 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 200.2.1/24, Local: 200.2.1.254, Broadcast: 200.2.1.255,
 Generation: 154

Note that currently the traffic statistics for the vlan.20 unit reflect that no traffic has
been sent or received, which is expected at this time. The show vlans extensive com-
mand also confirms correct RVI-to-VLAN mapping:

[edit]
lab@Vodkila# run show vlans extensive
VLAN: Admin_vlan, Created at: Mon Jan 10 04:49:32 2005
802.1Q Tag: 20, Internal index: 2, Admin State: Enabled, Origin: Static
Protocol: Port Mode, Layer 3 interface: vlan.20 (UP)
IP addresses: 200.2.2.254/24
Number of interfaces: Tagged 2 (Active = 2), Untagged 0 (Active = 0)
 ge-0/0/0.0*, tagged, trunk
 ge-0/0/3.0*, tagged, trunk

VLAN: Sales_vlan, Created at: Mon Jan 10 04:49:32 2005
802.1Q Tag: 10, Internal index: 3, Admin State: Enabled, Origin: Static
Protocol: Port Mode, Layer 3 interface: vlan.10 (UP)
IP addresses: 200.2.1.254/24
Number of interfaces: Tagged 1 (Active = 1), Untagged 1 (Active = 1)
 ge-0/0/3.0*, tagged, trunk
 ge-0/0/7.0*, untagged, access
. . .

With the RVI interface defined and bound to the VLAN instances, you can test reach-
ability to the RVI IP address from within each VLAN:

Host1#ping 200.2.1.254

Sending 5, 100-byte ICMP Echos to 200.2.1.254, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/4/8 ms
Host1#

The result confirms that Host1 has IP-level connectivity to the RVI address assigned to
the Sales VLAN. Host3 is also able to ping the 200.2.2.254 RVI address for the Admin
VLAN (not shown). With VLAN-to-RVI connectivity confirmed within each VLAN,
you move on to confirm inter-VLAN connectivity with a ping between Host1 and Host3:

Host1#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host1#

Unfortunately, there is no joy in Pingville for you.

But what could be wrong? Thinking back on the concepts of routing, you recall that,
unlike a bridge, a router is not transparent, and an end station must participate in the
act of routing by making a local versus remote delivery decision for each packet it

Inter-VLAN Routing | 401

generates. The need to consciously evoke the services of a router is an offshoot of the
fact that routers do not flood unknown traffic, and they process broadcasts only for
the purpose of local host delivery. In other words, a router tends to only process packets
that are explicitly addressed to the router’s MAC address (at Layer 2), but which are
then found to have a destination IP address that does not match any locally assigned
IP addresses. Stated differently, a router routes a packet that is not addressed to the
router itself, when that packet is received in a frame that is addressed to the router’s
receiving interface.

What this boils down to is that Host1 needs to know a default gateway address in order
to reach destinations that are not on its local IP subnet. A host generally learns its default
router through administrative action, or via a dynamic mechanism such as DHCP.
Given that the latter is currently not running in the network (although an EX can func-
tion as a DHCP server, this is not configured), and even if our “hosts” are actually Cisco
routers, generally routers do not auto-configure a default gateway using DHCP. Hosts
are assumed to be dumb, and therefore they need DHCP, whereas routers are assumed
to be managed by smart folks like you. As a result, a router might provide the DHCP
service, but it is rarely a client for one. For one reason, it could be bad having a pair of
routers caught up in some auto-configuration race condition caused by them both
accepting and then acting upon configuration parameters found in each other’s DHCP
messages.

A show ip route command on Host1 quickly identifies the problem:

Host1#show ip route 200.2.2.0
% Network not in table

The output makes it clear that there is no network route for the remote Admin LIS.
Perhaps there is a default route....

Host1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default, U - per-user static route, o - ODR
 P - periodic downloaded static route

Gateway of last resort is not set

C 200.2.1.0/24 is directly connected, Ethernet0

And there you have it. Host1 clearly has no network route to the target 200.2.2.0 subnet,
nor does it have a default route to fall back on. To resolve this problem, you need to
add a default gateway (a candidate route of last resort) to all four hosts. In each case,
the next hop of the default route is the RVI address associated with that station’s VLAN.
This process is shown for Host1:

402 | Chapter 7: Routing on the EX

Host1#conf t
Host1(config)#ip route 0.0.0.0 0.0.0.0 200.2.1.254
Host1(config)#^Z

The static default route is confirmed to be present and pointing to the IP address
associated with the vlan.10 unit:

Host1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
 * - candidate default, U - per-user static route, o - ODR
 P - periodic downloaded static route
Gateway of last resort is 200.2.1.254 to network 0.0.0.0

C 200.2.1.0/24 is directly connected, Ethernet0
S* 0.0.0.0/0 [1/0] via 200.2.1.254

Note how the default route at Host3 correctly points to the Admin VLAN’s RVI address
as its next hop. With all hosts now having a default route to the RVI unit serving their
VLAN, we can expect Vodkila to route between the two subnets. All that is needed now
is some inter-VLAN traffic for the RVI to route, and this is easily accommodated with
a ping between Host1 and Host3:

Host1# ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/9/32 ms

Awesome! The ping is successful, as is a ping between Host2 and Host4, which is not
shown. A traceroute is performed as final confirmation that all is working to your Layer
3 plan:

Host1#traceroute 200.2.2.3

Type escape sequence to abort.
Tracing the route to 200.2.2.3

 1 200.2.1.254 0 msec 0 msec 4 msec
 2 200.2.2

The results confirm that one transit hop is needed to reach the target destination, and
that the first hop is indeed the default gateway for the 200.2.1.0/24 subnet. A confir-
mation of non-zero packet counts on the RVI completes the confirmation of the inter-
VLAN routing scenario:

[edit]
lab@Vodkila# run show interfaces vlan.10
 Logical interface vlan.10 (Index 65) (SNMP ifIndex 133)
 Flags: SNMP-Traps 0x0 Encapsulation: Unspecified
 Input packets : 21

Inter-VLAN Routing | 403

 Output packets: 11
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 200.2.1/24, Local: 200.2.1.254, Broadcast: 200.2.1.255

Use VRRP with an RVI
As noted previously, one advantage to the JUNOS RVI construct is the ability to lev-
erage the existing JUNOS Layer 3 infrastructure, which includes firewall filters and
VRRP. VRRP is a standardized form of Cisco’s Hot Standby Routing Protocol (HSRP),
and is designed to provide redundancy in the first hop, where hosts tend to use a single
default gateway address to reach all remote destinations. In this case, having multiple
routers alone does not solve the redundancy issue, as the failure of the currently used
next hop requires that an updated default route that points to the backup gateway be
pushed out to all hosts. Later, when service is restored, the default gateway change has
to be backed out to allow normal forwarding over the primary router to resume.

Note that routers run VRRP, but they do not use the related Virtual IP (VIP) as a next
hop. This is because, unlike hosts, a router normally runs a routing protocol that allows
it to learn of changes in the forwarding topology, and to react accordingly. Aside from
the VRRP messages themselves, and ARP replies that result from ARP requests to the
VIP, the router generates all of its local control plane traffic from the real, rather than
virtual, IP address.

In this example, the goal is to add redundancy to the default gateway serving VLAN 20
(Admin), such that the loss of any one EX switch does not prevent stations from reach-
ing their default gateway, and ostensibly the rest of the routed world. Figure 7-4 outlines
a quick VRRP proof of concept test.

This is called a proof of concept because given the network topology, it does not make
much sense to have Rum serve as the Admin VLAN’s backup default gateway, since
Rum must transit Vodkila to provide connectivity between Host3 and Host4 in the Admin
VLAN. As a result, losing Vodkila leaves a broken Admin VLAN, in that Host4 can still
reach the VLAN’s default gateway, but not much else. In this example, you can believe
that an additional link is added to Rum and serves to connect it to the rest of the Layer
2/Layer 3 network. Both switches are assigned the same VRRP group number and a
shared VIP address. Note that the shared VIP address is “owned” by the current VRRP
master. Each RVI is also assigned a unique IP address. Given that no switch owns the
VIP address itself in this example, the accept-data keyword is added to allow responses
to pings targeted to the VIP. Lastly, Vodkila is assigned a higher VRRP priority so that
it will win a mastership election against Rum. The preempt keyword ensures that
Vodkila will actually overthrow an operational master, rather than just win the next
election. Together these options provide determinism by ensuring that Vodkila is al-
ways the active VRRP master whenever it’s operational.

404 | Chapter 7: Routing on the EX

Figure 7-4. VRRP and RVI integration

Here’s the VRRP configuration for Vodkila:

[edit interfaces vlan unit 20]
lab@Vodkila# show
family inet {
 address 200.2.2.252/24 {
 vrrp-group 20 {
 virtual-address 200.2.2.254;
 priority 200;
 preempt;
 accept-data;
 }
 }
}

An RVI is now defined at Rum, and similar VRRP settings are added; note the lower
priority and the duplicated (shared) VIP:

[edit interfaces vlan]
lab@Rum# show
unit 20 {
 family inet {
 address 200.2.2.253/24 {
 vrrp-group 20 {
 virtual-address 200.2.2.254;
 priority 100;

Inter-VLAN Routing | 405

 accept-data;
 }
 }
 }
}

Use the various show vrrp commands to confirm proper VRRP operation. You begin
with confirmation that Vodkila is master of VRRP group 20, and that it is using the
correct VIP:

[edit interfaces vlan unit 20]
lab@Vodkila# run show vrrp
Interface State Group VR state Timer Type Address
vlan.20 up 20 master A 0.351 lcl 200.2.2.252
 vip 200.2.2.254

The display confirms that Vodkila is indeed the current VIP master, and that the VIP
is 200.2.2.254, which is the value still configured as a default gateway in Host3 and
Host4. You quickly confirm that Rum admits it’s a backup for this VRRP group:

[edit interfaces vlan]
lab@Rum# run show vrrp
Interface State Group VR state Timer Type Address
vlan.20 up 20 backup D 2.987 lcl 200.2.2.253
 vip 200.2.2.254
 mas 200.2.2.252

The output also confirms that Rum believes the current VIP master is indeed the owner
of IP address 200.2.2.252, which is again our good friend Vodkila. As a final verification,
remove the RVI to the Admin VLAN binding at Vodkila:

[edit]
lab@Vodkila# delete vlans Admin_vlan l3-interface

[edit]
lab@Vodkila# commit

And after a few moments, check back on Rum to confirm that it has seized the VIP as
master of the VRRP group:

[edit interfaces vlan]
lab@Rum# run show vrrp
Interface State Group VR state Timer Type Address
vlan.20 up 20 master A 0.455 lcl 200.2.2.253
 vip 200.2.2.254

The output confirms that the loss of the previous VRRP master resulted in promotion
of Rum to active VRRP master. As a result, Rum now owns the VIP, and is responsible for
forwarding traffic sent to that address; that is, Rum is now the active default gateway for
the Admin VLAN. You confirm continued connectivity to the VIP, now provided by
Rum’s RVI. Recall that a successful ping to a VIP requires the accept-data keyword:

Host3#ping 200.2.2.254

Type escape sequence to abort.

406 | Chapter 7: Routing on the EX

Sending 5, 100-byte ICMP Echos to 200.2.2.254, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/4/4 ms
Host3#ping 200.2.2.253

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.253, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms
Host3#

Satisfied that VRRP failover worked correctly, you bring the old master back online to
confirm the desired mastership preemption behavior:

[edit]
lab@Vodkila# rollback 1
load complete

[edit]
lab@Vodkila# commit

And a few seconds later, back at Rum, the VRRP mastership state again reflects the
starting conditions, showing that the revertive VRRP mastership process worked:

[edit interfaces vlan]
lab@Rum# run show vrrp
Interface State Group VR state Timer Type Address
vlan.20 up 20 backup D 2.940 lcl 200.2.2.253
 vip 200.2.2.254
 mas 200.2.2.252

Before moving on, you again confirm that end stations in the Admin VLAN are able to
reach the VIP, except this time it’s Vodkila, the current VRRP master, that’s answering
the pings:

Host3#ping 200.2.2.254

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.254, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/3/4 ms

Once again, the ping to the VIP is successful. The results confirm that you can combine
an RVI with existing JUNOS support for VRRP to achieve significant availability/reli-
ability gains for the first hop of a routed VLAN infrastructure. Satisfied that an EX
vlan interface can leverage the JUNOS Layer 3 infrastructure, the VRRP-related changes
are backed out of Vodkila and Rum.

Restricting RVI Communications
Routers like to route; it’s what they do. Network addresses assigned to RVI units appear
as directly connected networks in the RT. Because a router does not need any routing
protocols, or static routes, to route among its directly connected networks, the use of

Inter-VLAN Routing | 407

routing policy does not assist when the goal is to limit Layer 3 connectivity among a
set of VLANs that share units on the vlan interface.

For example, assume that two new VLANs are added to the test topology. As soon as
their respective RVI units are defined and bound to the new VLAN instances, the default
behavior is to provide full IP layer connectivity among all four VLANs, unless you
choose to restrict (or police) this traffic using a Layer 3 firewall filter. We describe filters
in detail in Chapter 8; here we demonstrate a quick RVI and firewall filter scenario to
reinforce this important concept.

RVI and Layer 3 filters

In this section, the goal is to deploy a Layer 3 firewall filter to restrict inter-VLAN
communications between Host2 and Host4, while permitting communications between
all other stations. Refer back to Figure 7-3 as needed for the topology specifics.

There are many ways to achieve such a goal using a firewall filter. Given the need to
restrict communications based on a host pairing, the use of a /32 (host) address match
condition seems a reasonable approach. Note that this filter will have no effect on Layer
2 communications for stations within the same VLAN. A Layer 2 filter is needed to
affect inter-VLAN communications.

Before making any changes, communication is again confirmed between Host2 and both
Admin VLAN hosts:

Host2#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 4/6/8 ms
Host2#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 4/6/8 ms
Host2#

Both pings are a success, proving there are unrestricted communications between the
two VLANs. A sample source-address-based firewall filter is crafted and displayed:

[edit firewall family inet filter no_host2_to_host3]
lab@Vodkila# show
term 1 {
 from {
 source-address {
 200.2.1.2/32;
 }
 destination-address {
 200.2.2.3/32;
 }

408 | Chapter 7: Routing on the EX

 }
 then {
 count host2_blocked-to_host3;
 discard;
 }
}
term else {
 then accept;
}

In this example, term 1 does what’s needed as far as matching on and then restricting
only those packets sent by Host2 to Host3. In this case, a counter is also added to aid in
filter confirmation. The else term is critical, as the default behavior for a JUNOS filter
is an implicit deny all; omitting this term results in a complete blockage of all inter-
VLAN traffic, which is not the goal here. You must apply the filter to the Layer 3-
enabled vlan interface to press it into service. The filter can be applied to either or both
units, and can be applied in either or both the input and output directions. In this case,
it seems logical to apply the no_host2_to_host3 filter only as input, and only on the
vlan unit associated with the Sales VLAN.

The filter is applied to vlan.10 as an input filter, and the result is displayed:

[edit interfaces vlan unit 10]
lab@Vodkila# set family inet filter input no_host2_to_host3

[edit interfaces vlan unit 10]
lab@Vodkila# show
family inet {
 filter {
 input no_host2_to_host3;
 }
 address 200.2.1.254/24;
}

After committing the change, the host2_blocked-to_host3 firewall counter is displayed
with a show firewall command:

[edit]
lab@Vodkila# run show firewall

Filter: no_host2_to_host3
Counters:
Name Bytes Packets
host2_blocked-to_host3 0 0

The 0 count is expected, given the lack of inter-VLAN Layer 3 stimulus. The pings from
Host2 to Host3 and Host4 are repeated:

Host2#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Host2#ping 200.2.2.4

Inter-VLAN Routing | 409

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/6/8 ms
Host2#

The results are as expected: Host2 can still chat with Host4, but not so much with
Host3. The firewall counter is again displayed to verify that the discard counter matches
the test traffic generated during the failed ping attempt:

[edit]
lab@Vodkila# run show firewall

Filter: no_host2_to_host3
Counters:
Name Bytes Packets
host2_blocked-to_host3 610 5

The output reflects five filtered packets, which correctly matches the number of ping
attempts that failed. Before calling this a success, it’s a good idea to confirm that
Host1 continues to enjoy unfettered access to both Admin hosts:

Host1#ping 200.2.2.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.3, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 8/12/32 ms
Host1#ping 200.2.2.4

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 200.2.2.4, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 4/5/8 ms
Host1#

Both pings succeed, thereby confirming that the filter is not affecting Host1, as per
design. As this was only a quick Layer 3 RVI-to-firewall filter integration proof of con-
cept, the filter is removed to prepare the test bed for the static routing section:

[edit]
lab@Vodkila# delete firewall

[edit]
lab@Vodkila# delete interfaces vlan unit 10 family inet filter

The change is committed at Vodkila, and full Layer 3 connectivity between both the
Sales and Admin VLANs is again confirmed (not shown for brevity).

RVI Summary
The RVI construct is an important EX feature that eliminates the need for any external
Layer 3 devices when you wish to route traffic between VLANs. Because the vlan

410 | Chapter 7: Routing on the EX

interface is virtual, or software-based, you can provide Layer 3 connectivity without
burning any real interface hardware.

Because all EX versions support full routing, you can easily combine an RVI with the
rich set of existing JUNOS Layer 3 features, such as VRRP, firewall filters, policers, and
routing policy.

An EX switch can support only one vlan interface, but this interface can have multiple
logical units that are bound to VLAN instances as needed. Note that by default, full
Layer 3 connectivity is provided over the RVI. You can restrict communications over
the RVI using a Layer 3 filter. Stated differently, you can define only one vlan interface,
and all of its child units are considered directly connected IP networks, and packets are
freely routed between all such subnets by default.

Static Routing
Although the use of static routing is often frowned upon and considered bad form,
there are many practical applications for static routes, along with their aggregate/
generated counterparts.

Static routing suffers from a general lack of dynamism (although Bidirectional For-
warding Detection [BFD] can mitigate this issue), which often leads to loss of connec-
tivity or inefficient forwarding during network outages due to their static, nailed-up
nature. Static routes can quickly become maintenance and administration burdens for
networks that have frequent adds, moves, or changes. With that said, static routing is
often used at the network edge to support attachment to stub networks, which, given
their single point of entry/egress, are well suited to the simplicity of a static route.

Next Hop Types
Static routes support various next hop types, some that actually forward traffic and
others that black-hole matching packets. Here are the specifics for each type of next hop:

Discard
A discard next hop results in the silent discard of matching traffic. Silent here refers
to the fact that no ICMP error message is generated back to the source of the packet.
You normally choose a discard next hop when the goal is to advertise a single
aggregate that represents a group of prefixes, with the expectation that any traffic
attracted by the aggregate route will longest-match against one of the more specific
routes, and therefore will be forwarded according to the related next hop, rather
than reject or discard the next hop of the aggregate route itself.

The use of discard is currently a best practice when advertising an aggregate be-
cause the generation of ICMP error messages can consume system resources, and
may end up bombarding an innocent third party; for instance, in the case of spoofed
source addressing as part of a distributed denial of service (DDoS) attack.

Static Routing | 411

Reject
A reject next hop results in the generation of an ICMP error message reporting an
unreachable destination for matching traffic. This is the default next hop type of
an aggregated route and for a generated route when it has no contributors.

Forwarding
A forwarding next hop is used to move traffic to a downstream node, and is typically
specified as the IP address of a directly connected device. Matching traffic is then
forwarded to the specified next hop. On a multi-access network such as a LAN,
this involves the resolution of the IP address to a link layer address through ARP
or some form of static mapping. When directing traffic over a point-to-point
(P-to-P) interface, the next hop can be specified as an interface name; however,
LAN interface types require an IP address next hop due to their multipoint nature.

Forwarding next hop qualifiers

When defining a static route with a forwarding next hop, you can use qualifiers that
influence how the next hop is resolved and handled. Specifically:

resolve
The resolve keyword allows you to define an indirect next hop for a static route,
which is to say an IP forwarding address that does not resolve to a directly con-
nected interface route. For example, you could specify a static route that points to
a downstream neighbor’s loopback address. In this case, matching traffic will result
in a recursive lookup against the specified (lo0) next hop to select a directly con-
nected forwarding next hop. If a parallel connection exists, the failure of the cur-
rently used link results in a new recursive lookup and selection of the remaining
link for packet forwarding.

qualified-next-hop
The qualified-next-hop keyword allows you to define a single static route with a
list of next hops that are individually qualified with a preference. In operation, the
most preferred qualified next hop that is operational (i.e., the next hop can be
resolved and the interface is operational) is used. When that next hop is no longer
usable, the next-best-qualified next hop is selected. That is to say, when the primary
link is down, the router selects the next preferred next hop, which in this example
maps to a low-speed backup facility.

Route Attributes and Flags
When you define a static route, you can include various route attributes such as Au-
tonomous System (AS) path, BGP community, route tag, metric, and so forth. These
attributes may or may not come into play when the route is later redistributed into a
specific routing protocol. For example, OSPF has no notion of a BGP community or
AS path, and therefore these attributes are not injected into OSPF, despite being at-
tached to the route’s static definition. The route attributes can be defined individually

412 | Chapter 7: Routing on the EX

for each route, or as part of a default template that is inherited by all related routes,
unless specifically overwritten by a competing attribute.

You can also attach to a static route flags that control various aspects of how the route
is handled or operates. For example, the no-advertise flag prevents the associated route
from being exported into routing protocols, even when the policy configuration would
otherwise select that route for redistribution. You can display the list of available route
attributes and flags with the command-line interface (CLI) ? feature:

[edit routing-options]
lab@Rum# set static route 10/8 ?
Possible completions:
 active Remove inactive route from forwarding table
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> as-path Autonomous system path
> bfd-liveness-detection Bidirectional Forwarding Detection (BFD) options
> color Color (preference) value
> color2 Color (preference) value 2
+ community BGP community identifier
 discard Drop packets to destination; send no ICMP unreachables
 install Install route into forwarding table
> metric Metric value
> metric2 Metric value 2
> metric3 Metric value 3
> metric4 Metric value 4
+ next-hop Next hop to destination
 next-table Next hop to another table
 no-install Don't install route into forwarding table
 no-readvertise Don't mark route as eligible to be readvertised
 no-resolve Don't allow resolution of indirectly connected next hops
 no-retain Don't always keep route in forwarding table
 passive Retain inactive route in forwarding table
> preference Preference value
> preference2 Preference value 2
> qualified-next-hop Next hop with qualifiers
 readvertise Mark route as eligible to be readvertised
 receive Install a receive route for the destination
 reject Drop packets to destination; send ICMP unreachables
 resolve Allow resolution of indirectly connected next hops
 retain Always keep route in forwarding table
> tag Tag string
> tag2 Tag string 2
[edit routing-options]
lab@Rum# set static route 10/8

The reader is encouraged to consult JUNOS software documentation at http://www
.juniper.net/techpubs/software/junos/junos92/swconfig-routing/configuring-static
-routes.html#id-10352299 for a detailed description of the various attributes and flags
that can be attached to static routes.

Static Routing | 413

http://www.juniper.net/techpubs/software/junos/junos92/swconfig-routing/configuring-static-routes.html#id-10352299
http://www.juniper.net/techpubs/software/junos/junos92/swconfig-routing/configuring-static-routes.html#id-10352299
http://www.juniper.net/techpubs/software/junos/junos92/swconfig-routing/configuring-static-routes.html#id-10352299

Floating Static Routes
A floating static route is nothing more than a static route that has a modified preference,
causing it to be less preferred than a dynamically learned copy. The defaults cause a
static route to always be preferred over a dynamic route. A floating static route is often
used to provide backup in the event of a network or protocol malfunction. When all is
operating normally, the static route remains idle because the dynamically learned rout-
ing is preferred. When routing protocol disruption results in the loss of a learned route,
the previously inactive static route becomes active.

The following code sample creates a floating static route by assigning a modified pref-
erence that makes the route less preferred than an OSPF internal route, which has a
default preference of 10. Note that the configuration statements relating to static rout-
ing live in the [edit routing-options] hierarchy:

[edit routing-options]
lab@Rum# show
static {
 route 0.0.0.0/0 {
 next-hop 172.16.1.1;
 preference 11;
 }
}

The CLI’s display set function conveniently confirms the syntax used to create the
static route:

[edit routing-options]
lab@Rum# show | display set
set routing-options static route 0.0.0.0/0 next-hop 172.16.1.1
set routing-options static route 0.0.0.0/0 preference 11

The successful creation of the floating static route is confirmed with the operational
mode show route command, in this case filtering the output to only those routes learned
through the static protocol:

[edit routing-options]
lab@Rum# run show route 200.0.0.0

inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/11] 00:00:06
 > to 172.16.1.1 via fe-0/0/0.412

EX Static Routing Scenario
It’s time to put your newfound static routing knowledge to work by configuring static
routing on Vodkila to provide Internet access for the IP hosts in the Sales and Admin
VLANs. Figure 7-5 details the EX static routing topology.

414 | Chapter 7: Routing on the EX

Figure 7-5. EX static routing

The topology shown in Figure 7-5 is well suited to static routing; because of the single
ingress and egress points between Vodkila and the Inet router, there is little to gain
from the ability to dynamically select the best next hop. Nope, the single link either
works, or does not, and no amount of RIP or OSPF will make things better.

The design goal is to provide external access to the host in the Sales and Admin VLANs.
Here this means that all Layer 3 entities should be able to ping the 192.168.1.1 loopback
and 172.16.3.1 interface addresses associated with the Inet router when this traffic is
sourced from any internal IP address. The Inet router has a default route that points

Static Routing | 415

to null0; this route is intended to represent the other 4 billion or so possible IPv4
addresses on the planet. Note that the default IOS behavior for packets that match such
a route is to generate an ICMP destination unreachable error message. While possibly
bad form—from the preservation of the router’s control plane during a DDoS attack
perspective—such behavior assists you here, in that you can expect an explicit error
message when attempting to ping any non-local (and therefore non-defined) addresses.
Receipt of the error validates the internal routing of external traffic to the Inet router
as well as its ability to route return traffic back to that source; error message or not, it’s
still an IP packet that is sent back, after all.

Static routing in the Internet router

Given the Layer 3 addressing specifics, it’s safe to say that the Internet service provider
(ISP) needs to have a static route for 10.10.1/24, which covers the loopback addresses
of the Layer 3-enabled devices Scotch and Vodkila, and also for the 200.2.0/22 prefix
to cover the host addresses. Both of these static routes should point to a next hop of
172.16.3.3, which in turn should resolve to the direct route that points out the Inet
router’s fa0/0.2 interface.

Here are the relevant portions of the Inet router’s configuration:

interface Loopback0
 ip address 192.168.1.1 255.255.255.255
!
. . .
interface FastEthernet0/0
 no ip address
 duplex auto
 speed auto
!
interface FastEthernet0/0.2
 encapsulation dot1Q 70
 ip address 172.16.3.1 255.255.255.0
!

The interface configuration is basic, and assigns the needed IP addresses for the loop-
back and Ethernet interfaces. Subinterfaces, which are analogous to logical units in
JUNOS, are used to support VLAN tagging. VLAN tagging is used here to allow the
same physical interface to be used multiple times, as subinterfaces, to the various other
devices in the test topology that may connect to it at some point. The result is a Layer
3 interface that is configured for VLAN trunking with each VLAN treated as a separate
IP interface:

. . .
ip route 0.0.0.0 0.0.0.0 Null0
ip route 10.10.1.0 255.255.255.0 172.16.3.3
ip route 200.2.0.0 255.255.252.0 172.16.3.3
. . .

The static routing section defines the three static routes, described earlier. Note that
the “/22” mask length for the 200.2.0 supernet is entered using a somewhat dated

416 | Chapter 7: Routing on the EX

dotted decimal format, one that forces the conversion of the /22 mask length into binary
(1111 1100), and from there on to decimal, which in this case is a 252. What fun.

The presence of a VLAN switch ensures that the Inet router’s end of the Ethernet link
is up. The lack of Layer 2 keepalives or BFD static routing support at the Cisco end
means we can expect all to look fine and dandy, even though the EX’s ge-0/0/9 interface
is not even configured yet:

Inet-Rtr#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
 D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
 N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
 i - IS-IS, su - IS-IS summary, L1 - IS-IS level-1, L2 - IS-IS level-2
 ia - IS-IS inter area, * - candidate default, U - per-user static route
 o - ODR, P - periodic downloaded static route

Gateway of last resort is 0.0.0.0 to network 0.0.0.0

 172.16.0.0/24 is subnetted, 2 subnets
C 172.16.9.0 is directly connected, FastEthernet0/0.1
C 172.16.3.0 is directly connected, FastEthernet0/0.2
 10.0.0.0/24 is subnetted, 1 subnets
S 10.10.1.0 [1/0] via 172.16.3.3
 192.168.1.0/32 is subnetted, 1 subnets
C 192.168.1.1 is directly connected, Loopback0
S* 0.0.0.0/0 is directly connected, Null0
S 200.2.0.0/22 [1/0] via 172.16.3.3

Note that both static routes point to 172.16.3.3 as the next hop address. When a packet
matches against one of these static routes, an important concept called recursion kicks
in. Recursion refers to the process of having to refer back to the RT to locate a for-
warding next hop based on the IP address found during a previous route lookup; a
forwarding next hop always involves an egress interface, and in the case of multipoint
interfaces, a next hop IP address and the need to resolve the underlying Layer 2 address
(the Destination MAC, or DMAC) for that IP address.

The output confirms that packets matching one of the static routes should be sent to
172.16.3.3. The recursive route lookup on 172.16.3.3 in turn resolves to a Connected
172.16.3.0/24 route that points to the FastEthernet0/0.2 egress interface subinterface
that the Inet router uses to reach Scotch. At this point, all that is needed to correctly
route packets matching these static routes is an ARP exchange so that the Inet router
can learn the MAC address of Scotch’s ge-0/0/8 interface. When combined with
knowledge of the correct egress interface, the DMAC address is all that is needed for
the Inet router to correctly send packets to Scotch. The expected ARP entry is confirmed
at the Inet router:

R2#show ip arp 172.16.9.9
Protocol Address Age (min) Hardware Addr Type Interface
Internet 172.16.9.9 2 001d.b50e.9601 ARPA FastEthernet0/0.1
R2#

Static Routing | 417

However, as expected, despite all being well with the Inet router’s static routes, Inet-
router-initiated pings to Vodkila’s end of the access link fail:

Inet-Rtr#ping 172.16.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.3.3, timeout is 2 seconds:
.....
Success rate is 0 percent (0/5)
Inet-Rtr#

Looks like it’s time to configure some static routing JUNOS-style on the EX!

EX static routing

Things begin on EX switch Vodkila with the configuration of its Layer 3 access link to
the Inet router. The VLAN switch between the two devices is configured with the
Inet router end as a trunk to allow the transport of tagged packets. The Vodkila end is
set as an access link, and the result is that untagged traffic is sent and received at the
Vodkila end, while tagged traffic is sent and received at the Inet router end. Tagging is
not needed at Vodkila, as its one Layer 3 interface needs to attach to only one remote
Layer 3 device, while the Inet router may connect to multiple devices and therefore
needs multipoint capability:

[edit]
lab@Vodkila# edit interfaces ge-0/0/9

[edit interfaces ge-0/0/9]
lab@Vodkila# set unit 0 family inet address 172.16.3.3/24

After activating the Layer 3 configuration, you again try to ping from the Inet router;
there is no point in adding a static route if basic IP forwarding is not working between
the two:

Inet-Rtr#ping 172.16.3.3

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 172.16.3.3, timeout is 2 seconds:
.!!!!
Success rate is 80 percent (4/5), round-trip min/avg/max = 1/1/4 ms
Inet-Rtr#

Much better! With basic IP connectivity confirmed, you move on to the static route
definitions. Before adding any static routes, test external connectivity at Host1:

Host1#traceroute 30.1.1.1

Type escape sequence to abort.
Tracing the route to 30.1.1.1
 1 200.2.1.254 0 msec 0 msec 4 msec
 2 * * *
 3 * * *
. . .
 29 * * *

418 | Chapter 7: Routing on the EX

 30 * * *
Host1#

As expected, the traceroute fails at the subnet’s default gateway. Things should improve
when the default route is added to Vodkila. Note again that the host sends its non-local
traffic to the default gateway, which is the vlan.10 interface and its 200.2.1.254 address
in this example. Currently, Vodkila has no route for the destination, and so, by default,
it performs a silent discard, resulting in no error message being received.

It seems that to get things flowing, so to speak, all that is needed at Vodkila is a simple
static default route pointing out the ge-0/0/09 interface toward 172.16.3.1. The static
default route is defined, and the modified configuration is displayed:

[edit routing-options]
lab@Vodkila# set static route 0/0 next-hop 172.16.3.1

[edit routing-options]
lab@Vodkila# show
static {
 route 0.0.0.0/0 next-hop 172.16.3.1;
}

As noted previously, the lack of Layer 2 Operational Administration and Maintenance
(OAM)/keepalives, coupled with the lack of any routing protocols (this is static, after
all), means it is very easy for connectivity problems to go undetected. In effect, the static
route is usable as long as the local device’s interface status remains up. Not only will
data plane issues go undetected as a result, but the presence of the VLAN switch also
means that a complete failure at one end (fiber cut) does not result in any Physical layer
abnormalities, alarms, or error indications at the other end. A lack of visibility into the
peer’s forwarding/operational status is one of the significant drawbacks to using static
routing, after all.

While it is true that this particular topology affords only one egress link, and therefore
a dynamic routing protocol is overkill, there is something to be said for at least knowing
when your one access link is broken, as this can simplify fault isolation and allow you
to get a complaint lodged all the faster.

EX switches support the BFD protocol, which is useful in just this type of environment
because it provides a protocol-agnostic keepalive mechanism that lives to rapidly detect
faults in the forwarding plane, for whatever reason, and in this example it hides the
static route when the BFD session fails. Sounds good, but the older IOS-based router
used in the Inet role does not support BFD. Neither of the devices currently support
Ethernet OAM, which takes that option off the table as well.

The change is committed, and the presence of an active, default route is confirmed:

[edit routing-options]
lab@Vodkila# run show route protocol static

inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

Static Routing | 419

0.0.0.0/0 *[Static/5] 00:09:51
 > to 172.16.3.1 via ge-0/0/9.0

The output looks good, in that the route is not hidden and shows the correct forwarding
interface and IP next hop. It’s easy to test the default route’s efficacy with a ping to
some non-existent address, as the default route should dispatch such a packet to the
Inet router, where it meets the cold embrace of null0:

[edit routing-options]
lab@Vodkila# run ping 30.1.1.1
PING 30.1.1.1 (30.1.1.1): 56 data bytes
36 bytes from 172.16.3.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 026c 0 0000 3f 01 ab28 172.16.3.3 30.1.1.1

. . .

^C
--- 30.1.1.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

Again, the ping failure is expected and is considered a success by virtue of receiving the
resulting error message from 172.16.3.1. The test is repeated, but this time traffic is
sourced from the switch’s loopback address. This is a critical step, because it proves
the Internet router has a route back to a non-directly connected address, thus proving
its end of the static routing solution is working. The previous ping was sourced from
the 172.16.3.3 interface address, and therefore tested only direct routing:

[edit routing-options]
lab@Vodkila# run ping 30.1.1.1 source 10.10.1.3
PING 30.1.1.1 (30.1.1.1): 56 data bytes
36 bytes from 172.16.3.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 0299 0 0000 3f 01 4f02 10.10.1.3 30.1.1.1
. . .
^C
--- 30.1.1.1 ping statistics ---
2 packets transmitted, 0 packets received, 100% packet loss

The error message is again received, confirming that static routing is correctly config-
ured in the Inet router. To complete validation, you test external reachability from
Host1. In this case, the IP traffic must first be switched over the Sales VLAN to reach
the RVI, at which point the packet enters the Layer 3 processing stream, where the
routing process matches against the static (default) route and directs the packet to the
Inet router:

Host1#ping 30.1.1.1

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 30.1.1.1, timeout is 2 seconds:
U.U.U
Success rate is 0 percent (0/5)
Host1#

420 | Chapter 7: Routing on the EX

IP traffic sent by a host router to a remote network address will be ad-
dressed to the device’s default gateway at the MAC layer. The EX switch
determines whether it should perform network-level processing on a
packet versus the far simpler Layer 2 switching by determining whether
a frame is addressed to the switch’s local MAC address. Traffic that is
switched within the same VLAN is directly delivered to the target host’s
MAC address, meaning such traffic is never addressed to the EX switch
itself.

Traffic that is sent to a remote IP network is directly addressed to a
default router. In the case of an RVI as a default router, this traffic will
be addressed to the switch itself, and therefore will enter Layer 3
processing.

The ping generated by Host1 is again sent to a non-existent address. Once again, the
return of an error message is expected, and again proves all is working per design; the
Us are IOS’s way of indicating that a destination Unreachable packet was received, by
the way. Again, the receipt of this error is good, as it proves the packet was correctly
routed to the Inet router, and that a response could be correctly routed back to the
packet’s source. The last ping validates that a non-locally attached host can be correctly
VLAN-switched to the RVI and then correctly routed. In this case, a traceroute is per-
formed from Host3, which is attached to Brandy and has to be trunked over to
Vodkila, to the loopback address of the Inet router:

Host3#traceroute 192.168.1.1

Type escape sequence to abort.
Tracing the route to 192.168.1.1

 1 200.2.2.254 4 msec 0 msec 4 msec
 2 172.16.3.1 4 msec 4 msec *
Host3#

The success of the traceroute confirms that RVI-based static routing is working. Who
says this Layer 3 stuff is hard?

Static Routing Summary
This section demonstrated a typical static routing scenario that provides Internet access
among a set of LAN hosts that in turn access Layer 3 services through an RVI. Static
routing often gets a bad rap. While there are definite shortcomings that become more
pronounced as the level of network “meshiness” grows, there are times when a static
route is a technically sound choice.

Despite the lack of operational visibility, when there is a single way out, or in, or when
you are interfacing to another network that’s under different administrative control,
the complexity of a dynamic routing protocol is oftentimes just not worth it. Here the
complexity is in the configuration and possible troubleshooting of such a protocol, but

Static Routing | 421

also in the ongoing processing burden within the router (which on some routers can
be a big problem), in addition to the complexities of working out peering arrangements
with other ASs, and so on.

Yep, there are times when a static route is the right tool for the job. The next section
demonstrates the use of the RIP routing protocol in a slightly more complicated top-
ology, where there is a need for intelligent next hop selection brought about by redun-
dant access links.

RIP Routing
Routing Information Protocol (RIP) is a venerable old workhorse, having been deployed
way back in the early 1970s to support Xerox Networking Services. The protocol was
later updated to support IP routing and was defined in RFC 1058, back in 1988. RIP
Version 2 (RIPv2) was originally defined in RFC 1388 (1993) and is currently specified
in RFC 2453 (1998).

RIP is a distance vector (DV), or Bellman-Ford, routing protocol that suffers from many
performance and functional shortcomings when compared to newer IGP options, such
as OSPF, which is based on LS shortest-path algorithms. That being said, RIP was
updated with a version 2, and later with IPv6 support via RIPng, and it is supported in
virtually all IP routing gear, in part because of its inherent simplicity and long imple-
mentation history. Being easy to implement is great; this inherent simplicity also results
in frugal use of router CPU and memory resources, which can be a significant issue in
low-end or older routing equipment. When compared to LS protocols, RIP is also found
to be somewhat intuitive and easy to understand. This translates to easier deployment
and support activities by normal folks—you know, those who may have a life outside
of IP networking, and therefore do not “dine on data and snack on RFCs.”

As noted in the static routing section, there is a time when a simple nail and hammer,
that is, a static route, is the best solution. While you may gain an ego boost by solving
the same problem with glue, welding, and perhaps even a high-tech hook and loop
fastener technology, such a solution is not always cost-effective. RIP is well suited to
relatively small internetworks (15 or fewer hops) that are relatively stable, and which
don’t demand subsecond reconvergence when the odd failure does occur.

In the end, there is no “right” answer when it comes to the best IGP choice for your
network. Too many variables need to be factored. Can you run multi-area OSPF on a
two-router internetwork? Sure. Should you? Probably not. Most enterprises will likely
deploy the EX with no routing; they are marketed as switches, after all. Those that do
enable routing will likely use whatever IGP they are already running. If there is no
routing in the current network, it’s likely that when routing is first added, a simple
protocol such as RIP will be chosen. A data center customer, on the other hand, likely
has an extensive routed infrastructure in place, and has numerous trained IT techni-
cians who will have no problem deploying more complicated protocols. The somewhat

422 | Chapter 7: Routing on the EX

demanding needs of a modern data center may well benefit from the added performance
and scalability gains found with the more complicated LS routing option.

RIP Overview
RIP is classified as a DV routing protocol because it advertises reachability information
in the form of distance/vector pairs, which is to say, each route is represented as a cost
(distance) to reach a given prefix (vector) tuple. DV routing protocols typically ex-
change entire RTs among their set of directly connected peers on a periodic basis.
Figure 7-6 displays key operational characteristics of RIP.

Figure 7-6. RIP operational overview

While Figure 7-6 is admittedly busy, it’s composed of three parts that can easily be
tackled. The top of the figure shows a stylized network running a DV protocol such as
RIP. Each router connects to a LAN segment with a unique network number. As with
most DV protocols, RIP operates through the periodic exchange of the local router’s
route table (with a few exceptions for stability, as described shortly), among all of its
directly attached neighbors—a case of telling all your friends everything you know,
every so often. Here Router 1 advertises its cost to reach the three networks it knows

RIP Routing | 423

about. Note that its local network has a metric of 1, while the other two networks each
have a cost of 2, indicating that it and one additional router must be crossed to reach
these networks. Each router receives the updates sent by its peers and then performs a
best-route selection process. The trophy goes to the route with the lowest metric, which
is typically based on hop count, and that route is installed into the RT. Only the best
routes are installed in the RT, and only these routes are subsequently selected for re-
advertisement to other peers.

The lower-left portion of Figure 7-6 shows a RIP message’s IP/User Datagram Protocol
(UDP)-based encapsulation, as defined in the RFC. RIP uses UDP port 520, and v1
messages are sent as IP broadcast (all 1s), while v2 uses the reserved 224.0.0.9 multicast
address. The lower-right portion of the figure shows the RIPv1 message format; v2 uses
a compatible format, but includes a network mask for subnet support and can also
support authentication. A v2 speaker can interoperate with a v1 implementation, but
at the cost of forcing the fallback of all speakers to the lesser set of v1 capabilities.

The behavior just described, although direct and easy to understand, leads to many of
the disadvantages associated with DV routing protocols. Specifically:

• Increased network bandwidth consumption stemming from the periodic exchange
of potentially large RTs, even during periods of network stability. This can be a
significant issue when routers connect over low-speed or usage-based network
services.

• Slow network convergence, and as a result, a propensity to produce routing loops
when reconverging around network failures. To alleviate (but not eliminate) the
potential for routing loops, mechanisms such as split horizon, poisoned reverse,
route hold downs, and triggered updates are generally implemented. These stabil-
ity features come at the cost of prolonging convergence.

• Association (usually) with crude route metrics. The typical metric (cost) for DV
protocols is a simple hop count, which is a crude measure of actual path cost, to
say the least. For example, most users realize far better performance when crossing
several routers interconnected by Gigabit Ethernet links, as opposed to half as
many routers connected over low-speed serial interfaces.

To help illustrate what is meant by slow to converge, consider that the protocol’s ar-
chitects ultimately defined a hop count (the number of routers that need to be crossed
to reach a destination) of 16 to be infinity! Setting infinity to a rather low value was
needed because in some conditions, RIP can converge only by cycling through a series
of route exchanges between neighbors, with each such iteration increasing the route’s
cost by one, until the condition is cleared by the metric reaching infinity and both ends
finally agree that the route is not reachable. With the default 30-second update fre-
quency, this condition is aptly named a slow count to infinity, and is shown in Figure 7-7.

424 | Chapter 7: Routing on the EX

Figure 7-7. Slow counting

Things begin at the top, where all is well, and the three routers have converged on a
loop-free topology that is optimized on hop count. At this time, R1’s link to Network
1 is up, resulting in its advertisement to R2 with a cost of 1; in this example, R2 finds
this to be the best route, and it installs Network 1 in its RT with the advertised costs
plus its cost (1) to reach R1. Here R2 is not running split horizon (explained shortly),
which results in it later readvertising Network 1 back to R1, now with its cost of 2.
Because R1 still has a better cost of 1 for this network, all is well.

Later on, in the middle of the figure, R1 loses its link to Network 1. In this example,
R1 does not implement triggered updates (described shortly), so it plans to let R2 and
the rest of its friends know of this change at its convenience—say, at the next scheduled
update. By default, this is every 30 seconds. In this example, R2 happens to send its
advertisement back to R1 first, and this is where things go bad.

Because R1 currently has no route to Network 1 (it has a local metric of 16), it now
appears as though R2 has a better route. R1 is fooled, and incorrectly believes that it can
reach Network 1 via R2 at a cost of 3 (the advertised plus local metric to reach R2), and
so installs the route to Network 1 with a next hop pointing back to R2. Thus, a loop is
born—R2, you’ll recall, is still pointing its copy of the route back at R1. At the next
update, R3 advertises its new metric, R2 updates its table/costs, and the process repeats

RIP Routing | 425

as the route is again advertised back to R1. This process continues until the route is
finally poisoned by reaching a hop count of 16, which for RIP equals infinity, causing
the route to be considered unreachable.

Over the years, problems such as the slow count to infinity have been solved by various
tweaks to RIP’s operation. The next section explores these tweaks, all of which are
implemented in JUNOS to give you the best RIP experience possible.

RIP stability and performance tweaks

Hold downs serve to increase stability, at the expense of rapid convergence, by pre-
venting installation of a route with a reachable metric, after that same route was recently
marked as unreachable (cost = 16) by the local router. This behavior helps to prevent
loops by preventing the local router from installing route information for a route that
was originally advertised by the local router, and which is now being readvertised by
another neighbor. It’s assumed that the slow count to infinity will complete before the
hold down expires, after which the router will be able to install the route using the
lowest advertised cost.

Split horizon prevents the advertisement of routing information back over the interface
from which it was learned, and poisoned reverse alters this rule to allow readvertisement
back out to the learning interface, as long as the cost is explicitly set to infinity: a case
of “I can reach this destination, NOT!” This helps to avoid loops by making it clear to
any receiving routers that they should not use the advertising router as a next hop for
the prefix in question. This behavior is designed to avoid the need for a slow count to
infinity that might otherwise occur because the explicit indication that “I cannot reach
destination X” is less likely to lead to misunderstandings when compared to the absence
of information associated with split horizon. To prevent unnecessary bandwidth waste
that stems from bothering to advertise a prefix that you cannot reach, most RIP im-
plementations use split horizon, except when a route is marked as unreachable, at
which point it is advertised with a poisoned metric for some number of update intervals
(typically three).

Triggered updates allow a router to generate event-driven as well as ongoing periodic
updates, serving to expedite the rate of convergence as changes propagate quickly.
When combined with hold downs and split horizon, a RIP network can be said to
receive bad news quickly while good news travels slowly.

RIP and RIPv2

Although the original RIP version still works and is currently supported on Juniper
Networks routers, it’s assumed that readers of this book will consider deploying only
RIP Version 2. Although the basic operation and configuration are the same, several
important benefits are associated with RIPv2 and no real drawbacks (considering that
virtually all modern routers support both versions and that RIPv2 messages can be

426 | Chapter 7: Routing on the EX

made backward compatible with v1 routers, albeit while losing the benefits of RIPv2
for those v1 nodes).

RIPv2’s support of Variable Length Subnet Masking/Classless Inter-Domain Routing
(VLSM/CIDR), combined with its ability to authenticate routing exchanges, has resul-
ted in new life for our old friend RIP (pun intended). Table 7-5 provides a summary
comparison of the two RIP versions.

Table 7-5. Comparing characteristics and capabilities of RIP and RIPv2

Characteristic RIP RIPv2

Metric Hop count (16 max) Hop count (16 max)

Updates/hold down/route
timeout

30/120/180 seconds 30/120/180 seconds

Max prefixes per message 25 25 (24 when authentication is used)

Authentication None Plain text or Message Digest 5 (MD5)

Broadcast/multicast Broadcast to all nodes using all 1s, RIP-
capable or not

Multicast only to RIPv2-capable routers using
224.0.0.9 (broadcast mode is configurable)

Support for VLSM/CIDR No, only classful routing is supported
(no netmask in updates)

Yes

Route tagging No Yes (useful for tracking a route’s source, i.e., internal
versus external)

RIP Deployment Scenario
In this section, our goal is to deploy RIP on an EX as part of a switched access-to-routed
distribution layer scenario. Figure 7-8 provides the RIP topology details.

While similar to the static routing case, this topology is designed to reflect a typical
Layer 2 switched access infrastructure that connects to a distribution layer through a
Layer 3 routing service. Here, the existing access layer is composed of our two favorite
VLANs, Sales and Admin, along with their respective hosts. This example brings a J
Series router named Scotch into play, where it provides redundant access to the distri-
bution layer. The presence of alternate paths helps to justify the use of a routing pro-
tocol, as opposed to simple static routing. As before, R2 has a default route pointing to
null0 to simulate the rest of the network’s destinations.

Scotch is configured to run RIPv2 to R2, a decision made to help provide an access link
keepalive mechanism given the presence of a VLAN switch, and to ensure that when
things are down, the affected access layer’s routes are withdrawn from the rest of the
network. This behavior ensures that the router does not attract data from remote parts
of the network only to have it discarded once it reaches the distribution layer router.

RIP Routing | 427

Figure 7-8. RIP routing topology

In this example, Vodkila is configured with two static routes representing the addressing
space of the access layer network, and the required policy to have RIP advertise these
routes to both of its upstream peers.

428 | Chapter 7: Routing on the EX

An aggregate route could have been used. Such a route needs a contri-
buting route to be active. In this example, the aggregates would be ac-
tivated by one of the locally connected routes, thereby effectively nailing
them up, so the routes may as well be static. More complicated scenarios
that would benefit from an aggregate route are beyond the scope of this
chapter.

In this example, one of the two static routes is an aggregate in the sense
that it represents multiple Class C networks using a mask that is less
than 24 bits in length. In JUNOS, an aggregate route is more a type of
next hop and does not imply super- or subnetting.

In the reverse direction, the distribution layer router is configured to advertise a default
route to both access layer peers in order to provide them with reachability to non-local
destinations. An import policy is used to restrict RIP to accepting only a default route
from the distribution layer peer, a strategy planned to protect the router from abnor-
mally large RTs in the event of misconfiguration or other abnormal events in remote
portions of the network.

To make things interesting, your challenge in this example is to ensure that traffic is
forwarded through the J Series router when that link is operational, despite this path
having more hops and therefore being less preferred by RIP. Such a restriction may
stem from a need for some service, such as sampling or stateful firewall, which is cur-
rently not available on the EX platform.

When there is a problem with the J Series path, traffic should flow directly from
Vodkila to R2, given RIP’s predilection for paths with fewer hops. This type of control
of forwarding paths, and not blocking so much as simply not choosing to use redundant
paths, is what separates routing from bridging—and for that matter the “packets from
the frames,” so to speak.

Configure RIP

We’ll start with the configuration of RIP on Vodkila. The distribution layer router is
already configured per the requirements of this example. If things do not work, you
can assume it’s due to misconfiguration in the access layer. For completeness, the rel-
evant portions of the IOS-based device’s configuration are shown:

. . .
interface Loopback0
 ip address 192.168.1.1 255.255.255.255
!
interface FastEthernet0/0
 no ip address
 duplex auto
 speed auto
!
interface FastEthernet0/0.1
 encapsulation dot1Q 69

RIP Routing | 429

 ip address 172.16.9.1 255.255.255.0
!
interface FastEthernet0/0.2
 encapsulation dot1Q 70
 ip address 172.16.3.1 255.255.255.0
!
router rip
 version 2
 redistribute static
 network 172.16.0.0
 no auto-summary
!
ip classless
ip route 0.0.0.0 0.0.0.0 Null0
. . .

The summary of this IOS configuration is that it created a VLAN-tagged interface with
two logical units, each assigned an IP address, and RIP is configured to run over both
subinterfaces.

As noted previously, the IOS interface configuration makes use of
VLAN-based subinterfaces, which are analogous to logical units in JU-
NOS, to allow the same physical interface to be used multiple times with
differing logical connectivity. This topology uses a one-to-many model
with regard to a single Internet router that connects to multiple discrete
devices. The use of VLAN tagging facilitates the desired logical connec-
tivity from a single interface, and is limited to the Internet router side of
the topology. As a result, the remote end of the Inet to Scotch link does
not use VLAN tagging and has a single logical unit defined.

RIP is set to redistribute static routes (a default route in this example), and RIPv2 is
selected with no auto-summary to permit class routing/subnetting.

If IOS to JUNOS RIP, OSPF, EIGRP, and Layer 3 services interoperation
and integration is your bag, consult the companion volume in this series,
JUNOS Enterprise Routing.

Because no protocol can overcome a broken physical layer or misconfigured IP address,
start with configuration of the Layer 3 interfaces at Vodkila and Scotch. The interfaces
at Scotch are shown, and proper IP communication is confirmed:

[edit]
lab@Scotch# show interfaces
ge-0/0/0 {
 description "To Switch3 Vodka";
 unit 0 {
 family inet {
 address 10.3.9.9/24;
 }

430 | Chapter 7: Routing on the EX

http://oreilly.com/catalog/9780596514426/

 }
}
ge-0/0/1 {
 description "To R2 Core"
 unit 0 {
 family inet {
 address 172.16.9.9/24;
 }
 }
}
ge-0/0/3 {
 description "OoB Interface";
 unit 0 {
 family inet {
 address 172.16.69.9/24;
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 10.10.1.9/32;
 }
 }
}

And now the pings to both of Scotch’s peers:

[edit]
lab@Scotch# run ping 10.3.9.3
PING 10.3.9.3 (10.3.9.3): 56 data bytes
64 bytes from 10.3.9.3: icmp_seq=0 ttl=64 time=603.526 ms
64 bytes from 10.3.9.3: icmp_seq=1 ttl=64 time=1.403 ms
64 bytes from 10.3.9.3: icmp_seq=2 ttl=64 time=1.387 ms
^C
--- 10.3.9.3 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.387/202.105/603.526/283.847 ms

[edit]
lab@Scotch# run ping 172.16.9.1
PING 172.16.9.1 (172.16.9.1): 56 data bytes
64 bytes from 172.16.9.1: icmp_seq=0 ttl=255 time=3.865 ms
64 bytes from 172.16.9.1: icmp_seq=1 ttl=255 time=2.385 ms
^C
--- 172.16.9.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 2.385/3.125/3.865/0.740 ms

And the same at Vodkila:

[edit interfaces]
lab@Vodkila# show ge-0/0/8
unit 0 {
 family inet {
 address 10.3.9.3/24;
 }

RIP Routing | 431

}

[edit interfaces]
lab@Vodkila# show ge-0/0/9
unit 0 {
 family inet {
 address 172.16.3.3/24;
 }
}

[edit interfaces]
lab@Vodkila# run ping 172.16.3.1
PING 172.16.3.1 (172.16.3.1): 56 data bytes
64 bytes from 172.16.3.1: icmp_seq=0 ttl=255 time=1.390 ms
64 bytes from 172.16.3.1: icmp_seq=1 ttl=255 time=1.217 ms
^C
--- 172.16.3.1 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 1.217/1.304/1.390/0.086 ms

The pings to directly connected neighbors succeed, confirming that nothing is stopping
RIP now, except, of course, its glaring absence. RIP is configured at the [edit protocols
rip] hierarchy, where the general options are shown:

[edit protocols rip]
lab@Vodkila# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 authentication-key Authentication key (password)
 authentication-type Authentication type
 check-zero Check reserved fields on incoming RIPv2 packets
> graceful-restart RIP graceful restart options
> group Instance configuration
 holddown Hold-down time (10..180 seconds)
+ import Import policy
 message-size Number of route entries per update message (25..255)
 metric-in Metric value to add to incoming routes (1..15)
 no-check-zero Don't check reserved fields on incoming RIPv2 packets
> receive Configure RIP receive options
> rib-group Routing table group for importing RIP routes
 route-timeout Delay before routes time out (30..360 seconds)
> send Configure RIP send options
> traceoptions Trace options for RIP
 update-interval Interval between regular route updates (10..60 seconds)
[edit protocols rip]
lab@Vodkila# set

It should be apparent that many aspects of RIP are configurable within JUNOS soft-
ware. Some options are global, such as the authentication key/type and import/export
policy, which means they apply to all groups (unless negated by a more specific group
setting, if available). Other parameters can be specified only at a subsequent hierarchy.
For example, a neighbor can be defined only within a group. You can quickly explore
the options available under send and receive using the CLI’s ? help utility:

432 | Chapter 7: Routing on the EX

[edit protocols rip]
lab@ Vodkila# set send ?
Possible completions:
 broadcast Broadcast RIPv2 packets (RIPv1 compatible)
 multicast Multicast RIPv2 packets
 none Do not send RIP updates
 version-1 Broadcast RIPv1 packets
. . .
lab@Vodkila# set receive ?
Possible completions:
 both Accept both RIPv1 and RIPv2 packets
 none Do not receive RIP packets
 version-1 Accept RIPv1 packets only
 version-2 Accept only RIPv2 packets
. . .

It’s apparent from the display that the send and receive settings globally control the
RIP version, and you can also tell whether multicast (default for v2) or broadcast pack-
ets are sent. It just so happens that these same settings can also be specified on a per-
neighbor (interface) basis—as with all JUNOS software, a more-specific group-level
configuration hierarchy setting always overrides a less-specific global value. Now for a
quick look at the options available under a group—this is where you define RIP neigh-
bors in the form of interface names that will run RIP:

lab@Vodkila# set group test ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> bfd-liveness-detection Bidirectional Forwarding Detection options
+ export Export policy
+ import Import policy
 metric-out Default metric of exported routes (1..15)
> neighbor Neighbor configuration
 preference Preference of routes learned by this group
 route-timeout Delay before routes time out (30..360 seconds)
 update-interval Interval between regular route updates (10..60 seconds)
 |

Configuration options found at the neighbor level include the import or export key-
word, which is used to apply routing policy to receive or transmit route updates, re-
spectively. Note that when applied at the neighbor level, any globally defined import
or export policies are negated. The router runs either the global or the group policy,
never both, and the router always chooses the most specific application—a neighbor
level is more specific than a global level, of course.

RIP Routing | 433

The terminology of groups and neighbors may seem a bit confusing at
first, given the way RIP is configured in IOS. JUNOS software is opti-
mized when routing peers with similar export policies are placed into
the same group. As a result, even if you have only one peer, that neighbor
needs to belong to a RIP group. Also, the term neighbor here actually
means interface, given that RIP messages are not unicast to specific ma-
chines, but instead are broadcast or multicast to all RIP speakers on a
given link. This means that specifying a single neighbor in the form of
a multi-access interface results in RIP communications with all RIP-
capable routers on that LAN segment.

Also note that in IOS, the neighbor keyword is used to define unicast
RIP exchanges (when combined with the passive statement) among a
subset of RIP speakers on a given interface. There is no keyword equiv-
alent for this non-standard RIP operation in JUNOS, but firewall filters
and/or policy can be used to constrain routing exchanges for similar
effect.

Vodkila’s RIP configuration

Vodkila’s RIP process is configured in accordance with the operational guidelines set
forth for this scenario. Analysis begins with a routing-options stanza and static route
definition:

[edit]
lab@Vodkila# show routing-options
static {
 route 200.2.0.0/22 reject;
}

The static route for the 200.2.0/22 supernet catches subnets in the range of 200.2.0
through 200.2.3, and therefore encompasses the host subnets in the access layer with
a bit of room for later expansion. Analysis continues with the RIP stanza:

[edit]
lab@Vodkila# show protocols rip
group distribution {
 export rip_export_add;
 neighbor ge-0/0/9.0 {
 metric-in 3;
 import default_only;
 }
}
group Scotch {
 export rip_export;
 neighbor ge-0/0/8.0;
}

Two RIP groups are used because in this example there is a need for export policy
differences between the two RIP neighbors. Recall that in the JUNOS implementation,
RIP export is available only at the group level, while import policy can be applied at
the global, group, or neighbor level. Each group defines a single RIP neighbor, which

434 | Chapter 7: Routing on the EX

is somewhat of a misnomer, in that it’s really identifying a RIP-enabled interface; RIP
operates multipoint, and one such interface may therefore advertise and receive from
all RIP speakers attached to the direct subnet. Multiple RIP-enabled interfaces can be
defined within a single group only when all such interfaces share a common export
policy.

The distribution group’s export policy increases the default RIP metric to ensure that
R2 prefers Scotch’s version of these routes. This group is set to perform a similar metric
addition to received RIP routes, in this case adding 3 rather than the default 1 to all
such routes. This operation could also be accomplished with import policy. The ap-
proach taken here allows a common import policy to be shared among both groups.

The distribution group makes use of a neighbor-level import policy named
default_only; given there is only one neighbor, this policy could have been applied at
the group level with the same effect. The policy accepts only a RIP-learned default and
is applied only to RIP exchanges received from R2. The Scotch group uses the default
RIP import policy, which accepts all sane RIP routes. This is done to ensure that both
Scotch and Vodkila maintain RIP-learned loopback address reachability in the event
that both RIP peerings to R2 are lost, which in turn causes the loss of the default route.

Here is Vodkila’s routing policy:

[edit]
lab@Vodkila# show policy-options
policy-statement default_only {
 term permit{
 from {
 protocol rip;
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
 }
 term deny {
 then reject;
 }
}

The default_only import policy accepts only a RIP-learned default route. This is suf-
ficient to provide Vodkila with routing to all external destinations, including Scotch’s
loopback address, in the event that the RIP session to Scotch is disrupted. Due to the
metric manipulation, it’s expected that Vodkila will use the default learned via
Scotch, and therefore will route egress traffic over the primary link when it’s
operational:

policy-statement rip_export {
 term static {
 from {
 protocol static;
 route-filter 200.2.0.0/22 exact;
 }
 then accept;
 }

RIP Routing | 435

 term direct {
 from {
 protocol direct;
 route-filter 10.10.1.3/32 exact;
 }
 then accept;
 }
 term readvertise_rip {
 from protocol rip;
 then accept;
 }
 term deny {
 then reject;
 }
}

The rip_export policy’s first term advertises the access layer’s 200.2.0/22 aggregate
route and the direct route for the local loopback address, and readvertises any RIP-
learned routes. This last bit may seem odd, as this is the default behavior in most RIP
implementations. In JUNOS RIP, the default RIP export policy is to reject all, even
RIP-learned, routes. The readvertise_rip term causes JUNOS to act like other RIP
routers, and is used here to ensure maximum connectivity in the face of failures. If
Scotch’s upstream link fails, this term allows Vodkila to readvertise the 10.10.1.9 loop-
back address, which is learned via RIP, on to the distribution router:

policy-statement rip_export_add {
 term static {
 from {
 protocol static;
 route-filter 200.2.0.0/22 exact;
 }
 then {
 metric add 3;
 accept;
 }
 }
 term direct {
 from {
 protocol direct;
 route-filter 10.10.1.3/32 exact;
 }
 then {
 metric add 3;
 accept;
 }
 }
 term readvertise_rip {
 from protocol rip;
 then {
 metric add 3;
 accept;
 }
 }
 term deny {

436 | Chapter 7: Routing on the EX

 then reject;
 }
}

The rip_export_add policy is applied as export-only to the R2 peering. It functions as
the export_rip, except it artificially raises the advertised metric by adding 3. This poi-
sons the secondary link from the perspective of R2; as a result, it will be used only when
the primary link is down.

This is not your father’s RIP. As observed in this section, the JUNOS
RIP implementation is a bit more complicated than what you may be
familiar with in IOS. In IOS, a simple router rip statement followed by
a network statement or two is all that is needed. The choice of default
reject export policy in JUNOS means that, in almost all cases, you will
need to define a RIP export policy that accepts RIP routes for export just
to get a JUNOS device to behave like any other RIP router. Folks often
miss this and scratch their heads when things don’t initially work as
expected.

The configuration at Scotch is simpler, in that no metric manipulation is needed. The
ability to use a common export policy for the RIP-learned default route and the local
direct loopback address allows you to meet the stated goals with the definition of a
single RIP group:

[edit]
lab@Scotch# show protocols rip
group rip_peers {
 export rip_export;
 neighbor ge-0/0/0.0;
 neighbor ge-0/0/1.0 {
 import default_only;
 }
}

Both RIP neighbors share the rip_export policy, as noted, but the neighbor-level ap-
plication of the default_only policy means it is applied to the R2 peering only. This
allows Scotch to import RIP routes that originate at Vodkila, in addition to its RIP-
learned default route, in the event of disruption to the peering session between
Scotch and R2. The related policies are displayed:

[edit]
lab@Scotch# show policy-options
policy-statement default_only {
 term 1 {
 from {
 protocol rip;
 route-filter 0.0.0.0/0 exact;
 }
 then accept;
 }
 term 2 {

RIP Routing | 437

 then reject;
 }
}
policy-statement rip_export {
 term readvertise_rip {
 from protocol rip;
 then accept;
 }
 term direct {
 from {
 protocol direct;
 route-filter 10.10.1.9/32 exact;
 }
 then accept;
 }
 term deny {
 then reject;
 }
}

Verify RIP
With RIP configured, it’s time to confirm that all is well. We focus on Vodkila, as this
is an EX book, but the common JUNOS software also running on J Series router
Scotch means the same commands and techniques apply equally there. You begin with
the obligatory display of which show rip operational mode commands are available at
the CLI:

[edit]
lab@Vodkila# run show rip ?
Possible completions:
 general-statistics Show RIP general statistics
 neighbor Show RIP interfaces
 statistics Show RIP statistics
[edit]

Confirming that RIP is running on the right interfaces is easy with a show rip
neighbor command:

[edit]
lab@Vodkila# run show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
ge-0/0/8.0 Up 10.3.9.3 224.0.0.9 mcast both 1
ge-0/0/9.0 Up 172.16.3.3 224.0.0.9 mcast both 3

The show rip statistics command also indicates general operational health as a func-
tion of messages being sent and received, versus any error message counts, and so on:

[edit]
lab@Vodkila# run show rip statistics
RIPv2 info: port 520; holddown 120s.
 rts learned rts held down rqsts dropped resps dropped

438 | Chapter 7: Routing on the EX

 2 0 0 0

ge-0/0/8.0: 2 routes learned; 2 routes advertised; timeout 180s; update interval 30s
Counter Total Last 5 min Last minute
------- ----------- ----------- -----------
Updates Sent 235 10 2
Triggered Updates Sent 7 0 0
Responses Sent 0 0 0
Bad Messages 0 0 0
RIPv1 Updates Received 0 0 0
RIPv1 Bad Route Entries 0 0 0
RIPv1 Updates Ignored 0 0 0
RIPv2 Updates Received 412 20 4
RIPv2 Bad Route Entries 0 0 0
RIPv2 Updates Ignored 0 0 0
Authentication Failures 0 0 0
RIP Requests Received 4 0 0
RIP Requests Ignored 0 0 0

Sooner or later, routing protocol verification invariably comes around to looking at the
RT. The RT is, after all, the end result of a routing protocol’s operation. A show route
protocol rip command is an easy way to filter the RT to display only RIP-learned
routes:

[edit]
lab@Vodkila# run show route protocol rip

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 01:33:07, metric 3, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
10.10.1.9/32 *[RIP/100] 00:09:29, metric 2, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
224.0.0.9/32 *[RIP/100] 00:09:40, metric 1
 MultiRecv

__juniper_private1__.inet.0: 4 destinations, 6 routes (1 active, 0 holddown, 3 hidden)

The output shows that Vodkila has learned two routes through RIP. The 224.0.0.9 entry
is the multicast route entry (MultiRecv) used to facilitate reception of RIPv2’s multicast
route updates. The entry is created by the routing process and is not advertised (or
learned) in any RIP updates. As hoped, Vodkila has both a default route and a route to
Scotch’s loopback address, and, just as important, both point to the primary link via
its link to Scotch. Note that the metric value for these routes reflects the local router’s
cost; the cost advertised to other RIP speakers will normally be one higher. The 0/0
route in this case is received with a hop count of 2, reflecting the need to transit two
routers in order to reach its origination point at R2. When installed in the RT,
Vodkila adds its costs to reach that neighbor, a 1 in this case, resulting in the metric
value 3 that is shown.

RIP Routing | 439

Recall that the RIP configuration at Vodkila adds 3, rather than the default 1, to the
updates received over its ge-0/0/9 interface. The metric for the default routes learned
over this interface is therefore the received cost (1), plus 3 for the metric addition, for
a total metric of 4. This explains why the secondary path has not been chosen.

You can use the show route receive protocol rip <remote-neighbor-ip> command to
display active routes that are received on a particular interface from a particular RIP
source. This helps to confirm that Scotch is in fact advertising two RIP routes to
Vodkila. Note that the neighbor argument to this command for RIP is a remote neighbor
IP address:

[edit]
lab@Vodkila# run show route receive-protocol rip 10.3.9.9

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:00:40, metric 3, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
10.10.1.9/32 *[RIP/100] 00:23:43, metric 2, tag 0
 > to 10.3.9.9 via ge-0/0/8.0

This command has a send counterpart in the form of a show route advertising
protocol rip <local-ip-address> command. Note that in this context the neighbor
argument is the local interface’s IP address, rather than its name. Vodkila is confirmed
to be sending RIP routes to both of its upstream neighbors:

[edit]
lab@Vodkila# run show route advertising-protocol rip 10.3.9.3

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.10.1.3/32 *[Direct/0] 1d 05:00:14
 > via lo0.0
200.2.0.0/22 *[Static/5] 02:32:37
 Reject

The advertisements sent out to the 10.3.9.3 interface confirm that Vodkila is advertising
the access network summary and its loopback address, and that it’s obeying split
horizon by not advertising the default route back to the speaker from which it was
learned:

[edit]
lab@Vodkila# run show route advertising-protocol rip 172.16.3.3

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:04:02, metric 3, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
10.10.1.3/32 *[Direct/0] 1d 05:00:16
 > via lo0.0

440 | Chapter 7: Routing on the EX

10.10.1.9/32 *[RIP/100] 00:27:05, metric 2, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
200.2.0.0/22 *[Static/5] 02:32:39
 Reject

In contrast, the advertisements to the 172.16.3.3 interface show that Vodkila is read-
vertising its (RIP-learned) default route to R2, but note the increased hop count that
ensures that R2 will not use it (its static default has a lower [more] administrative dis-
tance [preference] anyway, so the RIP metric does not even matter in this case). Note
that the command output shows the local route metric, rather than what is actually
advertised. Recall that here the metric sent to R2 will have 3 added due to the
configuration.

Because Vodkila prefers the routes learned via the Scotch peering, no RIP routes are
installed over its ge-0/0/9 interface. As a result, the show route receive-protocol rip
172.16.3.1 command does not return any output:

[edit protocols rip]
lab@Vodkila# run show route receive-protocol rip 172.16.3.1

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)

Be careful here, as this makes it easy to incorrectly believe there is a RIP malfunction
resulting in R2’s failure to advertise the expected routes to the local router. Tracing,
which is akin to debugging in IOS, is added to Vodkila to gain added insight as to
whether RIP is correctly operating over the R2 peering, given that so far it has been hard
to tell:

[edit protocols rip]
lab@Vodkila# show traceoptions
file rip;
flag error detail;
flag packets detail;
flag update detail;

The rip trace log is monitored with a monitor start rip command:

[edit protocols rip]
lab@Vodkila# run monitor start rip

And like clockwork, RIP starts firing off its scheduled updates, resulting in send and
receive activity:

[edit protocols rip]
lab@Vodkila#
*** rip ***
Jan 12 09:40:14.185692 Preparing to send RIPv2 updates on nbr ge-0/0/8.0, group:
Scotch.
Jan 12 09:40:14.185921 Update job: sending 20 msgs; nbr: ge-0/0/8.0; group: Scotch;
msgp: 0x2567c00.
Jan 12 09:40:14.185996 nbr ge-0/0/8.0; msgp 0x2567c00.
Jan 12 09:40:14.186025 10.10.1.3/0xffffffff: tag 0, nh
0.0.0.0, met 1.
Jan 12 09:40:14.186047 200.2.0.0/0xfffffc00: tag 0, nh

RIP Routing | 441

0.0.0.0, met 1.
Jan 12 09:40:14.186069 sending msg 0x2567c04, 2 rtes
Jan 12 09:40:14.186465 Update job done for nbr ge-0/0/8.0 group: Scotch

The first activity is an update message sent to Scotch over the ge-0/0/8 interface. It
clearly shows the 200.2.0/22 and 10.10.1.3 prefixes (routes) being advertised as ex-
pected and confirmed with previous commands. Note that the metric that is actually
being advertised is now shown, which, in this update, is 1 (the default):

Jan 12 09:40:20.449687 Preparing to send RIPv2 updates on nbr ge-0/0/9.0, group:
distribution.
Jan 12 09:40:20.449918 Update job: sending 20 msgs; nbr: ge-0/0/9.0; group:
distribution; msgp: 0x2567a00.
Jan 12 09:40:20.449944 nbr ge-0/0/9.0; msgp 0x2567a00.
Jan 12 09:40:20.449970 200.2.0.0/0xfffffc00: tag 0, nh
0.0.0.0, met 3.
Jan 12 09:40:20.449992 10.10.1.3/0xffffffff: tag 0, nh
0.0.0.0, met 3.
Jan 12 09:40:20.450014 10.10.1.9/0xffffffff: tag 0, nh
0.0.0.0, met 5.
Jan 12 09:40:20.450036 0.0.0.0/0x00000000: tag 0, nh
0.0.0.0, met 6.
Jan 12 09:40:20.450057 sending msg 0x2567a04, 4 rtes
Jan 12 09:40:20.450445 Update job done for nbr ge-0/0/9.0 group: distribution

The next message is a RIP update sent to R2 over the ge-0/0/9 interface. Note that the
locally originated routes have a metric of 3, and the routes being readvertised are set to
5. This confirms the correct operation of the metric add 3 logic in the
rip_export_add export policy:

Jan 12 09:40:30.577936 received response: sender 172.16.3.1, command 2, version 2,
mbz: 0; 5 routes.
Jan 12 09:40:30.578035 0.0.0.0/0x00000000: tag 0, nh 0.0.0.0,
met 1.
Jan 12 09:40:30.578093 10.10.1.3/0xffffffff: tag 0, nh 0.0.0.0,
met 3.
Jan 12 09:40:30.578132 10.10.1.9/0xffffffff: tag 0, nh 0.0.0.0,
met 2.
Jan 12 09:40:30.578231 172.16.9.0/0xffffff00: tag 0, nh 0.0.0.0,
met 1.
Jan 12 09:40:30.578266 200.2.0.0/0xfffffc00: tag 0, nh 0.0.0.0,
met 3.

The next message is a received RIP update from the R2 router. This is what we have
been waiting for, as it’s the first proof so far that it’s correctly advertising the default
route to Vodkila over the secondary link. The tracing represents what came off the wire,
and therefore shows the received metric. Recall that this neighbor has the metric-in
option set to 3 to poison the secondary route, unless the primary fails and it’s the only
option left, of course.

With things looking good at Vodkila, the tracing is removed, and attention shifts to
Scotch, where the route table is displayed:

442 | Chapter 7: Routing on the EX

[edit]
lab@Scotch# run show route protocol rip

inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:26:09, metric 2, tag 0
 > to 172.16.9.1 via ge-0/0/1.0
10.10.1.3/32 *[RIP/100] 01:03:49, metric 2, tag 0
 > to 10.3.9.3 via ge-0/0/0.0
200.2.0.0/22 *[RIP/100] 01:03:49, metric 2, tag 0
 > to 10.3.9.3 via ge-0/0/0.0
224.0.0.9/32 *[RIP/100] 00:26:17, metric 1
 MultiRecv

Things also look good here. Note that the RIP-learned default route is pointing out the
primary ge-0/0/1 path toward R2, in addition to the two RIP routes known to originate
at Vodkila. As this is a convenient maintenance window, a quick failover test is initiated
by downing the primary link at Scotch:

[edit]
lab@Scotch# deactivate interfaces ge-0/0/1

After committing the change, you note that it takes longer than expected for the router
with the locally downed interface to remove the default RIP route, which is observed
to still be pointing out a down interface:

[edit]
lab@Scotch# run show route protocol rip

inet.0: 9 destinations, 9 routes (8 active, 1 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 [RIP/100] 00:00:05, metric 2, tag 0
 > to 172.16.9.1 via ge-0/0/1.0
. . .

You note that the route’s age shows it was refreshed recently, as in some five seconds
ago. Also of note is the presence of a hold-down route. Intrigued, you add the
extensive switch to see what additional details you can glean:

[edit]
lab@Scotch# run show route protocol rip extensive

inet.0: 9 destinations, 9 routes (8 active, 1 holddown, 0 hidden)
0.0.0.0/0 (1 entry, 1 announced)
TSI:
RIP route tag 0; poison reverse, holddown metric 16, ends in 114 secs
 nbr ge-0/0/0.0: 0.0.0.0/0.0.0.0, met: 16, nh: 0.0.0.0
 RIP Preference: 100
 Next hop type: Router, Next hop index: 529
 Next-hop reference count: 1
 Next hop: 172.16.9.1 via ge-0/0/1.0, selected
 State: <Delete Int>
 Age: 6 Metric: 2 Tag: 0

RIP Routing | 443

 Task: RIPv2
 Announcement bits (1): 1-RIPv2
 AS path: I
 Route learned from 172.16.9.1 has expired

The added detail combined with RIP operational knowledge sheds light on what at first
seems like odd behavior. The router was not asleep at the switch, and is aware of the
down interface and resulting useless next hop. As a result, the route is set to expired
(without waiting for a timeout), and the router has placed it into poison reverse state.
This sets the metric to infinity in an attempt to expedite the removal of the local router
as a next hop for this destination in all the downstream nodes that will listen. The route
is retained as active in the RT to prevent the chance of a later route update, one with a
higher metric, being installed in its absence. Such a route could represent a loop because
a higher metric can imply that the advertising router is using the local router as its next
hop. During this time, a new route with a better metric than the current hold-down
route can be installed, but the old route will still be advertised with a poisoned metric
until the timeout expires.

Later yet, a similar condition is noted at Vodkila, which is the recipient of all that poison
reverse love Scotch is generating:

[edit protocols rip]
lab@Vodkila# run show route protocol rip

inet.0: 15 destinations, 15 routes (14 active, 1 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 [RIP/100] 00:02:00, metric 3, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
. . .

Notice that some two minutes have now elapsed since the last update for the default
route, which is also in a hold-down state, in this case because of the poison reverse
actions at Scotch that result in continued advertisements of the route with a poisoned
metric (16) of 120 seconds. Recall that poison reverse helps to ensure that other routers
have no misconceptions about their being able to reach that destination through the
advertising router, while a hold down helps to guard against loops by not installing a
new next hop for a deleted router until enough time has expired to ensure that the old
route will have aged out of all speakers. After the route has been poisoned for a while,
and the hold down has expired, it’s assumed that it is safe to begin listening for the
next best route to that destination. Within 30 seconds, someone will advertise such a
route, assuming one still exists, and the network will reconverge.

This “poor” performance is all part and parcel of RIP’s DV nature. The use of unreliable
periodic route exchange means that several updates must be lost before the death of
an upstream neighbor is detected. The default timeout in JUNOS is 180 seconds. Trig-
gered updates and poison reverse help to move bad news along, but even then
hold-down timers are needed to help guard against loops, and in JUNOS the default
hold down is four update periods or 120 seconds. This means that in a worst-case

444 | Chapter 7: Routing on the EX

scenario, it will take 180 seconds to time out a route, then another 120 seconds for hold
down. Ouch. The good news is that most of these delays occur when routes are re-
moved, not when they are added. So, upon restoration, things tend to heal pretty
quickly. It can truly be said that in RIP, bad news travels slowly and good news quickly.
And we did state that RIP is not the fastest horse in the stable, right?

Just as you’re beginning to worry, the protocol finally converges:

[edit protocols rip]
lab@Vodkila# run show route protocol rip

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:00:46, metric 4, tag 0
 > to 172.16.3.1 via ge-0/0/9.0
. . .

The display confirms a RIP-learned default that now points out the secondary link at
Vodkila. Note that the displayed metric of 4, which, combined with previous tracing
that showed a received metric of 1, finally provides confirmation of the metric-in
knob’s functionality. Before restoring the link, a few traceroutes are performed to con-
firm routing over the secondary link:

R2#traceroute 200.2.2.3

Type escape sequence to abort.
Tracing the route to 200.2.2.3

 1 172.16.3.3 0 msec 0 msec 0 msec
 2 200.2.2.3 4 msec 4 msec *
R2#

The trace from R2 to Host3 confirms that during primary failures, inbound traffic takes
the secondary link. The result also confirms the R2 routes to the access layer’s
200.2.0/22 subnets:

Host3#traceroute 192.168.1.1

Type escape sequence to abort.
Tracing the route to 192.168.1.1

 1 200.2.2.254 24 msec 0 msec 4 msec
 2 172.16.3.1 4 msec 4 msec *
Host3#

And the traceroute from Host3 to R2’s loopback also succeeds, thereby confirming that
default outbound routing is working over the secondary link during a primary outage.
The primary link is restored:

[edit]
lab@Scotch# rollback 1
load complete

RIP Routing | 445

And a short time later, since good news travels faster than bad in the land of RIP, all
route tables are observed to have converged back onto the primary link:

[edit protocols rip]
lab@Vodkila# run show route protocol rip

inet.0: 15 destinations, 15 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:00:08, metric 3, tag 0
 > to 10.3.9.9 via ge-0/0/8.0
. . .

The traceroutes are repeated, and they confirm routing symmetry over the primary link:

R2#traceroute 200.2.2.3

Type escape sequence to abort.
Tracing the route to 200.2.2.3

 1 172.16.9.9 0 msec 4 msec 4 msec
 2 10.3.9.3 0 msec 0 msec 0 msec
 3 200.2.2.3 4 msec 4 msec *
R2#
Host3#traceroute 192.168.1.1

Type escape sequence to abort.
Tracing the route to 192.168.1.1

 1 200.2.2.254 4 msec 0 msec 4 msec
 2 10.3.9.9 8 msec 4 msec 8 msec
 3 172.16.9.1 4 msec 4 msec *
Host3#

The results confirm the extra hop and the IP addresses of the primary link in both
directions. This completes the validation of the EX RIP deployment lab.

Routing protocol interaction can be complex and sometimes has unanticipated behav-
iors. It’s always a good idea to test failover scenarios as part of routine maintenance to
ensure that things do what you expect. There is nothing worse than learning your design
is fatally flawed during an actual network outage. The design demonstrated here was
revertive, in that the goal was to use the primary link whenever it was available. Some
designs prefer to stick on a backup link until manual intervention decides the primary
link is stable enough to switch back to. In this example, correct failover—and, later,
the revertive switch back to the primary link—were both confirmed.

RIP Summary
RIP is not glamorous, but it’s well vetted and easy to understand, and it’s hard to find
a router that does not support it. In this fast-moving business, it’s easy to fall victim to
networking one-upmanship, and to feel as though you must be running with the latest

446 | Chapter 7: Routing on the EX

version of Internet draft [protocol name here] in order to stake your claim to living on
the bleeding edge.

There are times when RIP is just a good fit, and while another, far more complicated
protocol can also work, it’s best to avoid protocol envy and IT peer pressure and make
the decision that is right for your network.

Conclusion
EX platforms provide a rich set of IP routing right out of the box, with no “routing-
enabled” images or messy software trains to wade through.

Routing is one of those things that is hard to get right. At a small scale, the situation
may be forgiving, but history shows that many switch vendors tried to become core
class routers—and they have all failed. With the EX, however, you have a reverse case
of carrier-class, Internet core-proven IP routing that happens to ship with your Ethernet
switch because it’s already in JUNOS. While the EXs have plenty of room to mature
and grow into more Layer 2 features, they kind of had Layer 3 covered from day one.

The impressive scaling capabilities of the EX platforms and the common JUNOS image
mean that folks familiar with routing in JUNOS software will be able to hit the ground
running with an EX under each arm; you may be able to put off buying those router
upgrades and just let the EX do it all!

Note that while this chapter provides demonstrations of static and RIP routing, the EX
platforms are also capable of full-blown OSPF, BGP, and IS-IS, as well as IPv6 routing
using RIPng or OSPF3. Even though IS-IS and BGP currently require an advanced
routing license, that’s still less expensive, and likely far more reliable, than adding a
standalone router for Layer 3 handling.

Chapter Review Questions
1. Which is true regarding routing?

a. End stations are not aware of routers

b. End stations participate in routing and intentionally evoke routing services
when needed

c. Routing is based on a flat addressing space

d. Bridging is based on a hierarchical address space

2. Stations in different VLANs can communicate:

a. Directly when Layer 2 ACLs permit

b. Indirectly, through transparent bridging

c. Directly via a router

d. Indirectly via a router

Chapter Review Questions | 447

3. True or false: when a station in one VLAN attempts to reach a destination in an-
other VLAN, the ARP is sent to the target station directly.

4. You can provide inter-VLAN routing on the EX with:

a. A switched VLAN interface

b. A routed VLAN interface

c. A tunnel interface that is placed into both VLANs

d. Two interfaces with an external cable

5. Four VLANs are defined, and each is served by a vlan interface unit. Which is true?

a. By default, no inter-VLAN communications are possible

b. By default, all stations will have inter-VLAN connectivity at Layer 3

c. Policy is needed to permit communications

d. Firewall filters must be defined with an accept action for inter-VLAN com-
munications to succeed

6. What is the difference between a discard and a reject next hop on a static route?

a. Discard silently tosses traffic, while reject generates an error message

b. Discard generates an error message, while reject tosses traffic silently

c. Discard black-holes traffic, while reject prevents the route from being read-
vertised in another protocol

d. Neither is valid; a static route must point to a forwarding next hop

7. Where can export policy be applied in the JUNOS RIP implementation?

a. Globally

b. Group level

c. Neighbor level

d. All of the above

8. What is the default RIP export policy?

a. Accept all sane RIP routes

b. Accept all direct interface routes on which the protocol is running

c. Reject all

d. Both A and B

9. What command displays RIP routes received from a given neighbor?

a. show route advertising-protocol rip <neighbor>

b. show route receiving-protocol rip <neighbor>

c. show route protocol rip

d. show ip rip route

10. What networks are covered by the prefix 200.0.0.0/22?

448 | Chapter 7: Routing on the EX

a. 200.0.0.0 through 200.0.0.22

b. 200.0.0 through 200.0.22

c. 200.0.0.0 through 200.0.3.0

d. None of the above; a Class C network must have a mask of 24 bits or longer

11. What is the purpose of a subnet mask (prefix length)?

a. The mask identifies the network portion of the address, which is used to route

b. The mask identifies the host portion of the address, which is used to route

c. The mask indicates when a portion of the network space is redefined to evoke
subnetting

d. The mask indicates when a portion of the host space is redefined to evoke
supernetting (CIDR)

12. A RIP route is not displayed with a show route receiving-protocol rip command
at one end, yet the remote end shows the route in its show route advertising-
protocol rip command. What could account for this?

a. Another route is preferred, causing the update to be ignored

b. Import policy is filtering the route

c. You may be entering the wrong neighbor argument, which is easy to do and
returns null

d. All of the above

Chapter Review Answers
1. Answer: B. Routing is not transparent. End stations participate in the decision to

use a router when they decide a destination is not local. Routing is based on hier-
archical addressing.

2. Answer: D. Routing is needed to interconnect stations in different VLANs. Routing
is an indirect delivery model. Layer 2 filters can be used to restrict communications
with this same VLAN; Layer 3 filters are normally used to filter inter-VLAN traffic.

3. Answer: False. When attempting to reach a station on a different link, the ARP is
sent to the next hop, which is a router for indirect delivery. Within the same VLAN,
the ARP is sent to the target address itself.

4. Answer: B. The RVI is used for internal routing among VLANs. The SVI is in IOS,
and while two interfaces with an external cable could work, they are not required.

5. Answer: B. All units on a VLAN interface are seen as directly connected routes.
Layer 3 filters are needed to prevent routing among these direct networks.

6. Answer: A. In JUNOS, discard is a silent discard, while reject generates an error
message. Both are valid next hops for a static route.

Chapter Review Answers | 449

7. Answer: B. RIP in JUNOS accepts the export keyword only at the group level.
Import policy can be applied at all three levels.

8. Answer: C. By default, RIP advertises/readvertises nothing, not even active RIP
routes. Odd, isn’t it?

9. Answer: B. The show route advertising-protocol form displays routes sent out of
a RIP interface. The show route protocol rip command does display RIP routes,
but may not make it obvious from which RIP neighbor they were received.

10. Answer: C. In classful form, a class network address is assumed to have a /24 mask.
Supernetting and subnetting allow the mask length to be decreased or increased,
respectively. The /22 indicates only 24 bits of network prefix, making option A
incorrect. Option B is incorrect because with only the least significant two bits of
the third octet available for use, only four decimal combinations are possible, and
these are 0–3.

11. Answer: A. The mask identifies the network and host portions of the address.
Routing is done on the network portion. A subnet is when a classful mask is
extended, while a supernet reduces classful mask length to form CIDR blocks
(aggregates).

12. Answer: D. Any of the stated conditions could result in a route being omitted from
the show route receiving-protocol rip command. It’s easy to get confused as to
what the neighbor value should be. For the advertising-protocol form, the neigh-
bor is the local end’s IP address:

[edit]
lab@Vodkila# run show route advertising-protocol rip ?
Possible completions:
 <neighbor> IP address of neighbor (local for RIP and RIPng)
[edit]
lab@Vodkila# run show route advertising-protocol rip

For the receiving-protocol form, the neighbor is the remote neighbor’s IP address:

[edit]
lab@Vodkila# run show route receive-protocol rip ?
Possible completions:
 <peer> IP address of neighbor
[edit]
lab@Vodkila# run show route receive-protocol rip

The CLI help strings are a useful way to remember the neighbor syntax differences
between the advertising and receiving forms of the command; recall that specifying
an incorrect neighbor simply returns an empty list with no compliant, which
sometimes hides the fact that the wrong command syntax was used, and this can
in turn lead your fault isolation down the wrong path.

450 | Chapter 7: Routing on the EX

CHAPTER 8

Routing Policy and Firewall Filters

Routing policy and firewall filters serve very different purposes, but because they share
a common structure, they can be grouped together. A shot of tequila can be used to
celebrate a birthday or a team win, or to block out the birthday or team loss. Either
way, liquor is a common tool (or language) that can lead to very different results.

Once you understand the framework of policy language, you can switch between pol-
icies and filters seamlessly, concentrating on the application needed and not the syntax.

This chapter is divided into two sections. The first half discusses policy and includes
the following topics:

• Policy overview and import and export policy

• Policy components (terms, match conditions, actions, and policy chains)

• Route filters

• Testing and monitoring policy

• Policy case study

The second half of this chapter discusses firewall filters:

• Firewall filter overview

• Firewall filter processing

• Firewall filter monitoring

Routing Policy
This section details JUNOS software routing policy operation and configuration. The
actual application of policy to solve some specific networking requirement is generally
left to the protocol to which the policy is applied. These particular applications are
discussed in various sections throughout the book. You configure policy-related
options and statements at the [edit policy-options] hierarchy. Routing policy and
firewall filters have a similar syntax in JUNOS software. The first deals with routes in
the control plane, whereas the second deals with packets in the data plane.

451

What Is Routing Policy, and When Do I Need One?
Simply put, routing policy is used to:

• Control what routes are installed into the routing table (RT) for possible selection
as an active route

• Control what routes are exported from the RT, and into which protocols

• Alter attributes of routes, either at reception or at the time of advertisement to other
peers

Given that routing policy is used to control the reception and transmission of routing
information and to alter route attributes, it’s safe to say that you need routing policy
when the default policy does not meet your requirements.

The specifics of the various default policies are covered later, but to provide an example,
consider that by default, directly connected routes are not advertised into any routing
protocol, which of course includes Routing Information Protocol (RIP). If your goal is
to get direct routes advertised into RIP, the default policy obviously does not meet your
needs and a custom policy must be written and applied to achieve your goal of redis-
tributing direct routes into RIP.

Where and How Is Policy Applied?
You can apply policy in one of two places: at import or at export. Generally speaking,
you use a command of the form set protocols <protocol-name> import to apply an
import policy, or set protocols <protocol-name> export to apply an export policy.
Figure 8-1 illustrates this concept.

Figure 8-1. Policy application and monitoring points

452 | Chapter 8: Routing Policy and Firewall Filters

Figure 8-1 shows routes being received through some protocol, and how import policy
serves to filter and adjust route attributes before they are copied into the RT. In contrast,
export policy comes into play when routes are being selected from the RT for inclusion
in transmitted route updates. Once again, the export policy serves to filter and adjust
route attributes to meet the specific needs of the networking environment.

It is worth noting that distance vector (DV) protocols such as RIP and Border Gateway
Protocol (BGP) actually support the notion of received and transmitted routes.

We do not discuss BGP in this book because it is not a common protocol
deployment on an EX.

For information on BGP, please see JUNOS Enterprise Routing.

These protocols support the show route receiving-protocol <protocol-name>
<neighbor-address> and show route advertising-protocol <protocol> <neighbor-
address> commands, which are very useful when troubleshooting or analyzing policy
operation. Figure 8-1 shows how the receiving-protocol form of the command is used
to display routes after route filtering, but before attribute manipulation. In contrast,
the advertising-protocol form of the command is executed after all export policy op-
erations, to include route filtering and attribute modification. You simply issue a show
route <prefix> command to display a route as it exists in the RT, which will include
any modified attribute resulting from import policy operations.

Applying policy to link state routing protocols

Link state (LS) protocols such as Open Shortest Path First (OSPF) and Intermediate
System to Intermediate System (IS-IS) do not send and receive routes directly. Instead,
they flood link state advertisement (LSA) packets, which are used to build a topological
database, from which each router computes an RT. As such, LS protocols do not sup-
port much in the way of import policy. OSPF import policies that prevent installation
of external routes into the RT are supported, but have very limited application. In
general, it is best to know the rules and limitations of your intended routing protocols
before making any leaps or assumptions!

If you wish to filter LSAs, protocol-specific mechanisms are required to ensure that LS
database consistency is maintained. Chapter 7 covers the concepts of stub areas and
LSA filtering.

You can apply export policy to an LS protocol to affect route redistribution, but the
external route is still flooded in an LSA rather than being sent outright; the result is
that the show route receiving-protocol and show route advertising-protocol com-
mands are not effective when dealing with LS protocols.

Routing Policy | 453

http://oreilly.com/catalog/9780596514426/

When you apply policy to an LS protocol, you do so globally, which is to say the policy
is not applied to particular interfaces or areas. In the case of OSPF, you apply export
policy at the [edit protocol ospf] hierarchy:

[edit protocols ospf]
lab@Rum# show
export test_export; ## 'test_export' is not defined

The command-line interface (CLI) warning provides a nice reminder that the related
test_export policy does not yet exist. Because the presence (or absence) of a policy can
have a dramatic effect on overall network operation, you will not be able to commit a
configuration with this type of omission. You can define a policy that is never applied,
but once applied, the policy must exist before you can commit the changes.

Applying policy to RIP

RIP supports the application of import and export policy, and supports application of
import policies at different hierarchies. Export policies are allowed only at the group
level, however.

Focusing on import policies for the moment, you can apply a policy at one of three
different hierarchies—global, group, or neighbor. The following code snippet provides
an example of this concept:

[edit protocols bgp]
lab@RUM# show
import global_import;
group rip-example {
 import internal_import;
 neighbor ge-0/0/0.0 {
 import neighbor_ge-0/0/0_import;
}
 neighbor ge-0/0/1.0;
}
group other {
 neighbor ge-0/0/2.0;
}

In this example, a policy named global_import is applied at the global level, another
policy named internal_import is applied at the group level, and yet a third policy named
neighbor_ge-0/0/0_import is applied at the neighbor level.

A key point, and one that is often misunderstood and that can lead to problems, is that
in such a configuration only the most explicit policy is applied. A neighbor-level policy
is more explicit than a group-level policy, which in turn is more explicit than a global
policy. Hence, neighbor ge-0/0/0 is subjected only to the neighbor_ge-0/0/0_import
policy, whereas neighbor ge-0/0/1, lacking anything more specific, is subjected only to
the internal_import policy. Meanwhile, neighbor ge-0/0/2 in group other has no
group- or neighbor-level policy, so it uses the global_import policy.

454 | Chapter 8: Routing Policy and Firewall Filters

The use of the neighbor may seem confusing at first, as RIP does not
have explicit neighbors, unlike other routing protocols. Instead, RIP
sends messages with a destination IP address of a broadcast packet or
multicast packet. So, in this example, the neighbor refers to the local
interface in which these messages will be sent, which could contain one
or many devices.

What if you need to have neighbor ge-0/0/0 perform the function of all three policies?
Simple—you could write and apply a new neighbor-level policy that encompasses the
functions of the other three, or simply apply all three existing policies, as a chain, to
neighbor ge-0/0/0. Note the use of brackets in the following command to open a set
of values; if desired, each policy can be specified individually:

[edit protocols rip group rip-example]
lab@RUM# set neighbor ge-0/0/0.0 export [global-import
internal_import]

[edit protocols rip]
lab@RUM# show group rip-example neighbor ge-0/0/0.0
export [neighbor_ge-0/0/0_import global_import internal_import];

As with access control lists (ACLs) or firewall filters, chained policy statements are
evaluated in a specific left-to-right order, and only up to the point when a route is either
accepted or rejected. As a result, you must consider factors such as whether a policy
makes use of a match-all deny term at its end, which is common for a standalone policy.
However, when applied at the front of a policy chain, the match-all aspect of such a
policy prevents route processing by any remaining policies.

To help illustrate this point, consider two policies, one named deny, which denies all,
and another named accept, which accepts all. Given the nature of the two policies, you
will see a dramatic difference between the two policy chains, even though they are
composed of the same parts:

export [accept deny];
export [deny accept];

Here, the first policy chain results in all routes being accepted, whereas the reverse
application results in all routes being denied. You can use the CLI’s insert feature to
rearrange the order of applied policies, or simply delete and reapply the policies to get
the order needed. Note that a newly applied policy always takes the leftmost place in
a policy chain, where it becomes the first in line for route evaluation.

Routing Policy | 455

We covered a few critical points here, so much so that they bear repeat-
ing, in another form. The first point is that when multiple policies are
applied at different CLI hierarchies for the same protocol, only the most
specific application is evaluated, to the exclusion of other, less-specific
policy applications. Second, a given route is evaluated against a chain
of policies starting with the leftmost policy, up until the route meets a
terminating action of either accept or reject. This leads to ordering sen-
sitivity of both terms within a policy, and for policies when they are
chained together.

Although these points always seem to make sense when you are learning
them, they are somehow easily forgotten during switch configuration,
when two policies that individually worked as expected suddenly break
when they are combined, or when you mistakenly believe that a neigh-
bor-level policy is combined with a global or group-level policy, only to
find that your policy behavior is not what you anticipated.

Policy Components
Generally speaking, a policy statement consists of one or more named terms, each
consisting of two parts: a from statement that defines a set of match criteria, and a
corresponding then statement that specifies the set of actions to be performed for
matching traffic. It is possible to create a policy with a single term, in which case the
term can be unnamed, such as in these two examples:

[edit policy-options]
lab@RUM# show
policy-statement explicit_term {
 term 1 {
 from protocol direct;
 then accept;
 }
}
policy-statement implict_term {
 from protocol direct;
 then accept;
}

The two policy statements perform identical functions: both have a match criterion of
direct, and both have an associated action of accept. The explicit term format is gen-
erally preferred, because new terms can be added without the need to redefine the
existing term. Note that any new terms are added to the end of the policy statement,
as shown here, where, oddly enough, a new term named new is added to the
explicit_term policy statement:

[edit policy-options]
lab@RUM# set policy-statement explicit_term term new from protocol
direct

[edit policy-options]
lab@RUM# set policy-statement explicit_term term new then reject

456 | Chapter 8: Routing Policy and Firewall Filters

[edit policy-options]
lab@RUM# show policy-statement explicit_term
term 1 {
 from protocol direct;
 then accept;
}
term new {
 from protocol direct;
 then reject;
}

As with policy chains, term ordering within a policy is significant. In the example,
explicit_term policy, term 1, and term new are diametrically opposed, with one ac-
cepting and the other denying the same set of direct routes. Although making little
practical sense, it does afford the opportunity to demonstrate term resequencing with
the insert function:

[edit policy-options]
lab@RUM# edit policy-statement explicit_term

[edit policy-options policy-statement explicit_term]
lab@RUM# insert term new before term 1

[edit policy-options policy-statement explicit_term]
lab@RUM# show
term new {
 from protocol direct;
 then reject;
}
term 1 {
 from protocol direct;
 then accept;
}

There is no practical limit to the number of terms that can be specified in a single policy,
or how many policies can be chained together.

Logical OR and AND functions within terms

It’s possible to define a term with multiple match criteria defined under a single from
statement. For a match to occur, all of the from conditions must be met, which is a
logical AND. However, for a specific match type, such as protocol, you can specify mul-
tiple values, in which case each protocol match condition functions as a logical OR.
Consider this example:

[edit policy-options]
lab@RUM# show
policy-statement test {
 term 1 {
 from {
 protocol [ospf rip]; ##logical OR within brackets
 interface ge-0/0/0.0; ## logical AND with other match
criteria

Routing Policy | 457

 }
 then next term;
 }
}

In this case, a match will occur when a route is learned over the ge-0/0/0 interface
and is learned from OSPF or RIP.

Policy Match Criteria and Actions
JUNOS software policy provides a rich set of criteria you can match against, and an
equally rich set of actions that can be performed as a result of a match. The various
match and action functions are well documented, so the goal here is not to re-create
the wheel by rehashing each option—as noted at the beginning of this chapter, our
objective is to acquaint you with a box of tools; later chapters will provide specific
examples of those tools being used.

Policy match criteria

The list of available match criteria is long in the JUNOS Software 9.2 release:

[edit]
lab@Vodkila# set policy-options policy-statement test term 1 from ?
Possible completions:
 aggregate-contributor Match more specifics of an aggregate
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 area OSPF area identifier
+ as-path Name of AS path regular expression (BGP only)
+ as-path-group Name of AS path group (BGP only)
 color Color (preference) value
 color2 Color (preference) value 2
+ community BGP community
+ condition Condition to match on
> external External route
 family
 instance Routing protocol instance
+ interface Interface name or address
 level IS-IS level
 local-preference Local preference associated with a route
 metric Metric value
 metric2 Metric value 2
 metric3 Metric value 3
 metric4 Metric value 4
> multicast-scope Multicast scope to match
+ neighbor Neighboring router
+ next-hop Next-hop router
 next-hop-type Next-hop type
 origin BGP origin attribute
+ policy Name of policy to evaluate
 preference Preference value
 preference2 Preference value 2
> prefix-list List of prefix-lists of routes to match

458 | Chapter 8: Routing Policy and Firewall Filters

> prefix-list-filter List of prefix-list-filters to match
+ protocol Protocol from which route was learned
 rib Routing table
> route-filter List of routes to match
 route-type Route type
> source-address-filter List of source addresses to match
+ tag Tag string
 tag2 Tag string 2

The key takeaway here is that you can match on things such as interface, protocol,
route tag, next hop, metric, source address, area, and so on. Route filtering based on
prefix and mask length is performed with the route-filter keyword. There is signifi-
cant power (and complexity) in route filtering, and it is covered in its own section later
in this chapter.

Policy actions

When a match occurs, a wide range of actions are available:

[edit policy-options]
lab@RUM# set policy-statement test term 1 then ?
Possible completions:
 accept Accept a route
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> as-path-expand Prepend AS numbers prior to adding local-as (BGP only)
 as-path-prepend Prepend AS numbers to an AS path (BGP only)
 class Set class-of-service parameters
> color Color (preference) value
> color2 Color (preference) value 2
> community BGP community properties associated with a route
 cos-next-hop-map Set CoS-based next-hop map in forwarding table
 damping Define BGP route flap damping parameters
 default-action Set default policy action
 destination-class Set destination class in forwarding table
> external External route
 forwarding-class Set source or destination class in forwarding table
> install-nexthop Choose the next hop to be used for forwarding
> load-balance Type of load balancing in forwarding table
> local-preference Local preference associated with a route
> metric Metric value
> metric2 Metric value 2
> metric3 Metric value 3
> metric4 Metric value 4
 next Skip to next policy or term
> next-hop Set the address of the next-hop router
 origin BGP path origin
> preference Preference value
> preference2 Preference value 2
 reject Reject a route
 source-class Set source class in forwarding table
> tag Tag string
> tag2 Tag string 2
 trace Log matches to a trace file

Routing Policy | 459

Actions include changing the route color (internal tiebreaker), specifying the metric,
altering a packet’s forwarding class, adding a route tag, and so forth. Key actions include
accept and reject, which are termination actions. The next keyword allows you to skip
to the next term or policy in the chain, and is useful for shunting routes from one term
or policy into another.

Route Filters
The ability to match on specific routes to accept or reject them, or to modify some
attribute, is a critical aspect of virtually any networking scenario. The majority of JU-
NOS software routing policy strikes most users as intuitive and logical, given the easy-
to-follow if, then construct of policy syntax translated into from/then in the actual
JUNOS CLI syntax.

The exception always seems to be route filtering, because to truly understand how this
is performed in JUNOS software, you must first understand the binary radix tree nature
of the route lookup table, and how the binary tree is used in conjunction with route
filters.

Binary trees

Binary trees have been used in computer science for several decades as a way to quickly
locate a desired bit of information. In the case of route lookup, the goal is to quickly
find the longest match for some prefix, with the corresponding next hop being the
information that is sought. The Juniper Networks implementation of a binary tree is
called the J-Tree, and it forms the basis of both route lookup and policy-based route
filtering. Figure 8-2 shows the root of a binary tree, along with a few of its branches.

Figure 8-2. A binary tree

460 | Chapter 8: Routing Policy and Firewall Filters

Figure 8-2 shows a “binary to powers of a decimal” chart, to help in understanding the
structure of the J-Tree. For example, the binary sequence 0100 000 equates to a decimal
64, whereas 0110 0000 codes a decimal 96. In this example, bit 8, which has the decimal
power of 128, represents the second set of nodes from the top of the tree. The top of
the tree represents no bit, and the first pair of nodes down represents a test of the Most
Significant Bit (MSB), which is bit 8 in this example, as either 0 (0) or 1 (128).

The binary tree is based on nodes that test the state of a particular bit that makes up
the 32-bit IP address or route prefix. The bit being tested is indicated by the related
prefix (mask) length. For example, the top of the tree is testing no bits, as indicated by
the /0 prefix length. All prefixes match when you do not bother to test any bits, so the
top of the tree effectively represents a default route, which is to say when no other
patterns match you are guaranteed to match the first node—whether such a match
actually results in forwarding depends on whether a default route has been installed,
but that is another story.

The tree branches to the left when a given bit is a 0, and branches to the right for a 1.
As a result, the first two nodes below the root represent the state of the MSB in the
most significant byte, which is either a 0 or a 1. If it is a 0, you have a 0/1 match, which
codes a decimal 0. If that bit is a 1, you have a 1/1 match, which codes a decimal 128.
Each node then branches out, based on the test of the next bit, until you reach the
bottom of the tree, representing a test of all 32 bits, which is sometimes necessary when
doing a route lookup or route filter that is based on a /32 prefix length.

In actual operation, the J-Tree is optimized, and can quickly jump to a longest match
when other portions of the tree are eliminated. In fact, it could be said that the act of
finding a longest match against a binary tree is not so much finding what you seek as
it is quickly eliminating all that cannot be what you want, and then simply looking at
what is left. By way of example, a 32-bit IP address can take more than 4 billion com-
binations. However, half of these (2 billion) will have a 0 in the high-order bit position,
whereas the other half will have a 1. By simply testing the status of one bit you have
effectively eliminated one-half of the tree as not possible to match. With each subse-
quent bit test eliminating one-half of the remaining possibilities, you quickly arrive at
a node that does not match the prefix being evaluated—in which case, you back up
one node and that is the longest match for this prefix.

Route filters and match types

When you configure a route filter, you specify a starting prefix and initial prefix length,
and then include a match type to indicate whether routes with prefixes longer than the
initial value should be considered as matching. Put another way, a route filter is based
on a match against the specified prefix bits, as based on the provided mask, in addition
to the overall mask length of the prefix being evaluated. As such, it can be said that a
Juniper route filter cares as much about the prefix length as it does the prefix itself.

Routing Policy | 461

Figure 8-3 illustrates the supported route-filter match types in the context of a J-Tree;
we mentioned before, and state here again, that you cannot effectively use route filters
if you do not first understand the operation of the J-Tree. This is especially true for the
through match type, which 99.9% of the time is applied incorrectly, and therefore does
not do what the operator wants.

Figure 8-3. Route filter match types and the J-Tree

Figure 8-3 is based on a portion of the J-Tree that represents route 192.168/16. Entries
below the starting node all share the same high-order 16 bits of 192.168, but differ from
the root prefix in that they have longer mask lengths, as shown by the two nodes below
the first, each of which is testing bit 17, therefore indicating a /17 mask length.

Each route filter match type is described against the corresponding portion of the figure:

exact
The exact match type is just what it sounds like. To match with exact, both of the
initial prefix bits must match, and the prefix length must be equal to the value
specified. If the prefix bits do not match, or if the prefix length is either shorter or
longer, the exact match type does not match. Figure 8-3 shows that a
route-filter 192.168.0.0/16 exact matches only on that node of the J-Tree, to the
exclusion of all others.

462 | Chapter 8: Routing Policy and Firewall Filters

orlonger
The orlonger match type matches the specified prefix and initial mask length, and
matches on prefixes with longer mask lengths when they share the same high-order
16 bits, as indicated by the specified prefix. In this example, the result is a match
against 192.168.0.0/16 itself, as well as 192.168.0/17 and 192.168.128/17 and all
longer mask lengths, up to /32.

longer
The longer match type excludes the exact match and catches all routes with the
same prefix bits, but only when their masks are longer than the prefix length speci-
fied. The difference between orlonger and longer is shown in Figure 8-3. Here, the
latter excludes the exact match, which is prefix 192.168.0.0/16 in this case.

upto
The upto match type matches against the initial prefix and mask length, as well as
matching prefixes with masks that are longer than the initial value, upto the ending
mask length value. In the example, the initial prefix of 192.168.0.0/16 matches, as
well as all other 192.168 prefixes that have mask lengths upto the specified value,
which is 18 in this example. Therefore, 192.168.192/18 will match, whereas
192.168.1/24 does not.

prefix-length-range
The prefix-length-range match type matches against routes with the same prefix
as specified in the initial mask length, but only when the associated mask falls
between the starting and ending values. The result is that the exact match is ex-
cluded, whereas routes with the same high-order prefix bits, but masks that fall
within the specified range, are accepted. This match type is especially useful when
the goal is to filter the route based on mask length alone, which is a common policy
within service provider networks, and many refuse to carry routes with masks lon-
ger than 28 in an effort to keep RT size manageable. To prevent installing any route
with a mask length longer than /28, you can use a route-filter 0/0 prefix-length-
range /28-/32 reject statement. Because the initial prefix length is 0, all prefix
values match, making the decision to reject one that is based strictly on mask
length.

It’s worth noting that route-filter syntax supports a short form
of action linking, in which the related then action can be specified
directly on the route-filter line. Functionally, there is no differ-
ence between the short form and adding an explicit then action.

through
The through match type is generally misunderstood, and rarely works the way folks
think it will. This is not to say that it is broken, but it has led to this somewhat
humorous rule of thumb: “When you are thinking of using through, think again.”
Often when people use through, what they really want is more of an upto or

Routing Policy | 463

prefix-length-range type of match; this rule of thumb is intended to warn users
that in most cases, through is not what they really want, and that the decision to
use it should be carefully thought through (pardon the pun).

A through match type matches the initial prefix and mask length exactly, as well
as the ending prefix and mask length, and matches on the contiguous set of nodes
between the two points. The through match type was originally offered to meet a
corner case, in which a customer was found to be using 32 exact matches, all based
on some form of a default route. Although a true default is 0/0, the customer wan-
ted to ensure that they did not install any 0.0.0.0 prefixes, regardless of mask
length. So, rather than a 0/0 exact, 0/1 exact, 0/2 exact ... 0/32 exact, the
through match type was created to allow the same effect with a single 0/0 through
0/32 statement. This matches the top of the tree, all the way down the left side to
the very bottom, and all contiguous points in between.

In Figure 8-3, the through match type is specified as 192.168.0.0/16 through
192.168.32.0/19. The line shows the sequence of contiguous matches between the
two points, which in this case includes 192.168.0.0/16, 192.168.0.0/17,
192.168.0.0/18, and 192.168.32.0/19. Now ask yourself, and be honest: is this
what you expected a 192.168/16 through 192.168.32/19 to match?

Longest match wins, but may not…

As with routing in general, route filter processing is based on finding a longest match,
and then performing the action associated with that match. There are cases where this
behavior may lead to unexpected behavior because users do not always take into ac-
count the consequences of different match types. Recall that the longest match function
is based on the high-order prefix bits, whereas the match type focuses more on mask
length. Consider this route-filter example, and what will happen when route
200.0.67.0/24 is evaluated against it:

[edit policy-options policy-statement test_me]
user@host# show
from {
 route-filter 200.0.0.0/16 longer reject;
 route-filter 200.0.67.0/24 longer;
 route-filter 200.0.0.0/8 orlonger accept;
}
then {
 metric 10;
 accept;
}

The question is, will route 200.0.67.0/24 match this term, and if so, is it accepted, is it
rejected, or does it have its metric set to 10 before being accepted? Think carefully, and
consider how longest matching is performed, along with how the match type comes
into play.

464 | Chapter 8: Routing Policy and Firewall Filters

If you answered, “The route does not match, and is neither accepted nor rejected, and
no metric modification is made,” give yourself a well-deserved pat on the back. It’s
quite all right if you answered differently—this little tidbit alone may well justify the
expenditure for this book (you did pay for this book, right?). The key here is that the
longest match, as based on specified prefix, is against the second route-filter state-
ment—here the first 24 bits of the prefix do in fact match 200.0.67, which is more exact
than either 200/8 or 200.0/16. However, the longest match in this example has a match
type of longer, meaning that only a route with a mask length of /25 through /32 with
the 24 high-order bits set to 200.0.67 is considered to match.

Because this route has a mask length that is equal to the value specified, it does not
match. A given route is only evaluated against the longest match in a given term. This
is to say that if the longest match ends up not really matching, as shown in this example,
other route-filter statements within that same term are not evaluated. Instead, the
route falls through to the next term; policy; or, lacking any of those, default policy for
the routing protocol in question.

Default Policies
The last hurdle in understanding JUNOS software policy is to be familiar with the
default policy associated with each protocol used in your network. Understanding the
default policy is important because it ultimately decides the fate of any route that is not
matched against in your user-defined policy. Some operators rely on the default policy
to do something, and others prefer to ensure that their policy is written to match on
all possible routes, which means the default policy is negated because it never gets a
chance to come into play.

OSPF default policy

The default import policy for OSPF is to accept all routes learned through that protocol.
JUNOS software releases support explicit import policy, but only to filter external
routes from being installed into the RT. Such an import policy does not filter external
route LSAs from the database, however.

The default LS export policy is to reject everything. LSA flooding is not affected by
export policy, and is used to convey routing in an indirect manner in an LS protocol.
The result of this flooding is the advertisement of local interfaces that are enabled to
run OSPF, as well as the readvertisement (flooding) of LSAs received from other routers.

IS-IS default policy

The default import policy for IS-IS is to accept all routes learned through that protocol.
Unlike OSPF, there is currently no option to apply any import policy.

The export policy in IS-IS determines which IP information is contained in the link state
packet (LSP). By default, all IP information on interfaces enabled for IS-IS is sent and

Routing Policy | 465

all other IP information is rejected. If the default policy were explicitly written, it would
contain two terms; the first term matches on configured IS-IS interfaces and accepts
them, and the second term matches all and rejects.

This is a minor but important difference between OSPF and IS-IS.

RIP default policy

The default RIP import policy is to accept all received RIP routes that pass a sanity
check. In contrast, the default export policy is to advertise no routes. None, zip, nada,
zilch. Not even RIP-learned routes are advertised with the default RIP export policy.
Although it may be an odd choice of default behavior, the net effect is that for any
practical RIP deployment, you will need to create and apply a custom export policy to
readvertise RIP-learned routes to other RIP speakers.

BGP default policy

For completeness, let’s take a look at BGP default policy. The default BGP import policy
is to accept all received BGP routes that pass a sanity check—for example, those routes
that do not have an Autonomous System (AS) loop, as indicated by the AS path
attribute.

The default BGP export policy is to readvertise all learned BGP routes to all BGP speak-
ers, while obeying protocol-specific rules that prohibit one Internal BGP (IBGP) speaker
from readvertising routes learned from another IBGP speaker, unless it is functioning
as a route reflector.

Testing and Monitoring Policy
Congratulations. You have made it to this point, and therefore you now possess an in-
depth and practical understanding of routing policy. This section explores some ad-
vanced policy concepts, some of which are quite interesting, but rarely used. The use
of regular expressions (regexes) is treated as an advanced topic, but differs from the
remaining topics because the use of AS path or community regex matching is somewhat
common, especially in large networks such as those operated by service providers.

Testing policy results

Making a mistake in a route-filter statement can have a dramatic impact on network
stability, security, and overall operation. For example, consider the operator who does
not notice that in the following policy example (appropriately called whoops), rather
than then accept being added to term 1, as intended, the accept action was mistakenly
added as part of a final, unnamed term. Because this term has no from statement, it
matches on all possible routes and routing sources!

466 | Chapter 8: Routing Policy and Firewall Filters

[edit policy-options]
lab@Ethanol# show policy-statement whoops
term 1 {
 from {
 route-filter 0.0.0.0/0 prefix-length-range /8-/24;
 }
}
then accept; ###this action is part of an unnamed match all term!

Applying a broken policy such as this in a production network could result in network
meltdown when all routes, rather than the expected subset, are suddenly advertised
within your network.

JUNOS software offers a test policy feature that is designed to avoid this type of prob-
lem. You use the test command to filter routes through the identified policy to deter-
mine which routes are accepted (those displayed) versus rejected.

The test policy command is primarily useful for route-filter testing. You cannot test
route redistribution policies, because the default policy for a policy test is to accept
all protocol sources. Thus, a given route-filter policy might match against static
routes, but the same policy when applied to RIP may not result in the advertisement of
the same static routes. This is because the default policy for RIP does not accept static
routes, whereas the default for the test policy did. As an example, consider this policy:

[edit policy-options]
lab@Ethanol# show policy-statement test_route_filter
term 1 {
 from {
 route-filter 0.0.0.0/2 orlonger;
 }
 then next policy;
}
term 2 {
 then reject;
}

With the test_route_filter policy shown, the test policy command will match on and
accept static, direct, OSPF, and RIP, as well as routes that match the route filter (routes
in the range of 0 to 63), while the same policy applied as an import policy to RIP results
in the receipt of only RIP routes that match the filter. Again, this is because the matching
routes are not explicitly accepted by the test_route_filter policy in this example, and
therefore are subjected to the default policy for RIP.

There are a number of OSPF routes on Ethanol. The test_route_filter policy is run
against a route that does not fall in the 0/2 or longer range:

lab@Ethanol> test policy test_route_filter 10.3.5.0/24

inet.0: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.3.5.0/24 *[OSPF/10] 00:07:36, metric 2
 > to 172.16.69.5 via me0.0

Routing Policy | 467

Policy test_route_filter: 1 prefix accepted, 0 prefix rejected

The result confirms that a prefix outside the range of 0 to 63 is rejected:

lab@Ethanol> test policy test_route_filter 200.4.7/24

Policy test_route_filter: 0 prefix accepted, 1 prefix rejected

This result confirms that a prefix inside the range of 0 to 63 is accepted. To test against
all possible routes, use 0/0:

lab@Ethanol> test policy test_route_filter 0/0

inet.0: 27 destinations, 27 routes (27 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.1.3.0/24 *[OSPF/10] 00:00:43, metric 3
 to 172.16.69.5 via me0.0
 to 172.16.69.6 via me0.0
 > to 172.16.69.7 via me0.0
 to 172.16.69.9 via me0.0
 to 10.6.8.6 via ge-0/0/2.0
 to 10.7.8.7 via ge-0/0/3.0
10.2.6.0/24 *[OSPF/10] 00:02:22, metric 2
 to 172.16.69.6 via me0.0
 > to 10.6.8.6 via ge-0/0/2.0
10.3.5.0/24 *[OSPF/10] 00:02:22, metric 2
 > to 172.16.69.5 via me0.0
10.3.9.0/24 *[OSPF/10] 00:02:22, metric 2
 > to 172.16.69.9 via me0.0
10.4.5.0/24 *[OSPF/10] 00:02:22, metric 2
 > to 172.16.69.5 via me0.0
10.4.6.0/24 *[OSPF/10] 00:02:22, metric 2
 to 172.16.69.6 via me0.0
 > to 10.6.8.6 via ge-0/0/2.0
10.4.7.0/24 *[OSPF/10] 00:00:43, metric 2
 > to 172.16.69.7 via me0.0
 to 10.7.8.7 via ge-0/0/3.0
10.5.6.0/24 *[OSPF/10] 00:02:22, metric 2
 > to 172.16.69.5 via me0.0
10.5.7.0/24 *[OSPF/10] 00:00:43, metric 2
 > to 172.16.69.5 via me0.0
 to 172.16.69.7 via me0.0
 to 10.7.8.7 via ge-0/0/3.0
10.6.7.0/24 *[OSPF/10] 00:00:43, metric 2
 to 172.16.69.6 via me0.0
 to 172.16.69.7 via me0.0
 to 10.6.8.6 via ge-0/0/2.0
 > to 10.7.8.7 via ge-0/0/3.0
10.6.8.0/24 *[Direct/0] 00:02:31
 > via ge-0/0/2.0
10.6.8.8/32 *[Local/0] 00:02:31
 Local via ge-0/0/2.0
10.7.8.0/24 *[Direct/0] 00:02:31
 > via ge-0/0/3.0

468 | Chapter 8: Routing Policy and Firewall Filters

10.7.8.8/32 *[Local/0] 00:02:31
 Local via ge-0/0/3.0
10.10.1.3/32 *[OSPF/10] 00:00:43, metric 2
 > to 172.16.69.5 via me0.0
 to 172.16.69.6 via me0.0
 to 172.16.69.7 via me0.0
 to 172.16.69.9 via me0.0
 to 10.6.8.6 via ge-0/0/2.0
 to 10.7.8.7 via ge-0/0/3.0
10.10.1.5/32 *[OSPF/10] 00:02:22, metric 1
 > to 172.16.69.5 via me0.0
10.10.1.6/32 *[OSPF/10] 00:02:22, metric 1
 > to 172.16.69.6 via me0.0
 to 10.6.8.6 via ge-0/0/2.0
10.10.1.7/32 *[OSPF/10] 00:00:43, metric 1
 > to 172.16.69.7 via me0.0
 to 10.7.8.7 via ge-0/0/3.0
10.10.1.8/32 *[Direct/0] 00:13:04
 > via lo0.0
10.10.1.9/32 *[OSPF/10] 00:02:22, metric 1
 > to 172.16.69.9 via me0.0

Policy test_route_filter: 20 prefix accepted, 8 prefix rejected

The output confirms that both direct and OSPF routes are matching the
route-filter in the test_route_filter policy. Note again that the policy being tested
does not have an explicit accept action, and instead uses the next policy for matching
routes; the acceptance in this case is the result of the default accept-all policy for the
test policy. This same policy applied to RIP will advertise no routes that match the filter
(since by default RIP does not send out any routes), unless you add an explicit accept
action to the first term.

Policy tracing

Another useful tool in troubleshooting policy is to turn on policy tracing, which logs
routes as they match a policy and a term. Since this could result in a large number of
routes and lots of log entries to filter through, you should use it only as a temporary
tool. First, set the trace option in the then statement in your policy:

lab@Ethanol# show policy-options
policy-statement send-connected {
 term 2 {
 from {
 route-filter 172.16.69.0/24 exact
 { trace;
 reject;
}
 }
 }
 term 1 {
 from protocol direct;
 then {
 trace;

Routing Policy | 469

 accept;
 }
 }
}

Second, turn traceoptions on under routing-options and specify a flag of trace. In this
example, the result is sent to a file called policy-trace:

lab@Ethanol# top show routing-options
traceoptions {
 file policy-trace;
 flag policy;
}

Lastly, examine the result of your log by issuing a show log policy-trace or, in real
time, a monitor start policy-trace:

Aug 6 12:53:02.574334 export: Dest 0.0.0.0 proto RIP
Aug 6 12:53:02.574411 policy_match_qual_or: Qualifier proto Sense: 0
Aug 6 12:53:02.574458 export: Dest 10.6.8.0 proto Direct
Aug 6 12:53:02.574495 policy_match_qual_or: Qualifier proto Sense: 1
Aug 6 12:53:02.574549 policy_export_trace: Prefix 10.6.8.0/24 term 1 --> accept
Aug 6 12:53:02.574602 export: Dest 10.7.8.0 proto Direct
Aug 6 12:53:02.574638 policy_match_qual_or: Qualifier proto Sense: 1
Aug 6 12:53:02.574674 policy_export_trace: Prefix 10.7.8.0/24 term 1 --> accept
Aug 6 12:53:02.574726 export: Dest 10.10.1.8 proto Direct
Aug 6 12:53:02.574765 policy_match_qual_or: Qualifier proto Sense: 1
Aug 6 12:53:02.574802 policy_export_trace: Prefix 10.10.1.8/32 term 1 --> accept
Aug 6 12:53:02.574844 export: Dest 172.16.69.0 proto Direct
Aug 6 12:53:02.574887 policy_export_trace: Prefix 172.16.69.0/24 term unnamed -->
reject

The output shows the policy accepting three prefixes and rejecting one.

Policy Case Study
Let’s see some basic policy in action. In Figure 8-4 we show a topology that is running
OSPF and RIP. OSPF is running on the J Series router, as well as every switch except
Ethanol. RIP is running between Ethanol and Bourbon. The goals for this topology are
simple:

• All switches should see Ethanol’s local interface networks, except the local man-
agement network.

• All switches should receive a default route for Internet connectivity that is being
originated from Scotch in OSPF.

470 | Chapter 8: Routing Policy and Firewall Filters

Figure 8-4. Policy case study topology

Routing Policy | 471

First, let’s make sure that Ethanol is advertising the correct routes via RIP. Examining
Ethanol shows that RIP is indeed running, but that routes are not actually being
advertised:

lab@Ethanol# run show rip neighbor
 Source Destination Send Receive In
Neighbor State Address Address Mode Mode Met
-------- ----- ------- ----------- ---- ------- ---
ge-0/0/3.0 Up 10.7.8.8 224.0.0.9 mcast both 1

[edit]
lab@Ethanol# run show route advertising-protocol rip 10.7.8.8

This is due to the default policy of RIP, which is to send out no routes unless explicitly
told to do so. In order to begin sending out routes, first write a policy on Ethanol that
sends the locally connected interface routes into RIP. Here’s a simple policy to accom-
plish this:

[edit]
lab@Ethanol# show policy-options
policy-statement send-connected {
 term 1 {
 from protocol direct;
 then accept;
 }
}

Then apply the policy to RIP:

lab@Ethanol# set protocols rip group small-rip export send-connected

[edit]
lab@Ethanol# commit
commit complete

Examine the result and note that directly connected routes are now being advertised
via RIP:

[edit]
lab@Ethanol# run show route advertising-protocol rip 10.7.8.8

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 *[Direct/0] 00:22:20
 > via ge-0/0/2.0
10.10.1.8/32 *[Direct/0] 00:32:53
 > via lo0.0
172.16.69.0/24 *[Direct/0] 00:32:53
 > via me0.0

However, one out-of-place subnet is still appearing—the management network—so
an additional term is added to reject that subnet:

472 | Chapter 8: Routing Policy and Firewall Filters

lab@Ethanol# set term 2 from route-filter 172.16.69/24 exact reject
[edit policy-options policy-statement send-connected]
lab@Ethanol# commit
commit complete

After waiting awhile, and applying the policy, the route still appears to be advertised:

[edit policy-options policy-statement send-connected]
lab@Ethanol# run show route advertising-protocol rip 10.7.8.8

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 *[Direct/0] 00:24:27
 > via ge-0/0/2.0
10.10.1.8/32 *[Direct/0] 00:35:00
 > via lo0.0
172.16.69.0/24 *[Direct/0] 00:35:00
 > via me0.0

Perhaps something is astray in the policy… View the policy on Ethanol again:

[edit policy-options policy-statement send-connected]
lab@Ethanol# show
term 1 {
 from protocol direct;
 then accept;
}
term 2 {
 from {
 route-filter 172.16.69.0/24 exact reject;
 }
}

Recall that once a route reaches a terminating action, it is no longer processed. In this
case, the me0 subnet is matching the more global first term, and therefore never reaches
the second term. A simple rearrangement fixes that:

[edit policy-options policy-statement send-connected]
lab@Ethanol# insert term 2 before term 1

[edit policy-options policy-statement send-connected]
lab@Ethanol# commit

commit complete
[edit policy-options policy-statement send-connected]
lab@Ethanol# show
term 2 {
 from {
 route-filter 172.16.69.0/24 exact reject;
 }
}
term 1 {
 from protocol direct;
 then accept;
}

Routing Policy | 473

After waiting for poison reverse to finish (see the sidebar “Poison Reverse in Action”
for a discussion of poison reverse), the management network is no longer advertised:

lab@Ethanol# run show route advertising-protocol rip 10.7.8.8

inet.0: 8 destinations, 8 routes (8 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 *[Direct/0] 00:27:37
 > via ge-0/0/2.0
10.10.1.8/32 *[Direct/0] 00:38:10
 > via lo0.0

Poison Reverse in Action
When changing a policy in RIP, remember that RIP “poisons a route” by setting the
metric to infinity (16) for several route advertisements. So, when an export policy rejects
a route that was previously accepted for RIP, it may take several minutes for the entry
to be removed from the advertising command. Here the route is shown on Ethanol:

[edit policy-options policy-statement send-connected]
lab@Ethanol# run show route advertising-protocol rip
10.7.8.8

inet.0: 8 destinations, 8 routes (8 active, 0
holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 *[Direct/0] 00:25:15
 > via ge-0/0/2.0
10.10.1.8/32 *[Direct/0] 00:35:48
 > via lo0.0
172.16.69.0/24 *[Direct/0] 00:35:48
 > via me0.0

However, the route is not shown in the receive direction on the neighboring switch.
This is due to the fact that JUNOS actually tosses away routes with a metric of infinity:

lab@Bourbon> show route receive-protocol rip 10.7.8.8

inet.0: 33 destinations, 35 routes (33 active, 0
holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 [RIP/100] 00:07:11, metric 2, tag
0
 > to 10.7.8.8 via ge-0/0/5.0
10.10.1.8/32 *[RIP/100] 00:07:11, metric 2, tag 0
 > to 10.7.8.8 via ge-0/0/5.0

As additional verification, the route also is not in the route table:

lab@Bourbon> show route 172.16.69.0/24

inet.0: 33 destinations, 35 routes (33 active, 0
holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

474 | Chapter 8: Routing Policy and Firewall Filters

172.16.69.0/24 *[Direct/0] 2d 04:16:52
 > via me0.0
 [OSPF/10] 00:12:27, metric 2
 > to 10.4.7.4 via ge-0/0/1.0
 to 10.6.7.6 via ge-0/0/2.0
 to 10.5.7.5 via ge-0/0/3.0
172.16.69.7/32 *[Local/0] 2d 07:30:27
 Local via me0.0

This is poison reverse in action; after about one and a half minutes, the route no longer
is advertised with an infinity metric:

lab@Ethanol# run show route advertising-protocol rip
10.7.8.8

inet.0: 8 destinations, 8 routes (8 active,
0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 *[Direct/0] 00:27:37
 > via ge-0/0/2.0
10.10.1.8/32 *[Direct/0] 00:38:10
 > via lo0.0

Next, Bourbon must take the routes it receives from RIP and redistribute them into
OSPF. Bourbon also applies a large metric to these routes in order to avoid any better
“back door” options:

[edit policy-options policy-statement send-connected term 2]

lab@Bourbon# show policy-options
policy-statement rip-ospf {
 term 1 {
 from protocol rip;
 then {
 metric 100;
 accept;
 }
 }
}

lab@Bourbon# set protocols ospf export rip-ospf

[edit]
lab@Bourbon# commit
commit complete

The OSPF database now shows these routes as Type 5 LSAs:

lab@Bourbon# run show ospf database external extensive
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
Extern 0.0.0.0 10.10.1.9 0x80000001 858 0x22 0x197b 36
 mask 0.0.0.0
 Topology default (ID 0)
 Type: 2, Metric: 0, Fwd addr: 0.0.0.0, Tag: 0.0.0.0

Routing Policy | 475

 Aging timer 00:45:42
 Installed 00:14:16 ago, expires in 00:45:42, sent 00:14:16 ago
 Last changed 00:14:16 ago, Change count: 1
Extern *10.10.1.8 10.10.1.7 0x80000001 69 0x22 0xba5a 36
 mask 255.255.255.255
 Topology default (ID 0)
 Type: 2, Metric: 100, Fwd addr: 0.0.0.0, Tag: 0.0.0.0
 Gen timer 00:48:51
 Aging timer 00:58:51
 Installed 00:01:09 ago, expires in 00:58:51, sent 00:01:09 ago
 Last changed 00:01:09 ago, Change count: 1, Ours

Notice that only the 10.10.1.8/24 route is sent, as the direct route between Bourbon and
Ethanol will be more preferred than the RIP routes making the 10.6.8/24 an inactive
RIP route. Only active routes can be exported:

[edit]
lab@Bourbon# run show route protocol rip

inet.0: 33 destinations, 35 routes (33 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.6.8.0/24 [RIP/100] 00:10:21, metric 2, tag 0
 > to 10.7.8.8 via ge-0/0/5.0
10.10.1.8/32 *[RIP/100] 00:10:21, metric 2, tag 0
 > to 10.7.8.8 via ge-0/0/5.0
224.0.0.9/32 *[RIP/100] 00:00:40, metric 1
 MultiRecv

Lastly, a policy is written to send a default route to Ethanol for Internet connectivity.
This default route is already present on Bourbon, so all that is required is a policy to
match on that route and send it into RIP:

policy-statement send-default {
 term 1 {
 from {
 protocol ospf;
 route-filter 0.0.0.0/0 exact accept;
 }
 }
}
[edit]
lab@Bourbon# set protocols rip group smallrip export send-default

Verify that the route exists on Ethanol:

[edit]
lab@Ethanol# run show route 0/0 exact

inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[RIP/100] 00:01:56, metric 2, tag 0
 > to 10.7.8.7 via ge-0/0/3.0

476 | Chapter 8: Routing Policy and Firewall Filters

Routing Policy Summary
This section detailed JUNOS software routing policy. The policy framework provides
a consistent and easy-to-fathom environment for all of your route exchange and
attribute manipulation needs. Although route filters and the whole J-Tree thing can be
a bit daunting when first encountered, the overall logic of a JUNOS policy is easy to
follow, and the consistent way in which it is applied to routing protocols makes network
administration that much easier. Rather than a collection of network statements,
default-information-originate statements, distribute lists, route maps, and so on, with
Juniper policy you create and advertise a static route into OSPF, BGP, or RIP using the
same approach and the same syntax.

This section also covered the commands and procedures used to monitor and debug
the operation of your import and export policies.

Firewall Filters
In order to protect the switch and the network, packet filters can be deployed to allow
only certain traffic into the switch’s control plane (routing engine, or RE) or to transmit
the switch out of a Packet Forwarding Engine (PFE) interface. These filters have dif-
ferent names on each switch OS, but they operate in the same stateless manner. On a
Cisco device these filters are called access lists, and on a Juniper switch they are
called firewall filters. These filters look very similar to the policy we discussed in the
previous section; however, firewall filters operate on the actual data forwarding plane.
Table 8-1 gives a comparison of the two features.

Table 8-1. Firewall filters versus routing policies

Feature Firewall filter Routing policy

Operates in… Forwarding plane Control plane

Match keyword from from

Action keyword then then

Match attributes Packet fields Route attributes

Default action Discard Depends on default policy

Applied to… Interfaces Routing protocols/tables

Named terms required Yes No

Chains allowed Yes Yes

Absence of from Match all Match all

Firewall filter syntax takes a human-friendly, intuitive form:

firewall {
 family inet {
 filter filter-1 {

Firewall Filters | 477

 term term-1 {
 from {
 protocol tcp;
 destination-port telnet;
 }
 then {
 accept;
 }
 }
 }
 }
}

This filter matches on Telnet traffic and accepts the packets. As you can see, the syntax
is very similar to a routing policy with the match conditions in the from term and the
actions specified in a then term.

In the EX Series switches, firewall filters are implemented in hardware for faster pro-
cessing and are stored in the TCAM.

Types of Filters
The EX Series switches support a variety of filters. The syntax for these filters looks the
same, but the place of application is slightly different.

The following firewall filter types are supported for EX Series switches:

Port (Layer 2) firewall filter
Port firewall filters apply to Layer 2 switch ports. You can apply port firewall filters
only in the ingress direction on a physical port.

VLAN firewall filter
Virtual LAN (VLAN) firewall filters provide access control for packets that enter a
VLAN, are bridged within a VLAN, and leave a VLAN. You can apply VLAN fire-
wall filters in both ingress and egress directions on a VLAN. VLAN firewall filters
are applied to all packets that are forwarded to or forwarded from the VLAN.

Router (Layer 3) firewall filter
You can apply a router firewall filter in both ingress and egress directions on Layer
3 (routed) interfaces and Routed VLAN Interfaces (RVIs). You can also apply a
router firewall filter in the ingress direction on the loopback interface.

You can configure and apply no more than one firewall filter per port, VLAN, or router
interface, per direction (input or output). At the time of this writing, the number of
filter terms within a filter is 2,048, which should be more than enough for today’s
networks.

478 | Chapter 8: Routing Policy and Firewall Filters

Firewall filters are not supported on aggregated Ethernet (AE) interfaces
as of JUNOS 9.2.

Egress firewall filters do not affect the flow of locally generated control
packets from the RE. In other words, this traffic bypasses an egress fire-
wall filter.

Of course, there will be times when multiple filter types are applied. Figure 8-5 displays
the general processing order. However, it does vary somewhat depending on whether
a Layer 2 frame or a Layer 3 packet is being processed, as Layer 2 frames are not pro-
cessed by Layer 3 filters. (No square pegs in round holes.)

For Layer 2 (bridged) unicast packets, the following firewall filter processing points
apply, in the order shown:

1. Ingress port firewall filter

2. Ingress VLAN firewall filter

3. Egress VLAN firewall filter

For Layer 3 (routed and multilayer-switched) unicast packets, the following firewall
filter processing points apply in the order shown:

1. Ingress port firewall filter

2. Ingress VLAN firewall filter

3. Ingress router firewall filter

4. Egress router firewall filter

5. Egress VLAN firewall filter

Figure 8-5. Firewall filter processing

A router firewall filter will not process switched packets in the same VLAN.

Firewall Filters | 479

Filter Term Processing
Similar to a policy, a filter is made up of multiple terms, and each term is examined in
the order listed. If there is a match in a term and there is a terminating action, no other
term is examined (see Figure 8-6). Terminating actions include:

accept
Allows the packet through the filter

discard
Silently discards the packet

reject
Discards the packet with an Internet Control Message Protocol (ICMP) error mes-
sage (default: administratively prohibited)

Action modifier
Any action modifier, such as log, count, syslog, and so forth

The presence of an action modifier such as count without an explicit
accept, discard, or reject will result in a default action of accept. If the
desired action is to discard or reject the packet, it must be explicitly
configured.

If the packet does not match any terms in the filter, it is discarded.

Figure 8-6. Filter processing

Filter Match Conditions
When examining the possible match conditions, the general rule of thumb is that if it
is a field in the IP, Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), or ICMP header, it is probably a potential match. For Layer 3 filters, the possible
match conditions are:

lab@Bourbon# set firewall family inet filter foo term 1 from ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> destination-address Match IP destination address
+ destination-port Match TCP/UDP destination port

480 | Chapter 8: Routing Policy and Firewall Filters

+ dscp Match Differentiated Services (DiffServ) code point
 fragment-flags Match fragment flags (in symbolic or hex formats)
+ icmp-code Match ICMP message code
+ icmp-type Match ICMP message type
> interface Match interface name
+ ip-options Match IP options
 is-fragment Match if packet is a fragment
+ packet-length Match packet length
+ precedence Match IP precedence value
+ protocol Match IP protocol type
> source-address Match IP source address
+ source-port Match TCP/UDP source port
 tcp-flags Match TCP flags (in symbolic or hex formats)
 tcp-initial Match initial packet of a TCP connection
+ ttl Match IP ttl type
+ ttl-except Do not match IP ttl type

For Layer 2 filters, many of the same match conditions are available, in addition to
Layer 2 options such as Media Access Control (MAC) addresses, 802.1Q bits, Ether-
Types, and VLAN tags:

lab@Bourbon# set family ethernet-switching filter foo term 1 from ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> destination-address Match IP destination address
> destination-mac-address Match MAC destination address
+ destination-port Match TCP/UDP destination port
+ dot1q-tag Match Dot1Q Tag Value
+ dot1q-user-priority Match Dot1Q user priority
+ dscp Match Differentiated Services (DiffServ) code point
+ ether-type Match Ethernet Type
 fragment-flags Match fragment flags (in symbolic or hex formats) -
(Ingress only)
+ icmp-code Match ICMP message code
+ icmp-type Match ICMP message type
> interface Match interface name
 is-fragment Match if packet is a fragment
+ precedence Match IP precedence value
+ protocol Match IP protocol type
> source-address Match IP source address
> source-mac-address Match MAC source address
+ source-port Match TCP/UDP source port
 tcp-flags Match TCP flags (in symbolic or hex formats) - (Ingress
only)
 tcp-initial Match initial packet of a TCP connection - (Ingress only)
+ vlan Match Vlan Id or Name

The match conditions fall into three general categories: numeric, address, and bit field
matches (Table 8-2).

Firewall Filters | 481

Table 8-2. General match conditions

Numeric match Address match Bit field match

Protocol fields Source address IP options

Port numbers Destination address TCP flags

Class of service (CoS) fields Source-prefix lists IP fragmentation

ICMP type codes Destination-prefix lists Time to Live (TTL)

A term can have zero or many match conditions specified. The absence of a from state-
ment creates a match-all condition, whereas multiple match conditions are treated as
a logical AND or OR, depending on common versus uncommon match conditions. A
common match is treated as a logical OR, which the router groups together in square
brackets. The filter example matches on TCP or UDP packets:

filter example {
 term common {
 from {
 protocol [tcp udp];
 }
 }
}

An uncommon match is treated as a logical AND. These logical ANDs and ORs can be
combined in the same term with limitless possibilities. Adding to the example, the
following filter matches on TCP or UDP packets and source port 123:

filter example {
 term common {
 from {
 protocol [tcp udp];
 source-port 123;
 }
 }
}

Also, numeric matches such as port or protocol values can take either the numeric
match or the more user-friendly keywords. For example, the first and second terms of
the filter called same are equivalent, but the second term is written in a more efficient
and user-friendly method. JUNOS software does not auto-convert the numerical num-
bers into the names for you. The number remains the way it is configured:

firewall {
 filter same {
 term numbers {
 from {
 protocol 6;
 source-port 23;
 }
 then accept;
 }
 term user-friendly {

482 | Chapter 8: Routing Policy and Firewall Filters

 from {
 protocol tcp;
 port telnet;
 }
 then accept;
 }
 }
}

Bit field matching such as IP options and TCP flags also support numeric
values or more user-friendly terms. In these cases, the numeric support
must be written in hex format, so a TCP flag match for SYN packets could
be written with the keyword syn or the value 0x2. No reason to break
out the hex converter—make life easy and use the keywords!

Filter Actions
Besides the terminating actions already discussed (accept, discard, reject), other com-
mon action modifiers include:

analyzer <analyzer name>
Mirrors port traffic to a specified destination port or VLAN that is connected to a
protocol analyzer application. Mirroring copies all packets seen on one switch port
to a network monitoring connection on another switch port. The analyzer-name
and mirroring parameters must be configured under [edit ethernet-switching-
actions analyzer].

You can specify mirroring for ingress ports, VLANs, and router firewall filters only.

count <counter name>
Counts the total number of packets and bytes that match a term. Counters can be
viewed with the show firewall command.

policer
Rate-limits traffic based on bandwidth and burst size limits (discussed later in this
chapter).

forwarding-class
Sends packets to a forwarding class, which maps to a queue.

Applying a Filter
The final step after writing the filter is actually applying it to the interface. Filters can
be applied to either transit or non-transit traffic. To apply a filter to transit traffic, apply
the filter to any PFE interface as either an input or output filter.

Remember, a filter can be applied in one of three places: the port level, VLAN level, or
logical unit level. Also, only a single filter can ever be applied per direction.

Firewall Filters | 483

Applying a filter at the port level

To apply a filter at the port level, apply the filter to the interface under family ethernet-
switching. A port-level filter can be applied only in the input direction:

lab@Bourbon# set interface ge-0/0/2 unit 0 family ethernet-switching filter ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 input Name of filter applied to received packets

Applying a filter at the VLAN level

To apply a filter at the VLAN level, apply the filter as an input or output filter under
the named VLAN. This applies the same filter to all interfaces that contain that VLAN:

[edit]
lab@Bourbon# set vlans Admin_vlan filter ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 input Name of filter applied to received packets
 output Name of filter applied to transmitted packets

Applying a filter at the Layer 3 level

To apply a filter at the Layer 3 level, apply the filter under [edit interfaces] on a per-
logical-unit basis. For firewall filters applied to Layer 3 routed interfaces, the family
address type must be inet. This filter could be an input and output filter, and the logical
unit could be untagged or tagged:

lab@Bourbon# set interfaces ge-0/0/2 unit 0 family inet filter ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 input Name of filter applied to received packets
 output Name of filter applied to transmitted packets

In order to protect traffic to the switch itself, a filter can be applied to the loopback
interface (Figure 8-7). Local traffic is any packet that is destined to the switch itself,
such as routing protocols, ICMP, SSH, and other management protocols.

Transit Filter Case Study
To illustrate the filters, we will use the example topology in Figure 8-8. Two VLANs
are defined:

VLAN 10
For internal employees with subnet 200.2.2/24

VLAN 20
For guests on the network with subnet 66.66.66/24

484 | Chapter 8: Routing Policy and Firewall Filters

Figure 8-7. Transit versus loopback filters

There is a single Internet connection via Vodkila, which acts as the default gateway for
all VLANs.

The goal is to protect the network as a whole, as well as provide different access for a
guest versus an employee.

Layer 3 filter

First, we are going to apply the filter for traffic coming from the Internet on Vodkila.
Before we begin typing away on the switch, though, we must write down the goals of
the filter. In this case study, all outbound traffic from the network to the Internet is
allowed, while some traffic will be filtered inbound. The goals are as follows:

• TCP connections are only allowed to be initiated outbound to the Internet.

• TCP fragments are allowed.

• UDP packets should be allowed inbound for traceroutes and return traffic for out-
bound UDP connections.

• Ping and traceroute are allowed outbound.

• Traceroute is allowed inbound.

Let’s examine the filter called internet-in, and match each term with our five goals.
First, we define our first term to deny TCP sessions inbound that are destined for in-
ternal subnets. We also count these packets to a counter called deny-i-tcp:

lab@RUM# show firewall family inet
term deny-inbound-tcp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 tcp-initial;
 }

Firewall Filters | 485

 then {
 count deny-i-tcp;
 discard;
 }
}

Figure 8-8. Example filter topology

Next, we create a term that accepts TCP packets from internal subnets. Since the TCP
connections inbound were already denied by the previous term, this effectively allows
outbound TCP connections. The packets are also counted:

term allow-outbound-tcp {
 from {

486 | Chapter 8: Routing Policy and Firewall Filters

 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 }
 then {
 count allow-o-tcp;
 accept;
 }
}

TCP fragments are allowed in the next term and counted. The is-fragment keyword
matches on all fragments except the first fragment:

 term allow-tcp-frags {
 from {
 is-fragment;
 protocol tcp;
 }
 then {
 count tcp-frags;
 accept;
 }
 }

Next, internal subnets are allowed to receive incoming UDP packets that are not frag-
ments, and the packets are counted. This step allows return traffic for outbound UDP
sessions, as well as inbound traceroute packets that use UDP inbound:

 term allow-udp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol udp;
 }
 then {
 count count-udp;
 accept;
 }

Finally, ping and traceroute are allowed outbound and counted. Since this is an input
filter, the return traffic is actually being allowed in for both ping (echo replies) and
traceroute (time exceeds messages). Additionally, unreachable messages are allowed
in for any possible outbound error responses:

 term allow-some-icmp-outbound {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol icmp;

Firewall Filters | 487

 icmp-type [echo-reply time-exceeded unreachable];
 }
 then {
 count icmp;
 accept;
 }
}

A final deny term is added at the end of the filter. Although this is the default behavior
for a filter, it is explicitly configured here to allow denied traffic to be counted:

term denied-traffic {
 then {
 count denied;
 discard;
 }
}

The filter is applied as an input filter on Vodkila on the interface toward the router
Scotch:

lab@Vodkila# set unit 0 family inet filter input internet-in
[edit interfaces ge-0/0/8]
lab@Vodkila# show
unit 0 {
 family inet {
 filter {
 input internet-in;
 }
 address 10.3.9.8/24;
 }
}

[edit interfaces ge-0/0/8]
lab@Vodkila# commit
fpc1:
configuration check succeeds
fpc0:
commit complete
fpc2:
commit complete
fpc1:
commit complete

But after we commit, users begin to complain about losing Internet connectivity. A
quick look at the counter shows that traffic is being denied:

lab@Vodkila# run show firewall

Filter: internet-in
Counters:
Name Bytes Packets
allow-o-tcp 0 0
count-udp 0 0
denied 516 6
deny-i-tcp 0 0

488 | Chapter 8: Routing Policy and Firewall Filters

icmp 0 0
tcp-frags 0 0

After some analysis in the logs, we notice that OSPF went down between Vodkila and
Scotch about 40 seconds after the filter was applied as a result of OSPF dead-timer
expiration. We neglected to allow OSPF in the filter, which is vital to the operation of
the network. So, let’s add a term to allow OSPF:

lab@Vodkila# set term allow-ospf from protocol ospf

[edit firewall family inet filter internet-in]
lab@Vodkila# set term allow-ospf then accept

We must view the filter before committing to make sure everything is correct. Remem-
ber that new terms are placed at the end of the filter. In this case, the term allow-
ospf has been placed at the end of the filter, which would never be used due to the
catchall term deny that is also counting all other traffic:

[edit firewall family inet filter internet-in]
lab@Vodkila# show
term deny-inbound-tcp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 tcp-initial;
 }
 then {
 count deny-i-tcp;
 discard;
 }
}
term allow-outbound-tcp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 }
 then {
 count allow-o-tcp;
 accept;
 }
}
term allow-tcp-frags {
 from {
 is-fragment;
 protocol tcp;
 }
 then {
 count tcp-frags;
 accept;

Firewall Filters | 489

 }
}
term allow-udp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol udp;
 }
 then {
 count count-udp;
 accept;
 }
}
term allow-some-icmp-outbound {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol icmp;
 icmp-type [echo-reply time-exceeded unreachable];
 }
 then {
 count icmp;
 accept;
 }
}
term denied-traffic {
 then {
 count denied;
 discard;
 }
}
term allow-ospf {
 from {
 protocol ospf;
 }
 then accept;
}

Move the new term higher in the chain:

lab@Vodkila# insert term allow-ospf before term denied-traffic

lab@Vodkila# show
term deny-inbound-tcp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 tcp-initial;
 }

490 | Chapter 8: Routing Policy and Firewall Filters

 then {
 count deny-i-tcp;
 discard;
 }
}
term allow-outbound-tcp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol tcp;
 }
 then {
 count allow-o-tcp;
 accept;
 }
}
term allow-tcp-frags {
 from {
 is-fragment;
 protocol tcp;
 }
 then {
 count tcp-frags;
 accept;
 }
}
term allow-udp {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol udp;
 }
 then {
 count count-udp;
 accept;
 }
}
term allow-some-icmp-outbound {
 from {
 destination-address {
 200.2.2.0/24;
 66.66.66.0/24;
 }
 protocol icmp;
 icmp-type [echo-reply time-exceeded unreachable];
 }
 then {
 count icmp;
 accept;
 }
}

Firewall Filters | 491

term allow-ospf {
 from {
 protocol ospf;
 }
 then accept;
}
term denied-traffic {
 then {
 count denied;
 discard;
 }
}

[edit firewall family inet filter internet-in]
lab@Vodkila# commit

Generate some test traffic, first from the internal network to the Internet (2.2.2.2) from
Host4. We start with a ping and traceroute:

Host4#ping 2.2.2.2

Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 2.2.2.2, timeout is 2 seconds:
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/12/48 ms
Host4#trace 2.2.2.2

Type escape sequence to abort.
Tracing the route to 2.2.2.2

 1 200.2.2.10 0 msec 4 msec 4 msec
 2 2.2.2.2 4 msec 4 msec 8 msec

Host4#trace 2.2.2.2

Type escape sequence to abort.
Tracing the route to 2.2.2.2

 1 200.2.2.10 0 msec 0 msec 4 msec
 2 2.2.2.2 8 msec 40 msec 20 msec

then test that TCP connections can be initiated from the Internet via a telnet
command:

Host4#telnet 2.2.2.2
Trying 2.2.2.2 ... Open

Scotch (ttyp0)

login: lab
Password:

--- JUNOS 9.0R1.10 built 2008-02-14 03:13:25 UTC
lab@Scotch> exit

[Connection to 2.2.2.2 closed by foreign host]

492 | Chapter 8: Routing Policy and Firewall Filters

Finally, we’ll run similar tests from Scotch toward the internal network; 200.2.2.10 is
an address on Vodkila:

lab@Scotch> ping 200.2.2.10
PING 200.2.2.10 (200.2.2.10): 56 data bytes
c^C
--- 200.2.2.10 ping statistics ---
4 packets transmitted, 0 packets received, 100% packet loss

lab@Scotch> traceroute 200.2.2.10
traceroute to 200.2.2.10 (200.2.2.10), 30 hops max, 40 byte packets
 1 200.2.2.10 (200.2.2.10) 1.330 ms 3.675 ms 1.988 ms

lab@Scotch> traceroute 200.2.2.1
traceroute to 200.2.2.1 (200.2.2.1), 30 hops max, 40 byte packets
 1 10.3.9.8 (10.3.9.8) 1.955 ms 1.995 ms 1.972 ms
 2 200.2.2.1 (200.2.2.1) 5.579 ms * 28.569 ms

lab@Scotch> telnet 200.2.2.10
Trying 200.2.2.10...
telnet: connect to address 200.2.2.10: Operation timed out
telnet: Unable to connect to remote host

Verify that the traffic is hitting the filter by examining the various counters that have
been set up in the filter with the count action. These counters can be viewed by issuing
the show firewall command:

lab@Vodkila# run show firewall

Filter: internet-in
Counters:
Name Bytes Packets
allow-o-tcp 1904 28
count-udp 576 9
denied 408 4
deny-i-tcp 642 9
icmp 812 8
tcp-frags 0 0

VLAN filters

Create some rules for the employee VLAN (10) and the guest VLAN (20). The criteria
are as follows:

• All employee-to-employee traffic is allowed.

• Employee-to-Internet traffic is counted and analyzed.

• Guests are allowed to communicate with other guests, but not with employees.

• Guests are allowed web access but not access to peer-to-peer applications.

These filters will be placed on multiple switches, but for the sake of brevity we’ll only
look at the ones on Bourbon. The first filter that is written allows guests to communicate
with other guests, while allowing web access but not peer-to-peer application access.

Firewall Filters | 493

This is implemented as a multiterm policy. The first term allows communication to the
66.66.66.0/24 subnet, which is the subnet set aside for the guest network. The second
term, allow-int-no-peer, allows traffic to be sent to a particular MAC address. This
MAC address is the gateway MAC for the PCs, which is Vodkila. All other traffic is
denied:

lab@Bourbon# show firewall
family ethernet-switching {
 filter guest-vlan {
 term allow-employee {
 from {
 destination-address {
 66.66.66.0/24;
 }
 }
 then accept;
 }
 term allow-int-no-peer {
 from {
 destination-mac-address {
 00:1f:12:3d:d2:80;
 }
 }
 then accept;
 }
 }
}

Apply this filter to the VLAN Guest on Bourbon. This is applied as an input filter to the
interface directly connected to the Guest network:

lab@Bourbon# set vlans Guest_vlan filter input guest-vlan

Next, let’s configure the employee VLAN filter. This filter allows all traffic within the
employee subnet of 200.2.2.0/24, as well as web traffic, to the Internet. Internal traffic
is simply accepted, but web traffic is counted and sent to an analyzer called
web-traffic. The analyzer parameters are configured under [edit ethernet-switching-
options]:

 filter employee-vlan {
 term accept-corp {
 from {
 destination-address {
 200.2.2.0/24;
 }
 }
 then accept;
 }
 term monitor-internet {
 from {
 protocol tcp;
 destination-port 80;
 }
 then {

494 | Chapter 8: Routing Policy and Firewall Filters

 analyzer web-traffic;
 count web-traffic;
 accept;
 }
 }

Apply this filter to the employee VLAN:

lab@Bourbon# set vlans Employee_vlan filter output employee_vlan

Case Study: Loopback Filters
Our next task is to secure traffic destined for the switches themselves. The goals of this
case study are to allow:

• OSPF traffic

• SSH from the MGT network of 172.16.9/24

• VRRP packets

• Ping and traceroute

• Domain Name System (DNS) replies

• Simple Network Management Protocol (SNMP) and Network Time Protocol
(NTP) traffic

This filter should be applied to every switch in the network, but is shown only on
Bourbon for the sake of brevity.

The filter protect-switch is created with the first term, allowing SSH traffic to and from
the switch matching on either the source or destination port:

filter protect-switch {
 term allow-ssh {
 from {
 source-address {
 172.16.9.0/24;
 }
 protocol tcp;
 source-port ssh;
 destination-port ssh;
 }
 then accept;
}

Then we create a term to allow for OSPF packets:

 term allow-ospf {
 from {
 protocol ospf;
 }
 then accept;
 }

Firewall Filters | 495

and we allow VRRP traffic:

 term allow-vrrp {
 from {
 protocol vrrp;
 }
 then accept;
 }

Let’s not forget DNS replies. Since these are stateless, we filter the return traffic so that
DNS resolution is allowed in:

 term dns-replies {
 from {
 protocol udp;
 source-port 53;
 }
 then accept;
 }

SNMP is allowed:

 term snmp {
 from {
 protocol udp;
 source-port [snmp snmptrap];
 }
 then accept;
 }

and UDP packets with a TTL of 1, in order for traceroute to operate:

 term traceroute {
 from {
 protocol udp;
 ttl 1;
 }
 then accept;
 }

We allow pings, traceroutes, and error messages:

 term allow-icmp {
 from {
 protocol icmp;
 icmp-type [echo-request echo-reply time-exceeded
 unreachable];
 }
 then accept;
 }

and also NTP:

 term allow-ntp {
 from {
 source-address 172.16.69/24
 protocol udp;
 source-port ntp;

496 | Chapter 8: Routing Policy and Firewall Filters

 }
 then accept;
 }

Lastly, we will use a term that denies all other traffic (the default), but allows the denied
traffic to be counted as well as logged to a syslog file:

 term match-denied {
 then {
 count bad-packets;
 discard;
 }
 }
 }
}

We then apply the filter to the loopback interface as an input filter. Even though it is
just a single filter, it is added as a list for future expansion:

lab@Bourbon# set interface lo0.0 family inet filter input
protect-switch

This is a good point at which to dust off the commit confirmed to make sure the filter
does not break the current network or, worse yet, lock us out of the router:

[edit]
lab@Bourbon# commit confirmed
commit confirmed will be automatically rolled back in 10 minutes unless
confirmed
commit complete

commit confirmed will be rolled back in 10 minutes
[edit]
lab@Bourbon# commit
commit complete

During the writing of this book, PR 402722 was created with the fol-
lowing issue: “In a Virtual Chassis configuration, applying a family inet
firewall filter to the loopback (lo0) interface might cause communica-
tion problems between the member switches of the Virtual Chassis con-
figuration.” This caused the VC to lose membership, and at the time of
this writing, the fix is a software upgrade to JUNOS 9.3.

Policers
In order to rate-limit traffic entering an interface, a policer can be deployed. The policers
implemented in the Juniper switch are token-based, and use the IP packet to limit based
on bandwidth and bursts. The bandwidth is measured as the average number of bits
over a one-second interval (Figure 8-9). The burst size is the number of bytes that can
exceed the bandwidth constraints.

Firewall Filters | 497

Figure 8-9. Bandwidth limit

A maximum of 512 policers can be configured for port firewall filters,
and a maximum of 512 policers can be configured for VLAN and Layer
3 firewall filters.

The burst size is what implements the “token-based” behavior of the policer. The burst
size sets the initial and maximum sizes of a bucket in bytes (tokens) that are accessed
each time data needs to be sent. As a packet is sent, the bucket bytes (tokens) are
removed from the bucket. If there are not enough tokens to send the packet, the packet
will be policed. The bucket is then replenished at the bandwidth rate.

In Figure 8-10, a packet is sent that bursts above the bandwidth limit but is still sent,
as there are enough tokens in the “bucket.” After the packet is sent, the number of
tokens is decreased based on the packet size.

Figure 8-10. Initial burst

Sometime later, another packet needs to be sent that is also above the bandwidth limit.
Since there are no longer enough tokens left in the bucket, the packet is policed (Fig-
ure 8-11).

498 | Chapter 8: Routing Policy and Firewall Filters

Figure 8-11. Empty token bucket

As time goes by, the bucket replenishes at a rate equal to the bandwidth limit. When
a new packet arrives, it can be sent, as now tokens are available in the bucket. This
process continues over a one-second interval, and the end result is a rate equal to the
bandwidth limit (Figure 8-12).

Figure 8-12. Token bucket replenishing

Burst-size-limit mystery

The setting of the burst size is a mystery for many operators. Set this value too low, and
potentially all packets will be policed. Set the value too high, and no packets will be
policed. A good rule of thumb is that the burst size should never be lower than 10 times
the maximum transmission unit (MTU). The recommended value is to set the amount
of traffic that can be sent over the interface in five milliseconds. So, if your interface is
a fast Ethernet interface, the minimum is 15,000 bytes (10 × 1,500) and the recom-
mended value would be 62,500 bytes. This value is derived by finding the number of
bytes per millisecond and then multiplying that value by five. First convert 100 Mbps
to bytes by dividing by 8. The result is 12.5 bytes per second. Then multiply it by 1,000
to get bytes per millisecond, and multiply that result by 5 (12,500 bytes/ms × 5).

Firewall Filters | 499

Policer actions

Once the policer limits have been configured, we must choose an action if a packet is
received that exceeds the policer limits. Two types of policing are available: soft policing
and hard policing. Hard policing specifies that the packet will be dropped if it exceeds
the policer’s traffic profile. Soft policing simply marks or reclassifies the packets, which
could change the probability of the packets being dropped at the egress interface during
times of congestion. Soft policing is implemented by either setting the packet loss pri-
ority (PLP) on the packet or placing the packet into a different forwarding class.

Configuring and applying policers

Policers are configured under the [edit firewall] level. The policer will be named and
then the burst size applied in bytes/second, the bandwidth limit in bits/second, or the
percentage of interface bandwidth set along with the policer action. For example:

policer simple {
 if-exceeding {
 bandwidth-limit 50m;
 burst-size-limit 15k;
 }
 then discard;
}

Once the policer is configured, it must be applied to an interface by referencing the
policer name in the firewall filter. If the policer is referenced in a filter, specific types of
traffic can be policed, as the entire toolkit of filter actions are allowed.

Policer example

In this example, we will examine a policer that limits the guest network’s Internet traffic
to 1 Mb with a 5 KB burst.

First, the policer is defined under the firewall level:

lab@Bourbon# show firewall

policer limit-guest {
 if-exceeding {
 bandwidth-limit 1m;
 burst-size-limit 5k;
 }

Then a filter is created to match on the MAC address of the default gateway. No other
traffic is rate-limited. Recall that traffic will also be filtered by the VLAN filters that
have been applied in previous sections:

 filter limit-guest {
 term limit-all-traffic {
 from {
 destination-mac-address {
 00:1f:12:3d:d2:80;
 }

500 | Chapter 8: Routing Policy and Firewall Filters

 }
 then {
 accept;
 policer limit-guest;
 }
 }
 term accept-other {
 then accept;
 }
 }
}

Apply the filter to the interface as a port-based filter. Port-based filters can be applied
only in the input direction:

lab@Bock# show interfaces ge-0/0/12

ge-0/0/12 {
 unit 0 {
 family ethernet-switching {
 vlan {
 members 20;
 }
 filter {
 input limit-guest;
 }
 }
 }
}

To verify the policer and the counters, issue the show policer command:

lab@Bourbon# run show policer

Filter: employee-vlan

Filter: guest-vlan

Filter: limit-guest
Policers:
Name Packets
limit-guest-limit-all-traffic 0

One difficulty is determining how much traffic the policer is allowing in order to eval-
uate whether the exceeding parameters are too large or small. This can be accomplished
using policer counters, interface statistics, and a little math. First, determine the byte-
per-packet size viewed by the policer by dividing the bytes by the number of packets
seen by the policer counter. Then multiply the egress rate in packets per second by the
per-packet size, and 8 bits to get the bytes per second.

For example, say the policer counter claimed that 1,406,950 bytes and 18,494 packets
have exceeded the policer. This example calculates an average per-packet size of 76
bytes (1,406,950 / 18,494). Via the show interfaces command, the interface rate is
determined to be 203 pps. So, 203 pps times 76 bytes/packet times 8 bits per second

Firewall Filters | 501

will provide the bytes per second of 123,424, which should be close to the configured
bandwidth rate.

Storm Control and Rate Limiting
We already examined traffic storms in Chapter 5. Recall that a traffic storm could be
from a loop due to a bad design, which could cause poor or even disrupted network
service. EX Series switches have two methods for alleviating these storms:

• Send all unknown unicast traffic to a particular VLAN for processing.

• Rate-limit broadcast and unknown traffic to a threshold and drop any traffic that
exceeds this threshold.

Both of these are configured under [edit ethernet-switching-options]. For example,
the following configuration sets a broadcast and unknown unicast threshold to 70%
of the ge-0/0/7 interface. By default, both broadcast and unknown unicasts match this
threshold, but we can exempt either type of traffic from rate limiting by using the no-
broadcast or no-unknown-unicast statement:

lab@Vodkila# set ethernet-switching-options storm-control interface ge-0/0/7 level
70

Filters and Policers Summary
This section looked at filters and policers for the switch. Filters can be applied at a
variety of levels in the switch: port level, VLAN level, or router Layer 3 level. Although
only a single filter can be applied per direction, multiple types of filters can be applied
at the same time. Policers are tied into filters because they are referenced as a filter
action. Multiple policers can be referenced in the same filter, which allows for per-
application filtering.

Conclusion
Although policy and firewall filters operate on different planes (control versus for-
warding), they share a common syntax and language. Once a language is understood,
a policy and a filter can be written and implemented quite easily. A policy is used to
control the flow of routing information in your network, and a firewall filter is used to
control the flow of data packets. This is a very powerful tool on the switches; a mis-
configured policy or filter could lead to very painful results for yourself, your colleagues,
and especially your boss.

502 | Chapter 8: Routing Policy and Firewall Filters

Chapter Review Questions
1. You have configured RIP between three routers connected in a serial chain, but no

RIP routes are being learned. Which policy results in full RIP connectivity for all
direct routes?

a. A RIP import policy of the form:

term 1 {
 from protocol [rip direct];
 then accept;
}

b. A RIP export policy of the form:

term 1 {
 from protocol [rip direct];
 then accept;
}

c. A RIP import policy of the form:

term 1 {
 from protocol direct;
 then accept;
}

d. A RIP export policy of the form:

term 1 {
 from protocol direct;
 then accept;
}

2. What happens when the static route 192.168.10/24 is evaluated by this policy?

[edit policy-options policy-statement test]
lab@RUM# show
term 1 {
 from {
 protocol rip;
 route-filter 192.168.0.0/16 orlonger reject;
 route-filter 192.168.10.0/24 exact {
 metric 10;
 accept;
 }
 }
}

a. Nothing, because no match occurs

b. The route is longest-matched against the first route filter and rejected

c. The route is longest-matched against the second route filter and has its metric
set to 10

d. Both B and C

Chapter Review Questions | 503

3. What type of import policy can you apply to OSPF?

a. None; LS protocols do not support the notion of import policies because the
policy breaks database consistency

b. You can apply policy to filter certain LSA types, such as AS externals, to create
a stub area

c. Import policy for OSPF can be used only to filter AS external LSAs from being
flooded

d. Import policy for OSPF can be used to prevent installation of AS external routes
into the RT, but has no effect on flooding

4. What is the default action of the test policy command?

a. accept

b. reject

c. Depends on the default policy

d. None

5. Choose three types of filters that can be configured in an EX3200:

a. Port

b. Layer 3

c. VLAN group

d. VLAN

e. Queue

6. How many terms can be configured in a filter?

a. 1,024

b. 512

c. 768

d. 2,048

7. What kind of filter would be written to protect control traffic destined for the
switch?

a. A filter applied to the default VLAN

b. A filter applied to the native VLAN

c. A filter applied to the management interface

d. A filter applied to the loopback interface

8. Choose the correct order of filter processing for a Layer 2 packet:

a. Input VLAN, input port, output VLAN

b. Input port, input VLAN, output VLAN, output port

c. Input port, input VLAN, output VLAN

d. Input VLAN, output VLAN, output port

504 | Chapter 8: Routing Policy and Firewall Filters

9. Which JUNOS software command shows filter counters?

a. show filter

b. show firewall

c. show counter

d. show filter counters

10. True or false: a policer can be applied directly to the interface.

11. Which JUNOS software commands show counters for packets that exceed a
policer? (Choose two.)

a. show firewall

b. show counter

c. show policer

d. show policer counters

12. True or false: Juniper EX Series switches can limit broadcast storms.

Chapter Review Answers
1. Answer: B. The default RIP import policy accepts RIP routes. To send direct routes,

you need the direct protocol, and to readvertise RIP-learned routes, you need the
RIP protocol. The default RIP export policy is to reject all.

2. Answer: A. A static route can never match from a protocol RIP condition, so it does
not match the term. There is a logical AND for distinct conditions such as route-
filter and protocol when listed under the same statement.

3. Answer: D. You cannot use policy to control LSA flooding. Import policy simply
allows route filtering from the link state database (LSDB) to the RT.

4. Answer: A. The default action of the test policy command is to accept the route.
For testing purposes, it makes sense to specify an action of reject when creating
the policy.

5. Answer: A, B, D. Port, VLAN, and Layer 3 filters can be configured on an EX Series
switch.

6. Answer: D. A total of 2,048 terms can be configured on a single filter.

7. Answer: D. In order to protect the switch itself, a filter should be applied to the
loopback interface. This allows traffic coming in from any interface destined to the
switch to be matched.

8. Answer: C. Port filters are evaluated first, then VLAN filters. There are no egress
port filters.

9. Answer: B. The show firewall command displays all counters in all filters.

10. Answer: False. In an EX Series switch, policers must be referenced in a firewall
filter, and then the filter is applied to the interface.

Chapter Review Answers | 505

11. Answer: A, C. The show firewall and show policer commands will both show the
counter associated with a given policer.

12. Answer: True. The switch can be configured to either rate-limit broadcast or
unknown unicast packets or redirect these packets to a VLAN or interface.

506 | Chapter 8: Routing Policy and Firewall Filters

CHAPTER 9

Port Security and Access Control

Security is a serious concern for any modern network. Juniper Networks EX switches
facilitate a rich set of security architectures through a range of Layer 2 security features
that allow you to harden and secure the switched portions of your network. By adding
JUNOS Layer 3 security features as described in Chapter 8, you can use the same EX
switches to secure the routed portions of your network. The ability to combine Layer
2 and Layer 3 security features within the same box without a substantial impact to
performance is a significant benefit provided by the JUNOS heritage enjoyed by the EX
line.

The topics covered in this chapter include:

• Layer 2 security overview

• Media Access Control (MAC) limiting, Dynamic Host Configuration Protocol
(DHCP) snooping, and dynamic ARP inspection (DAI)

• IEEE 802.1X port security

Layer 2 Security Overview
Layer 2 networks can present some unique security challenges, especially for those who
are already familiar with IP technologies and common security approaches used for IP-
based networks. IP security tends to begin at Layer 3, and carry on into the upper
transport and even application layers to provide deep packet inspection and related
services such as firewall and Network Address Translation/Port Address Translation
(NAT/PAT). In contrast, a Layer 2 network can transport any number of upper-layer
protocols, which may or may not include IP. Further, by definition a Layer 2 device
may not even be able to inspect the contents of the frames that are transported. Such
inspection brings that device into the realm of Layer 3 processing, a domain typically
associated with the role of a router or security appliance.

While Layer 2 networks can be multiprotocol, the reality is that most modern networks
are IP-centric; this IP assumption allows some Layer 2 devices to offer features that rely
on peeking into IP-packet exchanges. This snooping provides a switch with some

507

insight into key IP state, which in turn results in the ability to prevent certain IP and
Address Resolution Protocol (ARP) spoofing attacks. While IP-based features are nice,
it must be stressed that true Layer 2 security can make no assumptions about the upper-
layer protocols, and must therefore be performed at Layer 2. In the case of Ethernet,
this involves MAC frame processing, MAC learning, and the use of IEEE 802.1X, which
encompasses a suite of Layer 2-specific authentication mechanisms built upon an
extensible protocol framework.

Because EX switches have built-in (rather than bolted-on) IP routing, it should be no
surprise to see that they offer a range of IP-based security features in addition to support
for Layer 2-centric mechanisms such as 802.1X. This chapter focuses on key Layer 2
security features, which include a few value-added IP packet-snooping-based
capabilities.

The rich set of EX security features makes it possible to deploy a robust internetwork
that requires little, if any, external hardware. Some networks demand additional pro-
tection or sophisticated packet services that are currently not available on EX platforms.
Enhanced security support is available on Juniper Networks routing platforms such as
the J, M, and MX Series, which can provide stateful packet inspection, IP Security
(IPSec), and NAT services. These topics are described in detail in the companion vol-
ume to this book, JUNOS Enterprise Routing, by Doug Marschke and Harry Reynolds.
It should be noted that Juniper also offers an extensive range of security-focused solu-
tions that include intrusion detection and prevention/antivirus (IDP/AV) control,
Secure Sockets Layer (SSL)-based virtual private networks (VPNs), and Integrated
Security Gateway (ISG) products.

EX Layer 2 Security Support
EX platforms support a number of Layer 2 and IP-enabled Layer 3 security features,
and the list grows longer with each new release. In the 9.1 release used as the basis of
this book, the primary Layer 2 security capabilities are:

MAC limiting
Switches filter and forward based on the MAC address. Unlike a hierarchical Layer
3 address, the flat MAC address structure does not permit aggregation or infor-
mation hiding. This means that all 48 bits of each MAC address are significant, a
fact that forces switches to maintain (per-VLAN) MAC tables for every active
source in the broadcast domain. As all storage is finite, having to learn too many
MAC addresses can lead to premature aging of previously learned MAC entries,
which in turn leads to unnecessary flooding of related traffic when the specific
MAC address is no longer known. MAC limiting caps how many MAC addresses
can be stored in a given virtual LAN (VLAN) instance. This protects the MAC
storage resources of other VLANs from a malicious user, who potentially lives on
another VLAN, and isolates any resulting flooding to the problem VLAN rather
than affecting all VLANs on the switch.

508 | Chapter 9: Port Security and Access Control

http://oreilly.com/catalog/9780596514426/

DHCP snooping
DHCP is a widely used server-based/stateful protocol that allows for the automatic
configuration of parameters needed for an IP machine to successfully communi-
cate, both on and off the local network. DHCP snooping enables an EX to eaves-
drop on DHCP exchanges to prevent unauthorized DHCP servers and ensure that
each host in fact uses the IP addressing assigned to it during the DCHP process.

Dynamic ARP inspection
ARP is used in Ethernet networks to bind a Layer 3 IP address to a corresponding
Layer 2 MAC (hardware) address. A station can spoof ARP traffic by sending a
gratuitous response with its own MAC address and another station’s IP address.
The result is that the switch forwards IP traffic intended for the legitimate desti-
nation to the spoofing station. This situation allows for a range of man-in-the-
middle attacks. DAI works with DCHP snooping to ensure that ARP messages
reflect the station’s Source MAC (SMAC) and the source IP address matches that
were assigned through DHCP. This process prevents ARP cache poisoning, thereby
preventing many attack vectors.

802.1X
The IEEE 802.1X standard defines a port-based Network Access Control (NAC)
protocol. Here, the term port refers to a single point of attachment to a LAN net-
work (i.e., a switch port). 802.1X is based on Extensible Authentication Protocol
(EAP), which, true to its moniker, is designed to permit easy extensions to address
new technologies or new security requirements. EX switches support the 802.1X
authenticator role and offer a range of security options, such as support for
unresponsive MAC addresses, firewall filter assignment, or a guest VLAN for
unauthorized users.

This section provided an overview of EX security features that can be used to harden
a Layer 2 switch infrastructure from denial of service (DoS) attacks and security threats,
as well as to authenticate users and limit network access based on their authorization
levels. We will demonstrate these concepts in the following sections in a variety of
networking scenarios.

MAC Limiting, DHCP, and ARP
This section describes EX support for MAC limits, DHCP snooping, and DAI. It should
be noted that the configuration examples and subsequent verification steps are based
on a lab topology that differs from that used elsewhere in this book. This is because of
the need for a RADIUS server with support for 802.1X extensions, and the desire for a
command-line 802.1X supplicant (client) to help demonstrate details of the protocol’s
operation. Figure 9-1 details the Layer 2 security topology.

MAC Limiting, DHCP, and ARP | 509

Figure 9-1. Layer 2 security topology

Of note in Figure 9-1 is the use of a Linux-based client and a RADIUS/DCHP server
named client5-lnx and iop-lnx, respectively. In this case, the prefix iop is not really
significant and simply differentiates this machine from other “operations” servers such
as hop-lnx. The server is running Red Hat Enterprise Linux 5 with DHCP Server v3.0.5.
The server also runs FreeRADIUS version 1.1.7, which offers support for 802.1X via
support for EAP extensions. The client also runs Enterprise Linux 5, and makes use of
the Open1X group’s Xsupplicant version 1.2.8 package for its supplicant functionality.
The client also runs the Internet Systems Consortium DHCP Client v3.0.5 package for
DHCP operation.

The Device Under Test (DUT) is an EX3200-24P platform called sys-java33 that’s
running JUNOS Software Release 9.5R1. The majority of the functionality demonstra-
ted in this chapter is also supported in the 9.1R1 release used as the basis for this book.
In the time it took to prepare this material, Juniper Networks began shipping the 9.5
release, and that happened to be the version found running in the 802.1X test bed.
Having no good reason to downgrade, we simply left it in place. Besides, newer releases
should result in fewer interoperability issues and greater stability in general, two traits
that prove beneficial later when testing 802.1X.

The EX switch is already configured to be part of a larger test network; the portions of
its configuration that are relevant to the upcoming Layer 2 security labs are detailed
here.

An me0-based Out of Band (OoB) management network is in place to support Telnet,
FTP, and so on. The OoB management network simply works, and we will not discuss
it further here. The switch is assigned two loopback addresses in the form of 10.93.5.33

510 | Chapter 9: Port Security and Access Control

and 212.0.0.3; the 10.93.5.33 address is marked as the primary address. We mention
the loopback addresses here for the sake of completeness, but they have no direct bear-
ing on the security activities of this chapter.

The switch is configured with a VLAN 1001, named v1001, which consists of the
ge-0/0/8 access link and the ae2 trunk interface. Here’s the access and trunk interface
configuration:

[edit]
lab@sys-java33# show interfaces ge-0/0/8
unit 0 {
 family ethernet-switching {
 vlan {
 members v1001;
 }
 }
}
[edit]
lab@sys-java33# show interfaces ge-0/0/10
ether-options {
 802.3ad ae2;
}

[edit]
lab@sys-java33# show interfaces ge-0/0/11
ether-options {
 802.3ad ae2;
}

[edit]
lab@sys-java33# show interfaces ae2
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [1001-1010 1012-1030];
 }
 }
}

[edit]
lab@sys-java33# show chassis aggregated-devices
ethernet {
 device-count 4;
}

Although we are concerned only with VLAN 1001 in this case, the example shows how
a VLAN range, or set of ranges, can be specified.

MAC Limiting, DHCP, and ARP | 511

The VLAN range used in this example may not work with some Cisco
devices because these VLANs are internally reserved for Fiber Distrib-
uted Data Interface (FDDI) and Token Ring support. This is not an
interop demonstration, so the VLAN ranges used here do not present
an issue.

The operational status of the aggregated Ethernet (AE) interface is confirmed:

[edit]
lab@sys-java33# run show interfaces ae2 detail
Physical interface: ae2, Enabled, Physical link is Up
 Interface index: 159, SNMP ifIndex: 165, Generation: 163
 Link-level type: Ethernet, MTU: 1514, Speed: 2000mbps, BPDU Error: None, MAC-
REWRITE Error: None, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1,
Minimum bandwidth needed: 0
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Current address: 00:19:e2:50:dd:02, Hardware address: 00:19:e2:50:dd:02
 Last flapped : 2009-03-31 15:22:41 PDT (20:47:50 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 50542449725 18640 bps
 Output bytes : 657792487705 62293336 bps
 Input packets: 463148780 34 pps
 Output packets: 1284806332 15209 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0

 Logical interface ae2.0 (Index 128) (SNMP ifIndex 187) (Generation 234)
 Flags: SNMP-Traps 0x0 Encapsulation: ENET2
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 0 0 0 0
 Output: 45941 0 8098484 0
 Link:
 ge-0/0/10.0
 Input : 0 0 0 0
 Output: 2498 0 611927 0
 ge-0/0/11.0
 Input : 0 0 0 0
 Output: 2498 0 611927 0
 Marker Statistics: Marker Rx Resp Tx Unknown Rx Illegal Rx
 ge-0/0/10.0 0 0 0 0
 ge-0/0/11.0 0 0 0 0
 Protocol eth-switch, Generation: 248, Route table: 0
 Flags: Trunk-Mode

The output confirms that the ae2 interface is operational, and that it’s made up of two
link members, ge-0/0/10 and ge-0/0/11. The VLAN configuration is displayed next:

512 | Chapter 9: Port Security and Access Control

[edit]
lab@sys-java33# show vlans v1001
vlan-id 1001;
interface {
 ge-0/0/9.0;
}
l3-interface vlan.1001;

Note that v1001 is bound to VLAN tag 1001, and that a Routed VLAN Interface (RVI)
is bound to the Layer 2 instance. Recall that an RVI provides Layer 3 services for a
VLAN, as detailed in Chapter 8. Note that the interface ge-0/0/9 declaration under
the VLAN definition is an alternative way to bind interfaces to a VLAN; this capability
started in Release 9.3 and is functionally equivalent to the vlan members statement
specified at the [edit interfaces <interface-name> unit <unit-number> family
ethernet-switching] hierarchy.

Here is the related RVI configuration:

[edit]
lab@sys-java33# show interfaces vlan.1001
family inet {
 address 212.0.1.3/24;
}

The 212.0.1.0/24 logical IP subnet (LIS) is confirmed to match Figure 9-1, shown ear-
lier. Note that both client5-lnx and the VLAN’s RVI share an LIS, which is good,
because otherwise a router would be needed to facilitate communications between the
two IP endpoints. Given that the RVI is the router for this VLAN, it has to be on the
same LIS as its clients.

The VLAN’s operational status is confirmed:

[edit]
lab@sys-java33# run show vlans v1001 detail
VLAN: v1001, 802.1Q Tag: 1001, Admin State: Enabled
 Primary IP: 212.0.1.3/24
Number of interfaces: 9 (Active = 4)
 Untagged interfaces: ge-0/0/8.0*, ge-0/0/9.0*, ge-0/0/16.0, ge-0/0/17.0
 Tagged interfaces: ae0.0*, ae1.0, ae2.0*, ae3.0, ge-0/0/18.0

The output confirms that a VLAN v1001 is defined and uses 212.0.1.3 for its RVI, that
ge-0/0/8 is an untagged access port, and that ae2 is a (tagged) trunk port.

With all apparently set up and ready to go, final verification comes when IP reachability
within VLAN 1001 is confirmed. Start with IP connectivity between the client and the
VLAN’s RVI:

[root@client5-lnx ~]# ping 212.0.1.3
PING 212.0.1.3 (212.0.1.3) 56(84) bytes of data.
64 bytes from 212.0.1.3: icmp_seq=1 ttl=64 time=10.9 ms
64 bytes from 212.0.1.3: icmp_seq=2 ttl=64 time=0.769 ms

Great, the client is able to reach the VLAN’s RVI. It’s most likely that the first ping has
a longer response time due to the need for an ARP transition, but JUNOS does not

MAC Limiting, DHCP, and ARP | 513

attempt to prioritize ping replies, so you can expect significant skew in ping response
times anyway. As a result, you expect that the client’s MAC has now been learned in
the VLAN’s context, and your expectation is confirmed:

[edit]
lab@sys-java33# run show ethernet-switching table vlan 1001 | match ge-0/0/8
 v1001 00:50:8b:6f:60:3a Learn 0 ge-0/0/8.0

Attention is now directed to how the RVI in turn routes toward remote destinations
(e.g., the server). In this case, a simple static route allows sys-java33 to route packets
to the remote server:

[edit]
lab@sys-java33# show routing-options static
route 212.0.0.0/8 {
 next-hop 212.0.1.254;
 no-readvertise;
}

The no-readvertise flag prevents this route from being later readvertised into some
routing protocol. This flag is normally used for OoB-related routes, as such routes are
normally not advertised beyond the local machine. It could be said that in this example
a semi-OoB network is deployed for the purposes of performing 802.1X-based
authentication.

Based on the static route, you conclude that the next hop for any packet destined to
the 212/8 network is a gateway (router) with address 212.0.1.254. Layer 3 reachability
to this forwarding next hop is verified from sys-java33:

[edit]
lab@sys-java33# run ping 212.0.1.254
PING 212.0.1.254 (212.0.1.254): 56 data bytes
64 bytes from 212.0.1.254: icmp_seq=0 ttl=64 time=14.033 ms
64 bytes from 212.0.1.254: icmp_seq=1 ttl=64 time=0.876 ms
^C
--- 212.0.1.254 ping statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max/stddev = 0.876/7.454/14.033/6.579 ms

The ping is successful, and given that Ethernet-based pings first require a successful
ARP exchange, you expect that the MAC address associated with 212.0.1.254 has now
been learned in the context of VLAN 1001:

[edit]
lab@sys-java33# run show arp no-resolve | match .254
00:12:f2:21:cf:00 10.93.15.254 me0.0 none
00:00:5e:00:01:01 212.0.1.254 vlan.1001 none

Forwarding from VLAN 1001’s RVI to the RADIUS server is verified:

[edit]
lab@sys-java33# run traceroute 212.1.0.2 no-resolve
traceroute to 212.1.0.2 (212.1.0.2), 30 hops max, 40 byte packets
 1 212.0.1.7 1.240 ms 0.964 ms 1.008 ms
 2 212.1.6.2 1.346 ms 0.975 ms 1.079 ms

514 | Chapter 9: Port Security and Access Control

 3 212.1.4.2 1.197 ms 3.132 ms 1.009 ms
 4 212.1.0.2 0.780 ms 1.769 ms 0.680 ms

With reachability working correctly, the correct learning of the MAC address that’s
associated with the 212.0.1.254 next hop is verified:

[edit]
lab@sys-java33# run show ethernet-switching table vlan v1001
Ethernet-switching table: 4 unicast entries
 VLAN MAC address Type Age Interfaces
 v1001 * Flood - All-members
 v1001 00:00:5e:00:01:01 Learn 0 ae2.0
 v1001 00:19:e2:50:dd:00 Static - Router
 v1001 00:19:e2:50:f8:40 Learn 0 ae2.0
 v1001 00:21:59:f7:b4:00 Learn 0 ae2.0

The display shows that the EX’s routing function has determined that it can forward
Layer 3 routed traffic destined for 212/8 to a next hop address of 212.0.1.254 using the
MAC address 00:00:5e:00:01:01 by forwarding the resulting frame out its ae2 interface.
Note that as an Ethernet switch, the switching table is based strictly upon MAC
addresses; there is no reference to IP, which is good because some LANs may still run
non-IP protocols. The Router entry represents the presence of a Layer 3 interface (RVI)
and the related MAC address is confirmed to be owned by the chassis:

[edit]
lab@sys-java33# run show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 00:19:e2:50:dd:00
 Public count 64

The ability to use the same interfaces for simultaneous Layer 2 switching and Layer 3
routing makes the EX a multilayer switch and is the primary motivation for the RVI
construct. Recall that with a multilayer switch, the decision to switch versus route is
based on MAC address; frames that are sent to the switches’ own MAC address are
sent to the Layer 3 processing engine (i.e., the VLAN’s RVI), while all others are
switched at Layer 2, thus saving several complex processing steps.

The confirmation of IP-level reachability within VLAN 1001 for the client to the RVI
and for the RVI to the RADIUS server completes verification of the network’s opera-
tional baseline. Subsequent sections modify this baseline to demonstrate key Layer 2
security features.

MAC Limiting
As mentioned earlier, MAC limiting is an invaluable tool in your Layer 2 security
arsenal. By limiting the number of MAC addresses that can be learned within a VLAN,
you can prevent exploits that seek to fill switch tables until they overflow, causing
previously learned addresses to be forgotten in favor of more recent MAC activity. The
usual goal of such an exploit is to force the switch to fall back to a flooding behavior
for valid MAC addresses, which are (now) unknown because of table overflow. The

MAC Limiting, DHCP, and ARP | 515

performance impact of flooding can be bad enough; when you factor in potential
security and DoS threats, it’s clear that protecting a switched infrastructure from MAC
flooding exploits is a good practice.

You configure MAC limits on a per-port basis only; there is no VLAN-wide global value
on the number of MACs that can be learned. You can use the interface all keyword
to define a global MAC limit that is applied to all interfaces on the switch. You can then
exempt specific interfaces by specifying the desired MAC limit and action along with
the interface’s name. JUNOS will always perform the most specific match action, and
an interface’s name is always more specific than the keyword all.

EX switches support a limit on total MAC count, as well as the ability to limit based
on an explicit list of allowed MAC addresses via the allowed-mac keyword. Managing
a list of permissible MAC addresses can be a burden, but in some cases an automated
provisioning system is used to maintain the MAC database and to push changes out to
the switch.

Limiting MAC moves

EX platforms also provide control over the number of MAC moves that are permitted
in a one-second window. A MAC move is defined as a MAC address being learned on
one interface, followed by the receipt of a frame with that same SMAC on a different
port. In such cases, the switch’s control plane is interrupted to update the relevant
Ethernet switching table, which should always reflect the last interface on which a given
MAC address was seen.

MAC move limits are intended to protect the switches’ control plane resources from
exhaustion stemming from having to process abnormally high rates of MAC learn
events and potential resource consumption as the switch attempts to keep its switching
tables up-to-date. High MAC move rates can be the result of an intentional attack or a
network malfunction that results in a loop.

Unlike the per-port setting of MAC limits, you define MAC move limits on a per-VLAN
basis. This makes sense, as a MAC move by definition involves at least two ports, hence
the need to control the aggregate number of MAC moves with the context of a specific
VLAN. Note that on an AE port, MAC learning is based on the ae interface number,
not the individual member links, to ensure that MAC moves are not falsely sensed when
the same MAC address appears on multiple member interfaces.

MAC limit actions

By default, MAC limiting is not enabled on EX switches. When you configure MAC
limiting, you choose what action is taken when a port exceeds its MAC learning or
move limit. MAC limit exceeding actions include:

516 | Chapter 9: Port Security and Access Control

none
MAC limiting is disabled by default, which makes none the default limiting action.
You can specify the none action explicitly for a given interface to exempt it from
global actions evoked with an interface all statement. In the following code,
interface ge-0/0/8 is not subject to the limits and actions associated with the
interface all statement:

[edit]
lab@sys-java33# show ethernet-switching-options
secure-access-port {
 interface ge-0/0/8.0 {
 mac-limit 4294967295 action log;
 }
 interface all {
 mac-limit 500 action shutdown;
 }
}

log
The log action results in a syslog warning that is printed to the messages file. This
action only warns and does not actually prevent the MAC address from being
learned or moved.

drop
The drop action drops the MAC learning or move event and generates a syslog
message that warns of the event. This action is good for protection of the switch
but can result in loss of connectivity for legitimate users when the number of devices
grows and the configuration is not updated to reflect the increased MAC count.
Here, the syslog entry can assist in troubleshooting what can otherwise be a tricky
problem. Note that in some cases, conventional MAC aging may result in a previ-
ously broken device suddenly starting to work as its MAC is no longer dropped (or
is now allowed to move), just about the time some new user begins to complain of
similar symptoms.

shutdown
The shutdown action is the most Draconian measure that can be taken. Upon ex-
ceeding the limit, the port is shut down and a syslog message is generated. The
heavy-handed nature of this option is both good and bad. This option is prone to
isolating legitimate users when thresholds are not correctly managed. At the same
time, it sure makes troubleshooting what happened a fair bit simpler, as the port
must be administratively enabled with a clear ethernet-switching table
interface <interface-name> command before operation can resume.

Deploy and verify MAC limiting

The goal of the following example scenario is to configure MAC limiting on sys-
java33 to meet these criteria:

• Allow 10 MACs on the ge-0/0/8

MAC Limiting, DHCP, and ARP | 517

• Upon exceeding this limit, log an error message but allow additional MACs to be
learned

The operational requirements make it clear that you need to use the MAC limiting
feature’s log action, as only this option satisfies the second criterion of allowing excess
MACs to be learned while still generating the required error message upon exceeding
the threshold.

MAC limiting is configured at the [edit ethernet-switching-options secure-access-
port] hierarchy. Here are the options available at this hierarchy:

[edit ethernet-switching-options secure-access-port]
lab@sys-java33# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> dhcp-snooping-file Configure DHCP snooping persistence file, write-interval and
timeout
> interface Configure access port security for this interface
> vlan Configure access port security for this VLAN

Of interest here are the interface and vlan subhierarchies. Thinking back, you recall
that MAC limiting is set on a per-port basis and that MAC move limits are defined per
VLAN. Given the goal of MAC limiting, it’s clear that you need to deal with interface-
level settings for the ge-0/0/8 interface, so you position yourself at that hierarchy, and
again display the available options:

[edit ethernet-switching-options secure-access-port]
lab@sys-java33# edit interface ge-0/0/8

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set ?
Possible completions:
+ allowed-mac Allowed MAC address on this interface
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 dhcp-trusted Make this interface trusted for DHCP
> mac-limit Number of MAC addresses allowed on this interface
 no-allowed-mac-log Do not log violation of allowed MAC on this interface
 no-dhcp-trusted Don't make this interface trusted for DHCP
> static-ip Static IP address configuration
[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set

A number of interface-level security options are available. Most are self-explanatory,
or will be demonstrated at some point in this chapter; move on to configure the needed
MAC limit behavior:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set mac-limit ?
Possible completions:
 <limit> Number of MAC addresses allowed on this interface
(1..4294967295)
 action Action to take if limit is exceeded

518 | Chapter 9: Port Security and Access Control

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set mac-limit 10 action ?
Possible completions:
 drop Drop the packet and log it
 log Log a message
 none Take no action
 shutdown Shut down the interface

The command-line interface (CLI) help function makes the needed syntax seem pretty
clear, so it’s entered:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set mac-limit 10 action log

And the resulting configuration is displayed, and committed (not shown):

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# show
mac-limit 10 action log;

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33#

Before generating any test traffic, display the current state of VLAN 1001 MAC learning:

[edit]
lab@sys-java33# run show ethernet-switching table vlan 1001
Ethernet-switching table: 4 unicast entries
 VLAN MAC address Type Age Interfaces
 v1001 * Flood - All-members
 v1001 00:00:5e:00:01:01 Learn 0 ae2.0
 v1001 00:19:e2:50:dd:00 Static - Router
 v1001 00:21:59:f7:b4:00 Learn 0 ae2.0
 v1001 00:50:8b:6f:60:3a Learn 0 ge-0/0/8.0

The output confirms that the v1001 learning table has fewer than 10 MAC entries, and
that a single entry has been learned for the ge-0/0/8 port attached to client5-lnx. So
far, so good. Enable syslog monitoring to watch for any changes in real time:

[edit]
lab@sys-java33# run monitor start messages

With all set on the EX, the macof utility is used at client5-lnx to generate some random
MACs—20, to be exact:

[root@client5-lnx ~]# macof -i eth2 -n 20
f9:c:62:2:28:85 dd:d3:7a:23:bf:59 0.0.0.0.12564 > 0.0.0.0.13373: S
1492723364:1492723364(0) win 512
d1:28:d3:2e:d:6f e1:dd:31:3a:f7:7f 0.0.0.0.1514 > 0.0.0.0.29728: S
128837449:128837449(0) win 512
. . .
5a:d9:ce:1f:14:49 8a:69:2b:15:5d:cf 0.0.0.0.16072 > 0.0.0.0.25606: S
633015079:633015079(0) win 512
a4:bd:9a:5a:ff:67 97:3f:13:62:28:d1 0.0.0.0.13225 > 0.0.0.0.22271: S
1237001916:1237001916(0) win 512
[root@client5-lnx ~]#

MAC Limiting, DHCP, and ARP | 519

With the MAC storm (or was that more of a sprinkle?) over, focus shifts back to sys-
java33, where you expect to see a log warning reporting the excess number of MACs:

[edit]
lab@sys-java33#
*** messages ***
Apr 1 16:43:47 sys-java33 eswd[2809]: ESWD_MAC_LIMIT_EXCEEDED: MAC limit (10)
exceeded at ge-0/0/8.0

The expected log warning is confirmed, which is a good sign that things are proceeding
to plan. Because the log action does not preclude the learning of excess MACs, you
examine the resulting switching table to confirm that all MACs have in fact been
learned:

[edit]
lab@sys-java33# run show ethernet-switching table vlan 1001 | match ge-
 v1001 00:50:8b:6f:60:3a Learn 52 ge-0/0/8.0
 v1001 1a:70:ed:6c:60:ab Learn 44 ge-0/0/8.0
 v1001 1e:68:34:22:c5:94 Learn 45 ge-0/0/8.0
 v1001 42:fa:2d:28:a1:fc Learn 43 ge-0/0/8.0
 v1001 5a:d9:ce:1f:14:49 Learn 0 ge-0/0/8.0
 v1001 62:8e:a4:28:4a:e4 Learn 0 ge-0/0/8.0
 v1001 6c:9c:a4:71:dc:9e Learn 40 ge-0/0/8.0
 v1001 7c:ed:a0:49:68:64 Learn 0 ge-0/0/8.0
 v1001 a2:06:91:03:32:2a Learn 31 ge-0/0/8.0
 v1001 a4:bd:9a:5a:ff:67 Learn 0 ge-0/0/8.0
 v1001 b6:06:8d:4d:09:88 Learn 26 ge-0/0/8.0
 v1001 ca:5f:35:35:a4:b1 Learn 33 ge-0/0/8.0
 v1001 ce:0e:21:57:b0:84 Learn 23 ge-0/0/8.0
 v1001 d2:0f:26:2f:bf:ee Learn 38 ge-0/0/8.0
 v1001 d2:90:78:6b:43:3e Learn 0 ge-0/0/8.0
 v1001 d4:a0:a2:74:55:0f Learn 35 ge-0/0/8.0
 v1001 e2:40:23:7e:93:a2 Learn 0 ge-0/0/8.0
 v1001 ec:ad:c1:42:7c:de Learn 46 ge-0/0/8.0
 v1001 ee:b4:c1:18:e8:8c Learn 33 ge-0/0/8.0
 v1001 fa:c3:19:70:09:c5 Learn 42 ge-0/0/8.0
 v1001 fc:05:83:2c:56:ef Learn 0 ge-0/0/8.0

The display is piped to the CLI match function so that only lines with ge- are displayed.
This makes it easy to confirm that all of the spoofed MACs have been learned, which
is in keeping with the scenario’s requirements. The CLI count function is used to help
save space in subsequent demonstrations. Here, quick work is made of the need to
confirm that the expected count of 21 MAC addresses have been learned on VLAN
1001’s ge-0/0/8 interface:

[edit]
lab@sys-java33# run show ethernet-switching table vlan 1001 | match ge- | count
Count: 21 lines

Having confirmed the log action, you quickly alter the configuration to drop excess
MACs:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set mac-limit action drop

520 | Chapter 9: Port Security and Access Control

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# show | compare
[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
- mac-limit 10 action log;
+ mac-limit 10 action drop;

The Ethernet switching table is cleared:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run clear ethernet-switching table vlan 1001

and the MAC flood is repeated (not shown):

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
Apr 1 17:03:38 sys-java33 eswd[2809]: ESWD_MAC_LIMIT_DROP: MAC limit (10)
exceeded at ge-0/0/8.0: dropping the packet

In addition to the log message, the real proof is in the MAC pudding, so to speak, and
comes with the confirmation that only 10 MAC addresses have been learned on the
ge-0/0/8 interface:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run show ethernet-switching table vlan 1001 | match ge- | count
Count: 10 lines

With the drop action confirmed, the configuration is again modified, this time to use
the shutdown action:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# set mac-limit action shutdown

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# show | compare
[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
- mac-limit 10 action drop;
+ mac-limit 10 action shutdown;

After repeating the MAC flood, a log warning is noted:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# Apr 1 17:13:01 sys-java33 eswd[2809]: ESWD_MAC_LIMIT_BLOCK: MAC
limit (10) exceeded at ge-0/0/8.0: shutting down the interface
Apr 1 17:13:01 sys-java33 fpc0 MRVL-L2,mrvl_brg_port_stg_entry_set(),9771:Exact
msti rt state for IFL ge-0/0/8, stg_index 0,stg_port_state 1, oper_type 1
Apr 1 17:13:01 sys-java33 fpc0 MRVL-L2,mrvl_brg_port_stg_entry_set(),9771:Exact
msti rt state for IFL ge-0/0/8, stg_index 1,stg_port_state 1, oper_type 1

and the offending interface is confirmed to be shut down with a show ethernet-switch
ing interface ge-0/0/8 command:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run show ethernet-switching interface ge-0/0/8
Interface State VLAN members Blocking
ge-0/0/8.0 up v1001 blocked - MAC limit exceeded

MAC Limiting, DHCP, and ARP | 521

Note that using the wrong form of this command, which includes the table keyword,
results in the display of the interface’s VLAN association without any indication that
it’s shut down:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run show ethernet-switching table interface ge-0/0/8
Ethernet-switching table: 0 unicast entries
 VLAN MAC address Type Age Interfaces
 v1001 * Flood - All-members

Once shut down, all the interface’s learned MAC addresses are flushed from the table;
serves it right for misbehaving, I say:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run show ethernet-switching table vlan 1001
Ethernet-switching table: 3 unicast entries
 VLAN MAC address Type Age Interfaces
 v1001 * Flood - All-members
 v1001 00:00:5e:00:01:01 Learn 0 ae2.0
 v1001 00:19:e2:50:dd:00 Static - Router
 v1001 00:19:e2:50:f8:40 Learn 0 ae2.0

Use the clear ethernet-switching table interface <interface-name> command to
enable an interface that’s been disabled due to MAC limiting:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# run clear ethernet-switching table interface ge-0/0/8

Currently, there is no feature to automatically reenable a port after some period of time;
administrative intervention is required. Because the log is still being monitored, a few
seconds later an indication that the interface has returned to an operational state
appears:

[edit ethernet-switching-options secure-access-port interface ge-0/0/8.0]
lab@sys-java33# Apr 1 17:13:38 sys-java33 fpc0 MRVL-
L2,mrvl_brg_port_stg_entry_set(),9771:Exact msti rt state for IFL ge-0/0/8,
stg_index 0,stg_port_state 4, oper_type 1
Apr 1 17:13:38 sys-java33 fpc0 MRVL-L2,mrvl_brg_port_stg_entry_set(),9771:Exact
msti rt state for IFL ge-0/0/8, stg_index 1,stg_port_state 4, oper_type 1

This concludes the MAC limiting case study; you can remove the related MAC limits
from the configuration to prepare for the next section:

[edit ethernet-switching-options secure-access-port]
lab@sys-java33# delete interface ge-0/0/8

DHCP Snooping and ARP Inspection
DHCP is primarily defined in RFC 2131, but many other RFCs further elaborate on its
operation or enhance its functionality. DHCP is designed to facilitate auto-
configuration of network parameters in IP-based machines. In addition to providing a
network address, mask, and default gateway, DHCP can also provide the boot image
name and location for diskless PCs; its extensible nature permits support of various

522 | Chapter 9: Port Security and Access Control

vendor- or application-specific extensions such as those needed for support of Micro-
soft’s NetBIOS over TCP/IP transport.

Complete coverage of DHCP and its numerous protocol extensions is outside the scope
of this book; our goal is to demonstrate DHCP snooping and other DHCP-related
security enhancements supported by EX Series switches. To that end, Figure 9-2
provides a high-level overview of typical DHCP operation.

Figure 9-2. A typical DHCP exchange

Figure 9-2 begins with an IP-based host generating a DHCPDISCOVER message. This mes-
sage is broadcast and therefore flooded through a Layer 2 domain, and is intended to
dynamically discover the presence of one or more DHCP servers. Each server is then
unicast back a DHCPOFFER, which presents the client with a proposed set of configuration
parameters. The client chooses the preferred server based on some local policy, such
as the first response received, and then broadcasts back a DHCPREQUEST message indi-
cating the parameters (and server) it would like to use. The final step is the return of a
unicast DHCPACK, which confirms the assignment of the related parameters and provides
a lease duration during which they remain valid.

While highly useful and the norm in most of today’s networks, DHCP’s use of broadcast
combined with lack of authentication and the exchange of network parameters in clear
text opens it to a range of security threats. These range from brute force DoS attacks
that attempt to flood servers with too many (or malformed) requests, to deployment
of a bootleg server that provides bogus or conflicting information, all the way to so-
phisticated man-in-the-middle-type threats that center on a station eavesdropping on
assigned DHCP parameters so that it may usurp their use and masquerade as the
legitimate owner in an attempt to intercept traffic intended for another device.

ARP is a necessary part of IP operation on multipoint links. This is because of the
independence of the 32-bit Layer 3 IP addresses versus the 48-bit MAC addresses used

MAC Limiting, DHCP, and ARP | 523

at the Link layer. ARP exploits are used to affect the redirection of IP traffic to a man-
in-the-middle or sniffer device by sending an unsolicited ARP response, in which the
black-hat station seeks to update a legitimate IP-to-MAC binding by substituting its
own MAC address. The result is that IP traffic intended for the legitimate end station
is now sent to the unicast MAC address of the attacker’s machine.

Securing DHCP and ARP

EX switches support a range of security features specifically targeted at mitigating
DHCP, ARP, and IP address-spoofing-related security threats. These include:

DHCP snooping
The DHCP snooping feature filters and blocks ingress DHCP server messages on
untrusted ports. The trusted DHCP server feature prevents users from setting up
unauthorized DHCP servers. It also builds and maintains an IP address/MAC ad-
dress binding database through monitoring of DHCP exchanges. The resulting
DHCP snooping database is then used for a variety of related security features,
such as IP Source Guard and DAI.

DHCP snooping includes support for DHCP option 82. DHCP relay agents use
this option to identify the client’s point of attachment (port) and the relay agent’s
MAC address to the DHCP server. The server can in turn use this information to
help formulate its response or to perform statistical tracking. When option 82 is
enabled, the EX inserts option 82 information into DHCP messages it sends (or
relays when in Layer 3 mode) to DHCP servers. The reply is expected to contain
the same option 82 information, which the EX then strips before the response is
sent to the client, thus making the option transparent to the DHCP user. Option
82 can increase security by allowing DHCP servers to generate alarms, or customize
their response based on the ingress interface name or MAC address of the ingress
EX switch. For example, all DHCP requests stemming from a “guest access port”
might result in IP address assignment from some specific pool that is later filtered
from private portions of the network.

Dynamic ARP inspection
The DAI feature prevents ARP spoofing attacks by comparing ARP requests and
replies against entries stored in the DHCP snooping database. ARP packets that
do not match values in the snooping database are filtered.

IP Source Guard
The IP Source Guard feature limits the effects of IP address spoofing attacks by
validating the source IP address in packets received on an untrusted access interface
against the DHCP snooping database. When the source IP address and SMAC
address are found to be valid, the packet is accepted. In the case of a mismatch in
either the source IP or SMAC address, the packet is discarded.

524 | Chapter 9: Port Security and Access Control

A key principle in the EX implementation of DHCP and ARP inspection is the concept
of trusted and untrusted interfaces. By default, all access links are untrusted, and
therefore, when enabled, all DHCP and ARP packets on these ports are inspected and
are allowed to pass only when they match the snooping database. In contrast, trunk
ports are trusted and don’t perform DHCP or ARP inspection, allowing all such packets
to pass unhindered.

Deploy DHCP snooping and ARP inspection

In this section, you will configure and validate the DCHP snooping and DAI features
on an EX switch. Refer back to Figure 9-1 as needed for details on the test topology.
Your goals are to:

• Ensure that DHCP responses are not accepted on access interface ge-0/0/8

• Configure VLAN v1001 for:

— DHCP snooping with option 82 support using the interface name for the circuit
ID, the switch name for the remote ID, and a vendor ID of Juniper_EX

— DAI to prevent ARP spoofing

— IP Source Guard to prevent IP spoofing

The set of configuration tasks is pretty straightforward. Knowing that DHCP snooping/
option 82, ARP inspection, and IP Source Guard are configured on a per-VLAN basis,
while DHCP/ARP trusted versus untrusted is an interface-level setting, helps to get
things started. Note that, by default, all trunk ports are considered DHCP trusted and
all access ports are considered untrusted once DHCP snooping is enabled with the
examine-dhcp keyword. You can then use the dhcp-trusted or no-dhcp-trusted keyword
on a per-interface basis in order to alter the defaults.

Recall that a previously issued show vlan v1001 command confirmed that the ae2
interface is set to trunking mode, and that the ge-0/0/8 interface is operating in untag-
ged access mode. Given the defaults, and the knowledge that ge-0/0/8 is operating in
access mode, the first requirement is met by simply enabling DHCP snooping. The
following configuration enables the functionality required in this scenario:

[edit]
lab@sys-java33# show ethernet-switching-options
secure-access-port {
 vlan v1001 {
 arp-inspection;
 examine-dhcp;
 ip-source-guard;
 dhcp-option82 {
 circuit-id;
 remote-id {
 prefix hostname;
 }
 vendor-id {
 Juniper_EX;

MAC Limiting, DHCP, and ARP | 525

 }
 }
 }
}

Notice that there is no configuration stanza for the ge-0/0/8 access interface. This is
because access interfaces are set to DHCP untrusted by default, which makes an explicit
setting unnecessary. Also note that there is no MAC limiting in this scenario, which is
also a port-level setting and yet another reason for no explicit access port configuration
in this example.

DHCP snooping is enabled for VLAN v1001 via the examine-dhcp keyword. Once ena-
bled, the related DAI and IP Source Guard functionality can be turned on. Neither has
any configuration options, so you simply need to enable or disable the features as
desired; both features require a DHCP snooping database to work, making DHCP
snooping a prerequisite to their support.

By leaving the circuit-id option blank, the default coding of the interface name/VLAN
name is sent, and the remote-id option is set to specify the local host name per re-
quirements. Likewise, the vendor-id is coded with the required string variable; note
that when no argument is specified the default string is Juniper. With DHCP snooping
and option 82 configured per the requirements, and with DAI and IP Source Guard
enabled, you commit the changes and move on to verification.

Confirm DHCP snooping and ARP inspection

Start the verification process by firing off a DHCP request from client5-lnx. Normally
the DHCP client is set to run at startup in the background, but here it’s evoked in the
foreground from a root shell to allow analysis of its operation. You start by displaying
the current state of client5-lnx’s eth2 interface:

[root@client5-lnx ~]# ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:50:8B:6F:60:3A
 BROADCAST ALLMULTI MULTICAST MTU:1500 Metric:1
 RX packets:2627393558 errors:0 dropped:0 overruns:11355539 frame:11355539
 TX packets:29883855 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1968164841 (1.8 GiB) TX bytes:1261916105 (1.1 GiB)

Of note here is the lack of an UP indication, and the lack of any IP addresses. Seems like
a job for DHCP! To that end, the dhclient program is activated at client5-lnx on the
eth2 interface:

[root@client5-lnx ~]# dhclient eth2 -d
Internet Systems Consortium DHCP Client V3.0.5-RedHat
Copyright 2004-2006 Internet Systems Consortium.
All rights reserved.
For info, please visit http://www.isc.org/sw/dhcp/

Listening on LPF/eth2/00:50:8b:6f:60:3a
Sending on LPF/eth2/00:50:8b:6f:60:3a
Sending on Socket/fallback

526 | Chapter 9: Port Security and Access Control

DHCPREQUEST on eth2 to 255.255.255.255 port 67
DHCPREQUEST on eth2 to 255.255.255.255 port 67
DHCPACK from 212.0.1.7
bound to 212.0.1.101 -- renewal in 33929 seconds.

The display confirms that a server was located after the second DHCPREQUEST message,
and that the parameters offered were acceptable, as confirmed by receipt of a DHCPACK
from a DHCP server with IP address 212.0.1.7. The message confirms that the client
has been assigned IP address 212.0.1.101, which is verified with a repeat of the ifconfig
eth2 command:

[root@client5-lnx ~]# ifconfig eth2
eth2 Link encap:Ethernet HWaddr 00:50:8B:6F:60:3A
 inet addr:212.0.1.101 Bcast:212.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::250:8bff:fe6f:603a/64 Scope:Link
 UP BROADCAST RUNNING ALLMULTI MULTICAST MTU:1500 Metric:1
 RX packets:2627393673 errors:0 dropped:0 overruns:11355539 frame:11355539
 TX packets:29883886 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1968175337 (1.8 GiB) TX bytes:1261925037 (1.1 GiB)

The highlights confirm the expected IP address assignment and that the interface is
now UP. The successful result shows that the DCHP protocol itself is working, which
is a good sign that the DHCP server actually supports option 82. A DHCP server that
does not support the option does not echo it back, causing DHCP failures as the re-
turned DHCP responses are typically not conveyed onto the client in such cases.

DHCP snooping should have built a database entry for the successful DHCP transac-
tion between client5-lnx and the server at 201.0.1.7. Use the show dhcp snooping
binding CLI command to verify current bindings:

[edit]
lab@sys-java33# run show dhcp snooping binding
DHCP Snooping Information:
MAC address IP address Lease (seconds) Type VLAN Interface
00:50:8B:6F:60:3A 212.0.1.101 85899 dynamic v1001 ge-0/0/8.0

As expected, the database contains an entry for client5-lnx’s eth2 MAC address and
its newly assigned IP address. Displaying the results of DAI is just as easy with the show
arp inspection statistics command:

[edit]
lab@sys-java33# run show arp inspection statistics
Interface Packets received ARP inspection pass ARP inspection failed
 ae0 0 0 0
 . . .
 ge-0/0/8 1 1 0
 . . .

The output is rather basic, but clearly indicates that all of the ARP responses seen on
access link ge-0/0/8 have been valid, which is to say that the reported MAC and IP
source addresses do in fact match the contents of the snooping database. To test this,
the arpspoof utility is fired up at client5-lnx in an attempt to have it masquerade as

MAC Limiting, DHCP, and ARP | 527

the DHCP server by having traffic that’s intended for 212.0.1.7 directed to its own MAC
address:

[root@client5-lnx ~]# arpspoof -i eth2 212.0.1.7
0:50:8b:6f:60:3a ff:ff:ff:ff:ff:ff 0806 42: arp reply 212.0.1.7 is-at
0:50:8b:6f:60:3a
0:50:8b:6f:60:3a ff:ff:ff:ff:ff:ff 0806 42: arp reply 212.0.1.7 is-at
0:50:8b:6f:60:3a
. . .

After sending a few such Gratuitous ARP replies, we check to see whether DAI has
prevented ARP cache poisoning by blocking the flooding of this bogus ARP message
to the rest of the hosts in the VLAN:

[edit]
regress@sys-java33# run show arp inspection statistics | match "(inspection|ge-
0/0/8)"
Interface Packets received ARP inspection pass ARP inspection failed
 ge-0/0/8 9 2 7

As expected, we now see that some seven packets have failed DAI, and as a result were
dropped to foil the attempt to intercept traffic intended for the DHCP server. Use the
show ip-source-guard command to view the IP source address database:

[edit]
lab@sys-java33# run show ip-source-guard
IP source guard information:
Interface Tag IP Address MAC Address VLAN
ge-0/0/8.0 0 212.0.1.101 00:50:8B:6F:60:3A v1001

The display confirms that only packets with a source IP of 212.0.1.101 are permitted
to ingress on port ge-0/0/8. This information is again based on DHCP snooping. To
show that it works, a new IP is assigned to client5-lnx’s eth2 interface, and the ping
to the DHCP server is repeated:

[root@client5-lnx ~]# ifconfig eth2 211.0.1.102 netmask 255.255.255.0
[root@client5-lnx ~]# ifconfig eth2

eth2 Link encap:Ethernet HWaddr 00:50:8B:6F:60:3A
 inet addr:211.0.1.102 Bcast:211.0.1.255 Mask:255.255.255.0
 inet6 addr: fe80::250:8bff:fe6f:603a/64 Scope:Link
 UP BROADCAST RUNNING ALLMULTI MULTICAST MTU:1500 Metric:1
 RX packets:2627396876 errors:0 dropped:0 overruns:11355539 frame:11355539
 TX packets:29883926 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1968451198 (1.8 GiB) TX bytes:1261929466 (1.1 GiB)

[root@client5-lnx ~]# ping 212.0.1.7
PING 212.0.1.7 (212.0.1.7) 56(84) bytes of data.

--- 212.0.1.7 ping statistics ---
5 packets transmitted, 0 received, 100% packet loss, time 3998ms

528 | Chapter 9: Port Security and Access Control

As expected, the pings fail, ostensibly due to an ingress discard that results from an
invalid IP source address. Oddly, after the ip-source-guard feature is removed, the ping
is still not allowed:

[edit ethernet-switching-options secure-access-port]
lab@sys-java33# delete vlan v1001 ip-source-guard

[edit ethernet-switching-options secure-access-port]
lab@sys-java33# commit

As noted, back at the client, the spoofed source address pings are found to still be failing:

[root@client5-lnx ~]# ping 212.0.1.7
. . .
From 212.0.1.102 icmp_seq=65 Destination Host Unreachable
From 212.0.1.102 icmp_seq=67 Destination Host Unreachable
. . .

Pondering the failure, you recall that before the client can send an IP packet to the
destination, it must first perform an ARP. It’s likely that while changing the interface’s
IP address, any related ARP entries were flushed, thereby requiring a new ARP ex-
change, and the ARP is filtered due to its use of an invalid source IP. So, while the
removal of ip-source-guard does technically permit the transmission of IP datagrams
on the ge-0/0/8 link with a source address other than 212.0.1.101, ARP packets are
still subject to DAI, and they are not allowed to pass when either the source IP or SMAC
address does not match the snooping database. The theory is confirmed by displaying
ARP inspection statistics:

[edit]
lab@sys-java33# run show arp inspection statistics
Interface Packets received ARP inspection pass ARP inspection failed
 ae0 27 27 0
. .
 ge-0/0/8 109 4 105

As suspected, the high failed count reflects that the ongoing ARP attempts generated
by client5-lnx are in fact being filtered. Having confirmed ARP inspection, DAI is
removed:

[edit]
lab@sys-java33# delete ethernet-switching-options secure-access-port vlan v1001
arp-inspection

And as predicted, client5-lnx is now able to ping a remote machine using an IP address
that was not assigned via DHCP:

. .
64 bytes from 212.0.1.7: icmp_seq=70 ttl=64 time=2.00 ms
64 bytes from 212.0.1.7: icmp_seq=71 ttl=64 time=0.404 ms
. . .

These results conclude the confirmation of DHCP snooping and ARP inspection on
the EX platform.

MAC Limiting, DHCP, and ARP | 529

MAC Limiting, DHCP, and ARP Summary
This section detailed various port-level security features that mitigate many common
attack vectors such as MAC table overflows and IP address spoofing. The next section
addresses port-based authentication using the IEEE 802.1X standard.

The best security design is always multilayered. By combining port-level authentication
with port security, you get additional protection. After all, now you have to be suc-
cessfully authorized before you’re even able to attempt some nefarious activity.

IEEE 802.1X Port-Based Authentication
The IEEE 802.1X standard defines port-based NAC. In English, this means the protocol
authenticates users on a per-switch port (or Wireless Access Point [WAP]) basis,
allowing access for valid users and effectively disabling the port when authentication
fails. The 802.1X standard relies on EAP for its heavy lifting; EAP is currently defined
in RFC 3748. 802.1X is most often associated with WAPs, for the obvious reason that
a wireless infrastructure, by its very nature, opens itself up to any and all takers, and
hence may want to authenticate users before allowing them in. That being said, there
is no reason that what is good for a wireless network cannot also be a benefit for a wired
infrastructure. For example, you may have wall jacks that are in an unsecured area in
a public meeting room that is shared by internal users and external guests, and you
would like to offer intranet and Internet access to the former, but only Internet access
to the latter.

802.1X does not replace other security technologies. 802.1X works with port security
features such as DHCP snooping, DAI, and MAC limiting to guard against DoS attacks
and spoofing.

Terminology and Basic Operation
Before diving into the 802.1X configuration and verification lab, let’s review some basic
terminology and operational concepts. Figure 9-3 illustrates basic 802.1X concepts and
EAP operation.

530 | Chapter 9: Port Security and Access Control

Figure 9-3. IEEE 802.1X basics

An 802.1X authentication system contains three basic components:

Supplicant
While somewhat arcane, supplicant is the official term for a client that seeks au-
thentication through 802.1X. The supplicant is a “humble petitioner: somebody
who makes a humble and sincere appeal to a person who has the power to grant
the request.” Given this definition, supplicant does in fact seem to be a befitting
term, albeit a bit on the obscure side. The supplicant can be responsive or non-
responsive. A responsive supplicant is one that is 802.1X-enabled and provides
authentication credentials—specifically, a username and password for EAP MD5,
or a username and client certificates for EAP-TLS, EAP-TTLS, and EAP-PEAP. A
non-responsive supplicant typically does not support 802.1X, and therefore does
not initiate or react to any EAP stimulation. You must authenticate non-responsive
supplicants using a MAC-based authentication method, or disable 802.1X and
forgo simple authorization.

Authenticator port access entity
This is the official IEEE term for the authenticator, which is typically a switch or
WAP. The term authenticator is used to describe this role for the sake of brevity.
The primary role of the authenticator is to block all traffic to and from supplicants
until they are authenticated. The authenticator will pass gathered information to

IEEE 802.1X Port-Based Authentication | 531

an authentication server; per the 802.1X specification, this must be a RADIUS
server.

Authentication server
The authentication server contains the user database that’s used to make authen-
tication decisions. The database normally contains credentials information for
each supplicant that is expected to connect to the network, and is used to compare
the credentials supplied by the supplicant. Access is granted only when the cre-
dentials match.

Currently, EX Series switches support only RADIUS-based authentica-
tion and accounting servers for 802.1X.

A Word on 802.1X Clients
Windows XP ships with 802.1X supplicant support. You enable and configure the client
by selecting the network adapter’s properties, and then clicking on the Authentication
tab, as shown in Figure 9-4.

It is common to have to specifically seek out and install an 802.1X client in other op-
erating systems. For example, the Linux platform used as a client when developing this
material was loaded with the Xsupplicant package from Open1X.org, available at http:
//open1x.sourceforge.net/.

Figure 9-3, seen earlier, shows the functional components of 802.1X authentication,
and details the typical EAP and RADIUS packet exchanges used for authentication.
Note that between the supplicant and the authenticator, only EAP messages are ex-
changed, and likewise between the authenticator and the authentication server, only
RADIUS messages are exchanged.

In step 1, the client initiates authentication through transmission of an EAPOL-Start
message. Alternatively, the switch can also initiate authentication when it receives a
data packet from a currently unauthorized client. At this time, the authenticator sets
the port to the initialized state. In this state, only 802.1X traffic is allowed; all other
traffic is blocked at the Data Link layer.

At step 2, the authenticator sends an EAP Request for the supplicant’s identity/
credentials. The supplicant obliges at step 3 with an EAP Response message. The au-
thenticator bundles the supplicant’s credentials into a RADIUS Access Request mes-
sage, which is then sent to the authentication server at step 4.

532 | Chapter 9: Port Security and Access Control

http://open1x.sourceforge.net/
http://open1x.sourceforge.net/

Figure 9-4. The Windows XP 802.c1X client

The authentication server then accepts or rejects the access request. When the access
request is accepted, the authentication server sends a RADIUS Access Challenge, which
is converted to an EAP Request (for a challenge response) by the authenticator, as
shown in steps 5 and 6. The supplicant returns the challenge response, in EAP format,
which is then relayed on to the RADIUS server in another RADIUS Access message,
shown in steps 7 and 8.

When the supplicant’s response meets the authentication server’s expectations, a
RADIUS Access Accept message is generated, or else access is rejected and the port
continues to block all but EAP traffic. This process is shown in steps 9 and 10.

It should be noted that the RADIUS server can return a dynamically assigned VLAN
and/or a firewall filter in its Access Accept message through support for vendor-specific
attributes (VSAs), as described shortly. This capability allows a supplicant to begin
authentication in one VLAN, and wind up in another based on the results of the
authentication. If the supplicant meets the challenge, the authenticator sets the port to
the authorized state and normal traffic is then accepted to pass through the port. If the

IEEE 802.1X Port-Based Authentication | 533

authentication server rejects the RADIUS Access Request, the authenticator sets the
port to the unauthorized state, blocking all traffic.

Step 11 shows the supplicant sending an EAP-Logoff upon disconnection from the
network. In response, the authenticator returns the port to the unauthorized state,
again blocking all non-EAP traffic as it patiently awaits its next supplicant.

The configurable quiet-period determines how long the switch waits before retrying
an authentication attempt after it has failed retries times. The default is three retry
attempts before entering a 60-second quiet period, a behavior designed to prevent ex-
cessive control plane resource consumption as a result of having to process too many
EAP requests, as well as to thwart brute force hacking techniques, which in theory will
grow bored and move on to a faster target.

Extensible Authentication Protocol

EAP is an authentication framework rather than a specific authentication mechanism.
As such, it provides generic support for any number of authentication schemes, the
operation of which is treated as opaque data by EAP itself. EAP provides a common
set of functions needed to exchange packets, and also supports a negotiation method
to determine which EAP authentication method should be used between the supplicant
and the authenticator. EAP methods can include both standards-based and vendor-
proprietary approaches. In fact, currently more than 40 different EAP methods are
defined!

The EAP methods supported on EX switches are all IETF-standards-based, and are
detailed in Table 9-1.

Table 9-1. Supported EAP methods

EAP method What is exchanged

EAP-MD5 EAP-MD5 exchanges the MD5 hashed username and password, defined in RFC 3748. It can be vulnerable to
dictionary attacks and does not offer support for mutual authentication or encryption key generation.

EAP-TLS EAP Transport Layer Security (TLS) uses PKI-based authentication for strong security. TLS is a new name for
what was formerly called Secure Sockets Layer (SSL). EAP-TLS is defined in RFC 2716. This widely supported
method uses client- (and server-) side certificates for both strong authentication and dynamic encryption key
generation. The need for a client-side certificate can complicate configuration. EAP-TLS is the most common
EAP method in use today.

EAP-TTLS The Tunneled Transport Layer Security (TTLS) method extends TLS by not requiring a client-side certificate. This
protocol was co-developed by Funk Software (later acquired by Juniper) and Certicom. Like TLS, it offers strong
security and never sends user credentials in clear text.

EAP-PEAP The Protected Extensible Authentication Protocol (PEAP) method was jointly developed by Cisco Systems,
Microsoft, and RSA Security. It’s similar to TTLS, in that a client-side certificate is not required to establish a
secure tunnel between the supplicant and the authentication server. There are several versions of PEAP. EX
switches support PEAPv0/EAP-MSCHAPv2 as defined in (expired draft) draft-kamath-pppext-peapv0-00.

534 | Chapter 9: Port Security and Access Control

JUNOS 802.1X Feature Support
EX switches support a wide range of 802.1X options. This section describes the most
common features and their typical usage.

Administrative modes

The administrative mode describes how a port behaves in the 802.1X context. A port
can be in one of three 802.1 administrative states:

Automatic
In automatic mode, the supplicant must be authenticated before access is granted.
This is the default setting for an 802.1X-enabled port on an EX. A port operates in
automatic mode when you enable it for 802.1X authentication by listing it under
the [edit protocols dot1x] stanza.

Force authorized
This mode forces a port to be in the authorized state at all times. In JUNOS, you
can configure this mode explicitly with a disable statement at the [edit protocols
dot1x authenticator interface <interface-name>] hierarchy. Alternatively, you
can obtain force authorized behavior by simply not enabling 802.1X on that in-
terface to begin with. This mode can be used to support unresponsive hosts when
a MAC-based authentication approach is not desired.

Force unauthorized
This mode forces a port to be in the unauthorized state at all times, thereby disa-
bling the port for user traffic.

With JUNOS, you do not configure this mode explicitly. You obtain force unau-
thorized behavior by disabling the port itself using a set interfaces <interface-
name> disable configuration mode statement.

When you disable a port, the related status LED is extinguished. You
can view interface status LEDs directly when local to the switch, or re-
motely with a show chassis lcd command.

Supplicant modes

A supplicant can be authenticated in single mode, single-secure mode, or multiple
mode. The difference between each mode is significant and must be understood to
effectively deploy 802.1X on EX switches. You configure the supplicant mode for a
given interface at the [edit protocols dot1x authenticator interface <interface-
name>] hierarchy using the supplicant keyword.

Single
The single mode authenticates only the first supplicant. All other supplicants that
connect later to the port are allowed full access without any further authentication.

IEEE 802.1X Port-Based Authentication | 535

They effectively “piggyback” on the first supplicant’s authentication. Single is the
default supplicant mode.

Single-secure
The single-secure mode allows only one supplicant to connect to the port. No other
supplicant is allowed to connect until the first supplicant logs out. This mode
prevents the piggybacking of other clients upon the first authentication that occurs
in single mode.

Multiple
Multiple mode provides fine-grained access control by allowing multiple suppli-
cants per port while requiring that each such supplicant be individually
authenticated.

Additional capabilities

EX switches offer some value-added features that relate to 802.1X authentication:

Guest VLAN
The guest VLAN feature provides limited network access for supplicants that fail
802.1X authentication. This feature is often used to provide external/Internet ac-
cess while blocking intranet access for mobile users that are visiting a network
location. Authentication can fail due to a non-responsive host that does not answer
EAP queries, or because the provided credentials do not match those in the
authentication server, resulting in a reject response.

Dynamic VLAN
With this feature, a supplicant’s VLAN can be dynamically assigned/altered as part
of the authentication process. The assigned VLAN must already exist on the local
switch, however.

Dynamic firewall filters
This feature assigns a family ethernet-switching firewall to the authenticated port
based on the supplied user credentials.

MAC-based authentication
This feature is designed to support non-responsive hosts, which is another term
for machines that are not 802.1X-capable. MAC-based authentication bypasses
802.1X authentication for these hosts and can use either a local list of permitted
MACs or RADIUS-based MAC authentication. MAC-based authentication can be
used exclusively, or in addition to supported EAP methods for a responsive host.

Dynamic changes to a user session
This feature allows an administrator to terminate an established session, perhaps
due to violations of the Acceptable Use Policy (AUP). The feature is enabled
through support for the RADIUS Disconnect Message, as defined in RFC 3576.
In-operation changes made to a supported RADIUS server result in a Disconnect
Request being sent to the authenticator, which forces reauthentication of the af-
fected user.

536 | Chapter 9: Port Security and Access Control

Support for VoIP
802.1X-enabled Voice over IP (VoIP) devices can be assigned a voice VLAN ID and
class of service (CoS) forwarding class marker settings as part of the RADIUS Ac-
cept message. The tagging and marking parameters are then conveyed to the phone
using Link Layer Discovery Protocol-Media Endpoint Discovery (LLDP-MED), as
described in Chapter 10.

A VoIP device that lacks 802.1X support can rely on an 802.1X-1X-capable device
that’s connected to its data port to perform authentication and thereby enable the
switch port. While such a method does not automatically ensure correct VLAN
tagging and CoS marking for the VoIP traffic, it does allow voice traffic to pass to
and from the phone.

RADIUS accounting
This feature sends accounting information to a RADIUS accounting server when-
ever a subscriber logs in or logs out. This feature is based on RFC 2866, “RADIUS
Accounting.”

Periodic reauthentication
This feature forces previously authenticated clients to reauthenticate after the con-
figured period of time. This feature can be disabled with a no-reauthentication
statement.

Non-responsive host/MAC-based authentication
You can configure MAC-based authentication while excluding all other forms, or
as a fallback when EAP is not supported. In this mode, the username and password
are set to the client’s MAC address, requiring that a matching entry be defined on
the authentication server. By adding restrict to the mac-radius statement, you
force MAC-based authentication exclusively. This eliminates the 90-second delays
that must normally elapse before the switch assumes that the host is non-responsive
to EAP and falls back to a MAC-based approach.

Server fallback
In addition to allowing a primary and secondary authentication server, you can
also define how the switch handles a RADIUS timeout. Such a timeout occurs when
all RADIUS servers, or the communications path to reach them, are down. You
configure the desired timeout or reject action on a per-interface basis at the [edit
protocols dot1x authenticator interface <interface-name>] hierarchy using the
server-fail and server-reject-vlan keywords, respectively. Actions include
permit, deny, and use-cached, with the latter used to support reauthentication only;
new users are denied.

Vendor-specific attributes
VSAs are the mechanism behind support for dynamic VLAN and firewall filter
assignment. VSAs are defined centrally on the authentication server but are imple-
mented in distributed fashion on each authenticator. By housing the VSAs on a
central authentication server, you eliminate the need for configuring the same

IEEE 802.1X Port-Based Authentication | 537

attributes, in the form of firewall filters, on every switch to which a given supplicant
may connect.

Deploy and Verify 802.1X
In this section, you will configure and validate 802.1X authentication using both the
EAP-MD5 and server-based MAC address methods. Once again, refer back to Fig-
ure 9-1 for topology details as needed.

The configuration criteria are as follows:

• Configure an access profile to support RADIUS authentication for dot1x users.

• Enable dot1x authentication on ge-0/0/8 to support EAP-MD5.

• Ensure that RADIUS requests originate from the 212.0.1.3 address.

• Ensure that only one supplicant can be active while blocking traffic from all other
sources.

• Force the client to reauthenticate every 180 seconds.

You may assume that the RADIUS server iop-lnx has been correctly configured to
support 802.1X, and that the supplicant software is correctly installed on client5-
lnx. For completeness, key portions of the RADIUS server and supplicant’s configura-
tion are shown.

RADIUS server configuration

The configuration files are housed in the /usr/local/etc/raddb directory. The
clients.conf file contains an entry for Network Access Server (NAS), sys-java33:

. . .
client 212.0.1.3 {
 secret = juniper
 shortname = sys-java33
}
. . .

Please try to keep the hard-to-guess password a secret; strong passwords are such a
pain to remember, after all. The EAP-MD5 user’s credentials are configured in the
users file:

. . .
md5user01 Auth-Type := EAP, User-Password == "md5user01"
 Tunnel-Type = VLAN,
 Tunnel-Medium-Type = IEEE-802,
 Tunnel-Private-Group-Id = 1001,
Juniper-Switching-Filter = "Match Destination-mac 00:00:00:00:11:22 Action
allow"
 Filter-Id = "f1"
. . .

538 | Chapter 9: Port Security and Access Control

The configuration includes the expected username and password pair, as these are the
only credentials used in the EAP-MD5 method. This example also includes VSAs to
identify the client’s VLAN, which is 1001 in this example, and to dynamically build or
apply an existing firewall filter via the Juniper-Switching-Filter or Filter-Id VSA,
respectively. Using VSAs, it’s possible to have the supplicant begin authentication in
one VLAN with one set of filter rules, and as a result of successful authentication be
reassigned to a new VLAN and a new set of filter rules.

The commented Juniper-Switching-Filter line provides sample syntax for a set of rules
that are sent by the RADIUS server to the authenticator, where they are executed to
dynamically build and apply the related filter. Alternatively, you can simply return the
name of a preexisting filter, as is the case with the f1 filter name in conjunction with
the Filter-Id VSA in this example. Note again that for Filter-Id to be successful a
family ether-switching filter with a matching name must already be configured on the
authenticator.

VSAs and the Juniper Dictionary
For VSA support, you must have a supported RADIUS server, and you must configure
it with the string definitions contained in a file called dictionary.juniper. Details are
available at http://www.juniper.net/techpubs/en_US/junos9.4/topics/task/configuration/
802-1x-vsa-configuring-cli.html. A sample dictionary.juniper file that supports VLAN,
filter ID, and dynamic switching filters is shown; you can paste this information into a
dictionary.juniper file of your own creation:

[root@iop-lnx2 ~]# cat
/usr/local/share/freeradius/dictionary.juniper
-*- text -*-
#
dictionary.juniper
#
As posted to the list by Eric Kilfoil
<ekilfoil@uslec.net>
#
Version: $Id: dictionary.juniper,v 1.2.6.1 2005/11/30
22:17:25 aland Exp $
#

VENDOR Juniper 2636

BEGIN-VENDOR Juniper

ATTRIBUTE Juniper-Local-User-Name 1
string
ATTRIBUTE Juniper-Allow-Commands 2
string
ATTRIBUTE Juniper-Deny-Commands 3
string
ATTRIBUTE Juniper-Allow-Configuration 4
string
ATTRIBUTE Juniper-Deny-Configuration 5
string

IEEE 802.1X Port-Based Authentication | 539

http://www.juniper.net/techpubs/en_US/junos9.4/topics/task/configuration/802-1x-vsa-configuring-cli.html
http://www.juniper.net/techpubs/en_US/junos9.4/topics/task/configuration/802-1x-vsa-configuring-cli.html

ATTRIBUTE Juniper-Switching-Filter 48
string

END-VENDOR Juniper

EAP-MD5 supplicant configuration

With the relevant portions of the RADIUS server analyzed, the supplicant’s configu-
ration is displayed:

[root@client5-lnx xsupplicant-conf]# cat md5user01.conf
This is an example configuration file for xsupplicant versions after 0.8b.
. . .
network_list = all
logfile = /var/log/xsupplicant.log
default
{
 identity = md5user01

 eap-md5 {
 username = md5user01
 password = ABCabc123
 }
}

The contents of the md5user01.conf file are pretty straightforward. A logfile location is
specified for help in debugging, as the client is normally run in daemon (background)
mode, and the desired EAP method, which is eap-md5, is specified. As you might expect,
both the username and password are also specified in the configuration file. The
network_list all statement allows the client to cache results for all networks it may
encounter, and is primarily intended for roaming among a set of WAPs.

Configure RADIUS parameters

With details of the server and client settings established, you have enough to get crack-
ing at the EX configuration that is supposed to make all of this happen. Begin with the
definition of the RADIUS server and local NAS attributes that facilitate communica-
tions between the authenticator and the authentication server. Configure these param-
eters at the [edit access] hierarchy. The configuration options are displayed:

[edit access]
lab@sys-java33# set ?
Possible completions:
> address-pool Address pool
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> group-profile Group profile to use for this client
> profile Set of attributes that define access
> radius-options RADIUS options
> radius-server RADIUS server configuration
[edit access]

540 | Chapter 9: Port Security and Access Control

Here the primary areas of concern are the radius-server stanza, where you define the
specifics needed to access a given server, and the profile stanza, where you create an
authentication profile that in turn evokes one or more of the servers you have defined.
In the 9.5 release, the radius-options stanza is used to specify the revert-interval,
which controls how long the local NAS waits before reverting back to a primary
RADIUS server that previously was deemed to be unreachable or unresponsive. This
functionality is not needed here; therefore, focus is on the radius-server stanza.

A working RADIUS definition is shown:

[edit access]
lab@sys-java33# show radius-server
212.1.0.2 {
 secret "9ZwDHmz39O1hfT1hSr8LGDi"; ## SECRET-DATA
 retry 5;
 source-address 212.0.1.3;
}

The main point to note here is the specification of the RADIUS server via its IP address,
along with the corresponding secret used to authenticate the local NAS to that server.
In this case, the MD5 hash of the password juniper is displayed; JUNOS never displays
passwords in clear text, but you can load such a password into another configuration
in its MD5 hashed form. Note that this password matches the one in the RADIUS server
for this authenticator (NAS) shown previously; so far, so good.

The retry setting determines how many requests are sent before the server is considered
unresponsive. The source-address statement is used to ensure that all RADIUS requests
originate from the 212.0.1.3 address, which is assigned to the vlan.1001 RVI. Note that
a source address setting can be critical for proper operation. The RADIUS server is
typically configured with a list of allowed NAS clients in the form of their source ad-
dresses, so sourcing requests from the wrong address makes it appear that the packet
originated from an unauthorized NAS, resulting in the inability to authenticate users.

You move on to configure an authentication profile named auth that defines RADIUS
as the accounting and authorization method:

[edit access]
lab@sys-java33# show profile auth
authentication-order radius;
radius {
 authentication-server 212.1.0.2;
 accounting-server 212.1.0.2;
}
accounting {
 order radius;
}

The auth profile also specifies a list of authentication and, if desired, accounting servers.
Each server is tried in the order listed, according to the specifics defined for that server
at the [edit access radius-server] hierarchy, as described previously.

IEEE 802.1X Port-Based Authentication | 541

Currently, EX platforms require RADIUS for 802.1X authentication and
authorization. Additional server types may be supported in future
releases.

With the authentication server housework now complete, you can move on to 802.1X
configuration proper.

Configure 802.1X authenticator properties

802.1X authenticator properties are configured at the [edit protocols dot1x] hierar-
chy. Once again, here are the primary configuration options:

[edit protocols dot1x]
lab@sys-java33# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> authenticator 802.1X authenticator options
> traceoptions Trace options for 802.1X
[edit protocols dot1x]

The options allow you to configure 802.1X authenticator properties and tracing for the
same. The authenticator options are displayed next:

[edit protocols dot1x]
lab@sys-java33# set authenticator ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 authentication-profile-name Access profile name to use for authentication
> interface 802.1X interface specific options
> static Static MAC configuration needed to bypass 802.1X
 | Pipe through a command
[edit protocols dot1x]

Here, the options include the authentication-profile-name, which is used to link to an
authentication profile defined at the [edit access] hierarchy; the interface stanza,
which is where specific 802.1X parameters are set; and the static hierarchy, where you
configure a list of MAC addresses that are allowed to bypass 802.1X authentication. In
this example, you link to the already defined auth profile, and 802.1X is enabled on the
ge-0/0/8 interface. A configuration that should meet the current criteria is shown:

[edit protocols dot1x]
lab@sys-java33# show
authenticator {
 authentication-profile-name auth;
 interface {
 ge-0/0/8.0 {
 supplicant single-secure;
 reauthentication 180;
 }

542 | Chapter 9: Port Security and Access Control

 }
}

The authenticator settings specify the interface and the authentication profile that are
used for supplicants on this interface. This example sets the interface to single-
secure mode, in keeping with the requirements that only one active client is permitted
at any time. The default mode is single, which allows multiple clients’ MAC addresses
as long as at least one of them has been successfully authenticated.

Worth noting is the total lack of any EAP-method-specific settings. Such settings are
not needed because the EX automatically senses and reacts to the supplicant’s chosen
method, assuming it’s one of the methods supported, of course. Given that the EAP-
MD5 method is supported, things should just work.

Verify 802.1X authentication

With the authentication server and authenticator configuration in place, it’s time to
fire up the supplicant and see what happens. In this case, the supplicant is evoked to
run on the eth2 interface, to use the md5user01.conf configuration file, and to run in
the foreground via the -i, -c, and -f flags, respectively:

[root@client5-lnx xsupplicant-conf]# xsupplicant -i eth2 -c md5user01.conf -f
Couldn't get encryption capabilites!
No configuration information for network "(null)" found. Using default.
Failed to authenticate eth2
Failed to authenticate eth2
. . .

Bum deal, and certainly not the most auspicious of beginnings for you and all things
802.1X. Given the supplicant’s output, it’s clear that there is a failure to authenticate.
Hoping for more details, the 802.1X authentication status is displayed on the EX using
a show dot1x interface command:

[edit]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User
ge-0/0/8.0 Authenticator Authenticating

The display confirms that ge-0/0/8 is in fact configured to run 802.1X, and that it’s
currently trying to authenticate the user. That’s something, right? Sometime later the
command is repeated to obtain current status:

[edit]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User
ge-0/0/8.0 Authenticator Held 00:50:8B:6F:60:3A md5user01

While still not successfully authenticated, the display has been updated to reflect that
the interface has transitioned to the held state. This means that the number of retry
attempts, three by default, have expired without successful authentication. The

IEEE 802.1X Port-Based Authentication | 543

interface remains in this state until the quiet-period elapses, at which point the au-
thenticator again attempts to authorize the user. It’s not all bad, however. There is some
indication that EAP is working correctly between the EX and the supplicant, by virtue
of the display correctly being updated to reflect the EAP client’s name and MAC
address. Use the detail switch to see additional information:

[edit]
lab@sys-java33# run show dot1x interface detail
ge-0/0/8.0
 Role: Authenticator
 Administrative state: Auto
 Supplicant mode: Single-Secure
 Number of retries: 3
 Quiet period: 60 seconds
 Transmit period: 30 seconds
 Mac Radius: Disabled
 Mac Radius Restrict: Disabled
 Reauthentication: Enabled
 Configured Reauthentication interval: 180 seconds
 Supplicant timeout: 30 seconds
 Server timeout: 30 seconds
 Maximum EAPOL requests: 2
 Guest VLAN member: <not configured>
 Number of connected supplicants: 1
 Supplicant: md5user01, 00:50:8B:6F:60:3A
 Operational state: Held
 Authentcation method: Radius
 Authenticated VLAN: configured
 Session Reauth interval: 0 seconds
 Reauthentication due in 0 seconds

The details confirm various aspects of 802.1X operation on the interface. The highlights
call out key operational characteristics such as the need for periodic reauthorization
and a single-secure operating mode. The Auto setting for the administration status
simply indicates that 802.1X is enabled for all supported EAP modes. While useful, the
details do not shed any light on the current malfunction. To help isolate where things
are going astray, 802.1X tracing is added to the configuration:

[edit protocols dot1x]
lab@sys-java33# show traceoptions
file dot1x;
flag state;
flag dot1x-debug;
flag eapol;

After committing the changes, a monitor start dot1x command is issued to begin
monitoring the trace file. A short time later you observe the following trace output.
Some comments are interspersed to help break it up and shed light on what it all means:

[edit protocols dot1x]
lab@sys-java33# run monitor start dot1x
. . .
Apr 4 14:36:20.929129 EAPOL packet received on interface ge-0/0/8.0
Apr 4 14:36:20.929193 Creating background job to process EAPOL frame

544 | Chapter 9: Port Security and Access Control

Apr 4 14:36:20.929300 Entering background job to process received EAPOL frames
Apr 4 14:36:20.929340 Invoking state machine for frame received on interface ge-
0/0/8
Apr 4 14:36:20.929371 Received an EAPOL Frame...

Apr 4 14:36:20.929422 Frame is targetted to this machine...

Apr 4 14:36:20.929661 EAPOL Frame Received on Port: 104 !!!

Apr 4 14:36:20.929728 AuthHandleInEapFrame: Received MAC based Eap Frame

Apr 4 14:36:20.929782 Session Node for MAC: -508b6f-603a- Port: 104 obtained ...

Apr 4 14:36:20.929927 ASM Called with Event: RXRESPID, and State: Connecting

Apr 4 14:36:20.929978 for Port: 104, MAC: 508b6f - 603a

Apr 4 14:36:20.930023 Id: 4, SessionNode: 1d3f800

Apr 4 14:36:20.930068 ASM: Inside PnacAuthAsmRxrespConnecting

Apr 4 14:36:20.930124 TMR: Timer is deleted

Apr 4 14:36:20.930171 ASM moved to state: AUTHENTICATING !!

Apr 4 14:36:20.930221 BSM Called with Event: AUTHSTART, and State: Idle

Apr 4 14:36:20.930268 for Port: 104, MAC: 508b6f-603a

Apr 4 14:36:20.930313 Id: 4, SessionNode: 1d3f800

Apr 4 14:36:20.930375 TMR: Timer is started

Apr 4 14:36:20.930422 BSM moved to state: RESPONSE !!

Apr 4 14:36:20.930507 ASIF: Transferring Server-data to Auth Server for the user,
md5user01.

Apr 4 14:36:20.930573 SessId: 8O2.1x81d8001e strlen: 14
Apr 4 14:36:20.930711 Queuing message to auth client to validate mac address
0:50:8b:6f:60:3a, user md5user01 on interface ge-0/0/8.0
Apr 4 14:36:20.930818 ASIF: Radius REQUEST_ID: 3f
Apr 4 14:36:20.930853 ASIF: Tx of Server-data to Auth Server succeeded

In the first block, you see confirmation that an authorization process begins with receipt
of an EAP Over LAN (EAPOL) frame from the client. The software tracks the related
interface using the logical interface index, which is 104 in this example, as confirmed
in this snippet from a show interfaces ge-0/0/8 command:

. . .
Logical interface ge-0/0/8.0 (Index 104) (SNMP ifIndex 159)
 Flags: SNMP-Traps 0x0 Encapsulation: ENET2

The trace goes on to show that the Authentication State Machine (ASM) moves into
the authenticating state, and as a result constructs a message that is queued to be sent

IEEE 802.1X Port-Based Authentication | 545

to the RADIUS server. The trace also confirms the expected username and interface
name for this example. The trace output continues:

. . .
Apr 4 14:36:20.934947 Received Access-Challenge authentication message
Apr 4 14:36:20.934984 Invoking state machine for authentication response for mac
address 00:50:8B:6F:60:3A
Apr 4 14:36:20.935106 on intf ge-0/0/8.0

Apr 4 14:36:20.935166 ASIF: Handing over Server frame to Authenticator

Apr 4 14:36:20.935214 AUTH: Handling Server Frame

Apr 4 14:36:20.935263 SessNode got from SessIdtbl for Id 5 is : 1d3f800, Port: 104

Apr 4 14:36:20.935310 Code = 1, Id = 5, Len = 22

Apr 4 14:36:20.935385 BSM Called with Event: AREQ_RCVD, and State: Response

Apr 4 14:36:20.935439 for Port: 104, MAC: 508b6f-603a

Apr 4 14:36:20.935802 Id: 4, SessionNode: 1d3f800

Apr 4 14:36:20.935920 TMR: Timer is deleted

Apr 4 14:36:20.936004 Queuing EAPOL frame to be transmitted out on interface ge-
0/0/8
Apr 4 14:36:20.936093 EAP Req Frame Sent !!!

Apr 4 14:36:20.936163 TMR: Timer is started

Apr 4 14:36:20.936210 BSM moved to state: REQUEST !!

The next block shows that the authenticator received an Access Challenge Response
from the RADIUS server, and that the challenge was sent as an EAP message to the
supplicant over ge-0/0/8. Seeing the reply from the RADIUS server tells you that the
authenticator to authentication server communications path is working, which also
confirms the source-address and shared secret particulars. As a result, you can conclude
that the issue does not relate to RADIUS server communications, which tells you a lot
about what the problem isn’t. The trace output continues:

. . .
Apr 4 14:36:20.937771 EAPOL packet received on interface ge-0/0/8.0
Apr 4 14:36:20.937837 Creating background job to process EAPOL frame
Apr 4 14:36:20.937944 Entering background job to process received EAPOL frames
Apr 4 14:36:20.937985 Invoking state machine for frame received on interface
ge-0/0/8

Apr 4 14:36:20.938016 Received an EAPOL Frame...

Apr 4 14:36:20.938065 Frame is targetted to this machine...

Apr 4 14:36:20.938112 EAPOL Frame Received on Port: 104 !!!

546 | Chapter 9: Port Security and Access Control

Apr 4 14:36:20.938165 AuthHandleInEapFrame: Received MAC based Eap Frame

Apr 4 14:36:20.938217 Session Node for MAC: -508b6f-603a- Port: 104 obtained ...

Apr 4 14:36:20.938269 BSM Called with Event: RXRESP, and State: Request

Apr 4 14:36:20.938392 for Port: 104, MAC: 508b6f-603a

Apr 4 14:36:20.938440 Id: 5, SessionNode: 1d3f800

Apr 4 14:36:20.938540 TMR: Timer is deleted

Apr 4 14:36:20.938608 TMR: Timer is started

Apr 4 14:36:20.938656 BSM moved to state: RESPONSE !!

Apr 4 14:36:20.938707 ASIF: Transferring Server-data to Auth Server for the user,
md5user01.

Apr 4 14:36:20.938767 SessId: 8O2.1x81d8001e strlen: 14
Apr 4 14:36:20.938904 Queuing message to auth client to validate mac address
0:50:8b:6f:60:3a, user md5user01 on interface ge-0/0/8.0
Apr 4 14:36:20.939017 ASIF: Radius REQUEST_ID: 40
Apr 4 14:36:20.939053 ASIF: Tx of Server-data to Auth Server succeeded

This block of trace confirms that the supplicants generated a Challenge Response, as
indicated by the receipt of an EAP packet on the ge-0/0/8 interface. The trace also
shows the authenticator packaging the supplicant’s response into a RADIUS message
that is successfully sent to the authentication server. Again, so far, so good. And the
tracing continues:

. . .
Apr 4 14:36:23.944683 process_auth_reply len:2696
Apr 4 14:36:23.944717 No VLAN attributes configured
Apr 4 14:36:23.944747 Received Access-Reject authentication message
Apr 4 14:36:23.944780 pnac_apply_access_reject_vlan portnum:104
Apr 4 14:36:23.944824 Invoking state machine for authentication response for mac
address 00:50:8B:6F:60:3A
Apr 4 14:36:23.944855 on intf ge-0/0/8.0

Apr 4 14:36:23.944913 ASIF: Handing over Server frame to Authenticator

Apr 4 14:36:23.944962 AUTH: Handling Server Frame

Apr 4 14:36:23.945011 SessNode got from SessIdtbl for Id 5 is : 1d3f800, Port: 104

Apr 4 14:36:23.945140 Code = 4, Id = 5, Len = 4

Apr 4 14:36:23.945192 BSM Called with Event: AFAIL_RCVD, and State: Response

Apr 4 14:36:23.945240 for Port: 104, MAC: 508b6f-603a

Apr 4 14:36:23.945286 Id: 5, SessionNode: 1d3f800

Apr 4 14:36:23.945346 TMR: Timer is deleted

IEEE 802.1X Port-Based Authentication | 547

Apr 4 14:36:23.945775 Queuing EAPOL frame to be transmitted out on interface ge-0/0/8

Apr 4 14:36:23.945882 EAP Frame Sent with code: 4 !!!

Apr 4 14:36:23.945935 BSM moved to state: FAIL !!

Apr 4 14:36:23.945988 BSM moved to state: IDLE !!

The last bit of trace output confirms that the authenticator received a negative reply
from the RADIUS server. This reply is then conveyed to the supplicant as an EAP code
4 packet, to indicate the failure. Based on the trace, it seems that nothing is amiss in
the basic EAP to RADIUS and RADIUS to EAP conversion process, which validates the
RADIUS settings and general EAP operation on the access link. Given that there is no
protocol malfunction to blame, double-check the credentials specified in the
md5user01.conf configuration file:

. . .
 eap-md5 {
 username = md5user01
username = "HURRICANE-TEST\md5user01"
 password = ABCabc123
 }
}

The credentials, when compared to the server’s configuration, make you want to blush:

. . .
md5user01 Auth-Type := EAP, User-Password == "md5user01"
 Tunnel-Type = VLAN,
 Tunnel-Medium-Type = IEEE-802,
. . .

The two passwords do not match! The error is corrected in the supplicant’s configu-
ration and authentication is retried:

[root@client5-lnx xsupplicant-conf]# xsupplicant -i eth2 -c md5user01.conf -f
Couldn't get encryption capabilites!
No configuration information for network "(null)" found. Using default.
Successfully authenticated eth2

The supplicant confirms that authentication has succeeded. This is confirmed back at
the authenticator with a show dot1x interface command:

[edit protocols dot1x]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User
ge-0/0/8.0 Authenticator Authenticated 00:50:8B:6F:60:3A md5user01

As expected, the EX confirms that the supplicant with a MAC address of 00:50:8B:6F:
60:3A is in the authenticated state. Adding the detail switch confirms additional state,
such as the need to reauthenticate and the assignment of a user VLAN and dynamic
filter:

548 | Chapter 9: Port Security and Access Control

[edit]
lab@sys-java33# run show dot1x interface detail ge-0/0/8.0
ge-0/0/8.0
 Role: Authenticator
 Administrative state: Auto
 Supplicant mode: Single
 Number of retries: 3
 Quiet period: 60 seconds
 Transmit period: 30 seconds
 Mac Radius: Disabled
 Mac Radius Restrict: Disabled
 Reauthentication: Enabled
 Configured Reauthentication interval: 300 seconds
 Supplicant timeout: 30 seconds
 Server timeout: 30 seconds
 Maximum EAPOL requests: 2
 Guest VLAN member: <not configured>
 Number of connected supplicants: 1
 Supplicant: md5user01, 00:50:8B:6F:60:3A
 Operational state: Authenticated
 Authentcation method: Radius
 Authenticated VLAN: v1001
 Dynamic Filter: f1
 Session Reauth interval: 300 seconds
 Reauthentication due in 291 seconds

Looking back at the interface configuration, you note that it was already set for VLAN
v1001 membership:

[edit]
lab@sys-java33# show interfaces ge-0/0/8
unit 0 {
 family ethernet-switching {
 vlan {
 members v1001;
 }
 }
}

As such, there was no VLAN reassignment as a result of the authentication in the case
of this user, but such reassignment is possible. Lastly, verify that a firewall filter named
f1 has been dynamically applied to the interface with a show dot1x firewall command:

[edit protocols dot1x]
lab@sys-java33# run show dot1x firewall
Filter name: dot1x_ge-0/0/8
Counters:
Name Bytes Packets
c1__dot1x_ge-0/0/8_00508b6f603a-f1-t1 0 0

The output confirms that filter assignment VSA worked to dynamically apply the pre-
defined f1 firewall filter to the interface as a result of user authentication. The packet
counts are zero because the related firewall’s match conditions have not been met. The
goal here is to demonstrate filter assignment based on authentication, so the actual
filter particulars do not matter much.

IEEE 802.1X Port-Based Authentication | 549

[edit]
lab@sys-java33# show firewall
family ethernet-switching {
 filter f1 {
 term t1 {
 from {
 destination-address {
 212.0.1.254/32;
 }
 }
 then {
 accept;
 forwarding-class pc;
 loss-priority low;
 count c1;
 }
 }
 term t2 {
 then accept;
 }
 }
. . .

Note that VSA assigned filters must belong to the ethernet-switching family because
they are ultimately applied to an interface operating in Layer 2 mode. These results
confirm that 802.1X authentication is working, and they complete the verification of
the IEEE 802.1X EAP-MD5-based authentication lab. The next section goes on to
demonstrate configuration of MAC-based RADIUS authentication for a non-
responsive host.

Configure MAC-based RADIUS authentication

In this section, you will deploy 802.1X authentication on an EX switch to support
RADIUS-based MAC authentication for a host that does support the 802.1X supplicant
role. The resulting configuration must meet these requirements:

• Ensure that only MAC-based authentication is permitted; no other EAP method
should be possible.

• RADIUS-based authentication must be used.

• When authenticated, place the user in VLAN 1001.

Figure 9-5 shows the slightly modified test topology used for this lab.

The topology change involves the use of eth1 at client5-lnx and the ge-0/0/9 interface
at EX switch sys-java33, and a new IP subnet value as the original 212.0.1.0/24 subnet
is in use on the client’s eth2 interface (not shown). Figure 9-5 also documents the MAC
address for the eth1 interface as 00:30:48:8D:7B:53.

550 | Chapter 9: Port Security and Access Control

Figure 9-5. MAC-based authentication topology

The operational requirements seem simple enough. Recall that there are several ways
to deal with a non-responsive host. You could simply disable 802.1X on that interface,
or add the host’s MAC address as being allowed to bypass 802.1X using the static
keyword at the [edit protocols dot1x authenticator] hierarchy. However, these
methods fail to meet the desired behavior of using the RADIUS server for the authen-
tication; the former negates all authentication, while the latter uses a local MAC data-
base on the switch itself to decide when a host can bypass 802.1X, and therefore both
fail to achieve the server-based authentication that is required here.

MAC-based authentication makes use of RADIUS, but technically is not
a defined EAP method and therefore does not require EAP in the sup-
plicant. Unlike standard EAP methods, you must specifically enable
MAC-based RADIUS authentication when desired using the mac-
radius statement. MAC-based RADIUS authentication is not exclusive;
EAP authentication exchanges are still permitted unless specifically
disabled.

MAC-based authentication is normally used for hosts that do not sup-
port 802.1X. An 802.1X-1X-capable client can cause problems with
MAC-based RADIUS authentication. It’s a good practice to explicitly
disable any 802.1X client software on machines that you intend to au-
thenticate via MAC address. In testing with the 9.5 release, it was found
that when (a failing) EAP client was left enabled on the supplicant, the
switch did not attempt to fall back to attempt a MAC-based approach,
which would have succeeded if it were not fouled up by the ongoing
EAP-MD5 authentication failure.

IEEE 802.1X Port-Based Authentication | 551

The requirements also state that you must limit the interface to MAC-based authenti-
cation only. Given that the first requirement forces you to enable 802.1X, and recalling
that, by default, the EX will automatically react to any supported EAP method, this
means you must disable EAP with the restrict keyword used in conjunction with mac-
radius. This combination limits the supplicant to RADIUS-based MAC authentication
only, and therefore meets the stated goals. Before making any changes, the configura-
tion for the ge-0/0/9 interface is displayed. Of note is the absence of any VLAN
membership statement. As per requirements, the VLAN will be assigned as a result of
successful authentication:

[edit]
lab@sys-java33# show interfaces ge-0/0/9
unit 0 {
 family ethernet-switching;
}

The same RADIUS server parameters are used in this scenario, so no changes are needed
to the [edit access] hierarchy. The RADIUS server’s /usr/local/etc/raddb/users file is
updated with the information needed for MAC authorization, shown here:

0030488d7b53 Auth-Type := EAP, User-Password == "0030488d7b53"
 Tunnel-Type = VLAN,
 Tunnel-Medium-Type = IEEE-802,
 Tunnel-Private-Group-Id = "1001"

Note that both the username and password are coded with the client’s MAC address
(in lowercase), and that the VSA Tunnel-Private-Group-Id correctly specifies VLAN ID
1001. The local definition of this VLAN is confirmed on the authenticator:

[edit]
lab@sys-java33# show vlans v1001
vlan-id 1001;
l3-interface vlan.1001;

Next, the supplicant’s eth1 interface is assigned an IP address and set to be operational
via the up flag. The interface’s newly assigned IP and burned-in MAC address are then
confirmed, for the record:

[root@client5-lnx xsupplicant-conf]# ifconfig eth1 200.0.0.1 netmask 255.255.255.0
up

[root@client5-lnx xsupplicant-conf]# ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:30:48:8D:7B:53
 inet addr:200.0.0.1 Bcast:200.0.0.255 Mask:255.255.255.0
 inet6 addr: fe80::230:48ff:fe8d:7b53/64 Scope:Link
 UP BROADCAST RUNNING ALLMULTI MULTICAST MTU:1500 Metric:1
 RX packets:123 errors:0 dropped:0 overruns:0 frame:0
 TX packets:24 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:10901 (10.6 KiB) TX bytes:7317 (7.1 KiB)
 Interrupt:177

552 | Chapter 9: Port Security and Access Control

While the client displays its MAC address using uppercase letters for
HEX values A–F, it was found that the RADIUS server was case-sensitive
and failed to authenticate the user when the MAC address was entered
with uppercase letters.

With client5-lnx’s interface particulars confirmed, the server’s user definition updated
with the supplicant’s eth1 MAC address, and the prerequisite configuration confirmed
in sys-java33, you’re ready to configure MAC-based authentication on the EX. The
resulting dot1x stanza is displayed:

[edit]
lab@sys-java33# show protocols dot1x
authenticator {
 authentication-profile-name auth;
 interface {
 ge-0/0/8.0 {
 reauthentication 180;
 }
 ge-0/0/9.0 {
 supplicant multiple;
 mac-radius {
 restrict;
 }
 }
 }
}

The highlighted area calls out the delta. Interface ge-0/0/0 is set to support MAC-based
RADIUS, as required, and is restricted to only MAC-based RADIUS via the restrict
keyword. This prevents other forms of EAP authentication from working, as per re-
quirements. In this case, the supplicant mode is set to multiple, which means that more
than one client can be supported, but given the other settings each will require its own
MAC-based authentication. While this behavior is not specifically called out, the re-
quirements do not state that once one client MAC is authenticated all others should
get a free pass, which is the default (single) supplicant behavior.

After committing the changes, traffic is generated at the client. The target address does
not exist, so ping failures are expected. The resulting ARP traffic uses the client’s SMAC
address and is sufficient to trigger authentication:

[root@client5-lnx xsupplicant-conf]# ping 200.0.0.2
PING 200.0.0.2 (200.0.0.2) 56(84) bytes of data.
...

^c
--- 200.0.0.2 ping statistics ---
4 packets transmitted, 0 received, 100% packet loss, time 2999ms

IEEE 802.1X Port-Based Authentication | 553

Recall that in testing it was found that the EX stopped at the first
RADIUS reject and did not attempt alternative authentication schemes.
As a result, leaving an EAP-MD5 supplicant with improper authentica-
tion running on a port enabled for both EAP and MAC-based authen-
tication resulted in EAP failure (as expected) and a disabled interface.
The MAC approach was never attempted until EAP was disabled on the
client.

With traffic stimulus in effect, the authentication status is verified:

[edit]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User
ge-0/0/15.0 Authenticator Connecting
ge-0/0/17.0 Authenticator Connecting
ge-0/0/8.0 Authenticator Connecting
ge-0/0/9.0 Authenticator Authenticated 00:30:48:8D:7B:53 0030488d7b53

The display confirms successful MAC-based authentication, as indicated by a username
that equals the MAC address. A show vlans command confirms the resulting dynamic
VLAN assignment:

[edit]
lab@sys-java33# run show vlans 1001
Name Tag Interfaces
v1001 1001
 ae0.0*, ae1.0, ae2.0*, ae3.0, ge-0/0/8.0*, ge-0/0/9.0*, ge-
0/0/16.0, ge-0/0/17.0, ge-0/0/18.0

If you suspect a malfunction and want to start things fresh, issue a restart dot1x-
protocol operational mode command to restart the 802.1X daemon. Use this with
caution, as this globally resets all sessions. Alternatively, use the clear dot1x interface
<interface-name> command to clear targeted sessions. Both of these commands reset
hold timers and are useful for expediting reauthentication attempts after some change
is made and you are impatient to see whether it worked. A restart example is provided:

[edit protocols dot1x authenticator interface ge-0/0/8.0]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User
. . .
ge-0/09.0 Authenticator Authenticated 00:30:48:8D:7B:53 0030488d7b53

[edit protocols dot1x authenticator interface ge-0/0/8.0]
lab@sys-java33# run restart dot1x-protocol
Port based Network Access Control started, pid 7085

[edit protocols dot1x authenticator interface ge-0/0/8.0]
lab@sys-java33# run show dot1x interface
802.1X Information:
Interface Role State MAC address User

554 | Chapter 9: Port Security and Access Control

. . .
ge-0/0/9.0 Authenticator Connecting

This example shows that as a result of an 802.1X daemon restart, a formerly authen-
ticated client is transitioned back to the connection state, which forces a reauthentica-
tion attempt.

The successful RADIUS-based authentication of a non-responsive host concludes the
802.1X configuration and verification lab.

802.1X Port-Based Authentication Summary
EX platforms provide wide-ranging support for the IEEE 802.1X standard and offer
both port- and MAC-level access control to a switched network. In addition to various
EAP methods, you can support non-802.1X hosts using either local or RADIUS-based
MAC authentication.

Support is offered for single or multiple supplicants per port, with the ability to indi-
vidually authenticate each or allow others to ride on the coattails of the first authori-
zation. EX switches also support VSAs for dynamic firewall or VLAN assignment, to
include a guest VLAN concept that safely partitions users who fail authentication into
a specific VLAN with limited access.

Conclusion
EX switches offer a variety of Layer 2 security and port-level access controls. These
features help to ensure that only authorized users can access secured portions of your
network, and also guard against common attacks such as unauthorized DHCP services,
ARP poisoning, and IP address spoofing. When combined with Layer 2 security, built-
in Layer 3 firewall capabilities, and general JUNOS software robustness, it is clear that
you can deploy a hardened Layer 2/Layer 3 network based strictly on EX platforms
(and a RADIUS server, if desired).

Users who require deep packet inspection for real-time antivirus or intrusion detection
and prevention, or who need stateful services such as NAT or IP Security, will need to
augment their EX switches with other Juniper products that are designed for sophisti-
cated IP services or security-related functions.

Chapter Review Questions
1. Which is true regarding MAC limiting?

a. It is currently not supported because not learning all MAC addresses breaks
bridging

b. It can be based on an allowed list of MACs on a per-port basis

c. It can be based on an allowed MAC number, per port

Chapter Review Questions | 555

d. It is set on a VLAN basis, not on a port basis

e. Both B and C

2. Which is true about ARP inspection?

a. It requires a DHCP snooping database

b. It can operate without DHCP snooping

c. It prevents IP address spoofing

d. It is configured at the port rather than VLAN level

3. True or false: by default, all access links are considered trusted for DHCP.

4. Which of the following are configured on a VLAN basis?

a. ARP inspection

b. DHCP snooping

c. IP Source Guard

d. All of the above

5. Which of the following EAP methods are certificate-based?

a. MAC

b. EAP-MD5

c. EAP-TLS

d. All of the above

6. With regard to MAC authentication, which is true?

a. Setting MAC-based authorization automatically disables EAP

b. Local authentication is mandatory due to the lack of EAP on a non-responsive
client

c. Local authentication is always based on per-port databases

d. Local authentication is global and applies to all 802.1X-1X-enabled interfaces
unless constrained with the interface keyword

7. Which is the default supplicant mode?

a. Single

b. Single-secure

c. Multiple

d. None of the above

8. What is the difference between single and multiple supplicant modes?

a. Single supports only one client at any time

b. Multiple supports multiple clients but only when each has been authenticated

c. Multiple supports multiple clients but requires only one to be authenticated

d. Both A and B

556 | Chapter 9: Port Security and Access Control

9. What command clears EAP sessions on an interface?

a. clear eap interface <interface-name>

b. clear dot1x interface <interface-name>

c. clear interface dot1x <interface-name>

d. restart dot1x-protocol

10. What option allows you to move a supplicant to a particular VLAN when the
RADIUS server is unreachable?

a. guest-vlan

b. default-vlan

c. native-vlan

d. server-fail

Chapter Review Answers
1. Answer: E. MAC limits on the EX are port-level settings, not VLAN-level settings.

Failing to learn a MAC can result in flooding within the VLAN for that MAC, but
this is not precluded by any specification, and you could choose to disable the port
upon a violation if flooding is an issue. By limiting the number of MACs, you
prevent MAC table overflow and the potential for flooding of previously learned
addresses, which could pose a security or performance threat.

2. Answer: A. ARP inspection is based on the information contained in the DHCP
snooping database. It prevents ARP spoofing, not IP address spoofing. The latter
is still possible with a static ARP entry that would bypass the need for ARP. IP
Source Guard prevents IP address spoofing.

3. Answer: False. Access links are untrusted for DHCP by default. Trunk interfaces
are trusted by default. Use the dhcp-trusted setting at the [edit ethernet-switch
ing-options secure-access-port interface <interface-name>] hierarchy to per-
mit a DHCP server on an access link when you enable the DHCP snooping feature.

4. Answer: D. All of the features listed are set on a VLAN basis at the [edit ethernet-
switching-options secure-access-port vlan <vlan-name>] hierarchy.

5. Answer: C. Of the options listed, only EAP-TLS is certificate-based. In fact, MAC
authentication is not an EAP method at all!

6. Answer: D. MAC authorization can be local or via a RADIUS server and neither
method disables EAP methods on the related interface. The former bypasses
802.1X but allows other clients to use it, while the latter permits EAP unless the
restrict keyword is also added. When using local authentication, 802.1X is by-
passed for matching MACs on any 802.1X-enabled interface, unless you choose to
specify a list of allowed interfaces.

Chapter Review Answers | 557

7. Answer: A. The default mode is single, which permits multiple MAC addresses
once a single supplicant has been authorized.

8. Answer: B. Only B is correct. Single permits multiple clients but requires that only
one authenticate. Multiple mode requires each MAC to authenticate to provide
fine-grained control. The single-secure mode limits the interface to a single
supplicant.

9. Answer: C. Only C is correct. Restarting the dot1x process clears sessions on all
interfaces. Options A and B are not even real commands.

10. Answer: D. The server-fail options define how supplicants are handled when the
server becomes unreachable. A guest VLAN is a different concept and is used for
clients that fail to authenticate, but this implies that a RADIUS REJECT has been
received, so it does not qualify as a non-responsive server. The concepts of default
and native VLAN do not relate to access control.

558 | Chapter 9: Port Security and Access Control

CHAPTER 10

IP Telephony

This chapter covers IP telephony, which involves using IP to replace the traditional
private branch exchange (PBX) architecture, as well as extending IP all the way to the
handset. This chapter does not cover Voice over IP (VoIP). This distinction may initially
seem contradictory, so let’s define these terms. Voice over IP is the process for digitizing
your voice over a WAN connection in order to save costs. IP telephony is actually
changing the phone system in order to leverage IP protocols to enhance productivity,
usually in the form of IP phones and call managers. So, VoIP is actually a subset of IP
telephony, and a full IP telephony system will use VoIP concepts and protocols.

In order to deploy an IP telephony system, you need to configure your routers, switches,
phones, and call managers. This chapter focuses on the necessary switch configuration
and discusses the process for making a phone call over the LAN, as opposed to a LAN-
to-WAN phone call. The standards protocols for EX switches, as well as JUNOS soft-
ware features, will also be examined.

The topics covered in this chapter include:

• Deployment scenarios

• Power over Ethernet (PoE)

• Link Layer Discovery Protocol (LLDP)

• Link Layer Discovery Protocol-Media Endpoint Discovery (LLDP-MED)

• Voice virtual LANs (VLANs)

• Case studies

Deployment Scenarios
An IP phone can be deployed in several ways. Figure 10-1 shows the most common
scenario, in which the end station and phone attach to the same switch port. The phone
acts as a simple switch to connect the end host to the switch. The advantage of this
type of deployment is a high cost savings on switch ports. The disadvantage is possible
degradation of the voice call due to the bursty nature of the data traffic coming from

559

the end host. The problem compounds when multiple end hosts connect via the same
IP phone.

In order to circumvent this issue, voice traffic should be prioritized over data traffic to
ensure proper throughput, delay, and jitter. The most common way to accomplish this
is to separate the voice traffic and data traffic into different broadcast domains or
VLANs. You can do this by setting up a separate VLAN for the phone, called a voice
VLAN, and configuring the phone with the proper voice VLAN. The end host normally
sends untagged frames to the switch, which can reduce contention on the switch itself
by giving voice a higher priority, but does not prevent a large burst from affecting the
call.

Figure 10-1. Typical IP telephony deployment

Figure 10-2 shows a deployment scenario that can eliminate any chance that a data
burst will affect the call. This deployment allows the phone and the end host to each
have their own physical port on the switch. In this case, the host and the phone are
assigned into separate VLANs on the switch, which requires no configuration on the
phone or host, as they are automatically in the correct domain due to the separate
physical connection. For example, the switch can have an access VLAN of 100 config-
ured for the phone, and an access VLAN of 200 for the host.

Because of cost reduction design approaches that turn up in many networks, this con-
figuration is not common in enterprises today. Therefore, an alternative approach is to
place the phone and host in a voice VLAN and separate the traffic based on a tagged
or untagged frame. In other words, if the traffic is received from the phone as tagged,
it is placed in the voice VLAN; untagged traffic is placed in the data VLAN. This may
or may not require VLAN configuration of the IP phone, depending on the level of
LLDP-MED support (discussed later in this chapter).

QoS or CoS?
It is recommended that you deploy class of service (CoS) in your network in order to
achieve the proper quality of service (QoS) and prioritization for your voice calls. Even
if traffic is separated on the access switch, there could still be congestion on the distri-
bution, or on the core switch and router links.

560 | Chapter 10: IP Telephony

Figure 10-2. Dedicated port deployment

This chapter provides only a brief overview of CoS. For a detailed dis-
cussion of CoS, see Chapter 9 of JUNOS Enterprise Routing, by Doug
Marschke and Harry Reynolds (O’Reilly).

It is very common to hear the terms class of service and quality of service used inter-
changeably. This chapter reserves the term QoS for individual network parameters,
such as delay or loss probability, and uses CoS in a more granular fashion. CoS is the
combined effect of applying specific QoS parameters to a packet stream, which should
result in a service differentiation among the supported traffic classes in your network.

For example, consider going out to a club that has “VIP” or “table” service that is going
to differentiate you from the normal clubgoers, who get all dressed up but then have
to wait in line to get in—and actually go to the bar to get a drink. The club makes
money by charging extra for VIP service; you’re happier because the wait time to get
into the club (delay) is decreased; and the table service allows you to consistently refill
your expensive but bottomless drink (jitter). In the same way, QoS parameters help to
achieve a certain CoS (VIP or not), and the bouncers make it their job to enforce these
classes.

Here are the primary network QoS parameters:

Bandwidth
Bandwidth is a measure of each link’s information-carrying capacity, and is limited
by the lesser bandwidth amount supported between two endpoints.

Delay
Delay is a measure of the time taken to move a packet from one point to another.
End-to-end delay is a cumulative function of serialization delays, propagation
delays, and any queuing delays (buffering) that the packet may experience.

Deployment Scenarios | 561

http://oreilly.com/catalog/9780596514426/

Delay variation (jitter)
Delay variation, often called jitter, is a measure of the variance in transfer delays
between packets that make up a stream. Jitter is significant to real-time applications
because the receiver must dimension its jitter buffer based on maximum jitter,
which adds delays for all packets, and eventual loss when jitter values exceed buffer
capacity.

Loss
Loss measures the percentage of packets not delivered. Loss can stem from trans-
mission errors or can be due to discards stemming from congestion in packet-based
networks, or from packets that are received out of order.

Loss pattern
The loss pattern defines the nature of a loss event as either bursty (short duration)
or chronic, which is sometimes called a dribble error.

After deciding on QoS parameters, CoS is deployed on a switch using a variety of tools.

Figure 10-3 provides a big-picture view of the CoS processing stages associated with
the EX Series switch.

Figure 10-3. EX Series CoS processing stages

Our discussion begins with a packet arriving at the ingress interface. Here’s a descrip-
tion of the operation and general capabilities of each CoS stage that a packet encounters
as it makes its way from ingress to egress:

562 | Chapter 10: IP Telephony

• Ingress CoS processing:

Behavior aggregate classification
Packets arriving at the router are first subjected to the behavior aggregate (BA)
classification stage. This stage sets the forwarding class (FC) and packet loss
priority (PLP) using any of the supported BA classifier types, to include IP
precedence, DiffServ Code Points (DSCPs), IEEE 802.1p, and so on.

Multifield classification
The next processing stage is multifield classification. Here a firewall filter can
be defined to match against numerous packet fields, incoming interfaces, and
so on, to either set the FC and PLP or override the values set during previous
BA classification.

Ingress policing
When desired, a firewall policer can be applied to limit matching traffic, either
by discard, by reclassification, or by marking excess with a loss priority of high
(meaning in the event of congestion, a random early detection [RED] profile
can be used to more aggressively drop PLP high traffic).

• Egress CoS processing:

Rewrite marker
The rewrite marker stage allows you to alter one, or in some cases multiple,
packet fields, as the packet is transmitted to downstream nodes. Normally you
rewrite packet fields to accommodate downstream BA-based classification.
Rewrite markers are indexed by protocol family and by FC—for example,
writing a 001 pattern into the precedence field of all family inet packets that
are classified as Best Effort.

Queuing and scheduling
The queuing stage involves placing packet notifications into the corresponding
FC queue, where they are serviced by a scheduler that factors priority and
configured weight to determine when a packet should be dequeued from a
given queue.

RED/congestion control
The final CoS processing stage involves a weighted RED drop decision, based
on protocol, loss priority, and average queue fill level. RED tends to operate
at the head of the queue, and a RED decision is made against each packet
selected for transmission at the scheduler stage.

Table 10-1 describes some of the CoS features in an EX Series switch. This chapter uses
some of these features, but does not contain a full CoS discussion.

Deployment Scenarios | 563

Table 10-1. EX Series CoS features

Feature Description Notes

BA classification Classify packets based on DSCP, IP Prece-
dence, or 802.1p

Can assign a port to be in trust or untrust mode

FCs Map streams of packets to 1 of 16 FCs Default of four: Best Effort, Assured Forwarding,
Expedited Forwarding, or Network Control

Traffic policing Limit transmission rate of a class of traffic

Queuing and
scheduling

Place a packet into a queue and transmit Eight egress queues per port

Strict priority queues or shaped deficit-weighted
round-robin queues can be configured

Re-marking Rewrite outgoing packet CoS values 802.1p or DSCP

Deployment Scenarios Summary
This section looked at the deployment scenarios and the QoS mechanisms that should
be used in an IP telephony network. The most cost-effective model is to have data and
voice in the same port, and in order to avoid packet loss due to bursty traffic CoS
prioritization and scheduling are utilized. Next, let’s take a look at some more tools
that can be used in the IP telephony network, starting with Power over Ethernet.

Power over Ethernet
We discussed PoE capabilities for different EX Series platforms in Chapter 2. Recall
that PoE is a standard defined in 802.3af that delivers power over standard copper
Ethernet cable that is also delivering data. This technology allows various devices such
as Wireless Access Points (WAPs), video cameras, and point-of-sale devices to be pow-
ered. Most importantly for this chapter, PoE supplies power for many IP phones.

PoE defines two type of devices: power sourcing equipment (PSE) and powered devices
(PDs). For example, a PSE is a switch that provides power to a PD such as an IP phone.

The PoE standard defines different classes of attached devices that can require different
levels of power. This allows for better utilization and distribution of power capacity.
The classes are:

Class 0
15.4 watts reserved

Class 1
4 watts reserved

Class 2
7 watts reserved

Class 3
15.4 watts reserved

564 | Chapter 10: IP Telephony

Class 4
Reserved for future expansion

Line loss can reduce the total amount of received power by up to 15%
or 16%.

The default class is 0, and is used for any device that does not have a class defined. Also
of interest is the fact that Class 0 and Class 3 both have 15.4 watts reserved. The primary
difference is that only a device that supports 802.3af can be a Class 3 PD, whereas any
device can be a Class 0 PD.

When configuring a PoE device, you may have a limited amount of total system power
and want to distribute that power accordingly. This is often referred to as power man-
agement or a power budget. There are several ways to achieve power management:

• Statically define the amount of power on a given port.

• Dynamically have the system budget for the power actually consumed on the port.

• Allocate power on a port based on the class assignment (0 through 4).

• Allow PoE to run on only certain ports.

JUNOS Support for PoE
EX Series switch models provide either eight, 24, or 48 PoE ports while on AC power.
You can extend the total number of PoE ports for an EX Series switch by inserting
additional PoE cards if the power supply supports it.

There are three flavors of power supplies:

• 320-watt power supply, which supports eight PoE ports

• 600-watt power supply, which supports 24 PoE ports

• 930-watt power supply, which supports 48 PoE ports

However, if there is a switch that supports only eight PoE ports for the entire system,
a higher-watt power supply will not increase the number of PoE ports. Also, if there is
a mix of power supplies, the lowest watt value is always used by the system or in a
Virtual Chassis (VC) by the individual Line Card (LC).

To verify the power supply and PoE ports, issue a show chassis hardware command.
In this example, Ethanol has a 3,200-watt power supply and supports eight PoE ports:

lab@Ethanol> show chassis hardware
Hardware inventory:
Item Version Part number Serial number Description
Chassis BH0208188249 EX3200-24T
FPC 0 REV 07 750-021261 BH0208188249 EX3200-24T, 8 POE

Power over Ethernet | 565

 CPU BUILTIN BUILTIN FPC CPU
 PIC 0 BUILTIN BUILTIN 24x 10/100/1000 Base-T
Power Supply 0 REV 02 740-020957 AT0508131072 PS 320W AC
Fan Tray Fan Tray

Starting in JUNOS 9.2, you can configure power management as either static or class-
based, as discussed in the previous section. In class-based power management, the
maximum power is set by the class of the device. The default is static management, in
which each interface is allocated 15.4 watts as maximum power; however, you can
change this value with the maximum-power command:

lab@Ethanol# set poe interface ge-0/0/0 ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable PoE interface
 maximum-power Maximum power (0..15.4 watts)
 priority Priority options
> telemetries Telemetries settings
 | Pipe through a command
[edit]

You can also set priority values for an interface of either high or low for cases where
there is not enough power to supply all the ports. In this situation, a high-priority port
will stay active over a lower-priority port that could be shut down. So, the most
important devices—security devices, emergency phones, and so on—should receive
high priority:

lab@Ethanol# set poe interface ge-0/0/0 priority ?
Possible completions:
 high High priority
 low Low priority

The switch contains a controller that regulates the power for all the PoE ports; you can
view it with the show poe controller command. In this example, Ethanol has 130 watts
of power to use, and is using only 3 watts:

lab@Ethanol> show poe controller

Controller Maximum Power Guard band Management
index power consumption
 0 130 W 3W 0W Static

All PoE interfaces can be examined:

lab@Ethanol> show poe interface
Interface Admin status Oper status Max power Priority Power consumption Class
 ge-0/0/0 Enabled ON 15.4W Low 3.6W 0
 ge-0/0/1 Enabled OFF 15.4W Low 0.0W 0
 ge-0/0/2 Enabled OFF 15.4W Low 0.0W 0
 ge-0/0/3 Enabled OFF 15.4W Low 0.0W 0
 ge-0/0/4 Enabled OFF 15.4W Low 0.0W 0
 ge-0/0/5 Enabled OFF 15.4W Low 0.0W 0

566 | Chapter 10: IP Telephony

 ge-0/0/6 Enabled OFF 15.4W Low 0.0W 0
 ge-0/0/7 Enabled OFF 15.4W Low 0.0W 0

An individual PoE interface can be examined to view power consumption:

lab@Ethanol> show poe interface ge-0/0/0
PoE interface status:
PoE interface : ge-0/0/0
Administrative status : Enabled
Operational status : ON
Power limit on the interface : 15.4W
Priority : Low
Power consumed : 3.5W
Class of power device : 0

PoE interfaces can be difficult to troubleshoot: either the device works or it doesn’t.
However, you can configure telemetry to show the history of an interface’s power con-
sumption. In the following code, Ethanol is configured to poll power data every minute,
and to keep a log of entries for three hours, resulting in 180 total entries:

lab@Ethanol> show configuration poe
interface all {
 telemetries {
 interval 1;
 duration 3;
 }
}

In this case, a constant 3.5 watts is recorded every minute:

lab@Ethanol> show poe telemetries interface ge-0/0/0 all

Sl No Timestamp Power Voltage
 1 08-27-2008 17:51:25 UTC 3.5W 50.8V
 2 08-27-2008 17:50:25 UTC 3.5W 50.8V
 3 08-27-2008 17:49:25 UTC 3.5W 50.8V
 4 08-27-2008 17:48:25 UTC 3.5W 50.8V
 5 08-27-2008 17:47:25 UTC 3.6W 50.8V
 6 08-27-2008 17:46:25 UTC 3.5W 50.8V
 7 08-27-2008 17:45:25 UTC 3.6W 50.8V
 8 08-27-2008 17:44:25 UTC 3.5W 50.8V
 9 08-27-2008 17:43:25 UTC 3.5W 50.8V
 10 08-27-2008 17:42:25 UTC 3.5W 50.8V
 11 08-27-2008 17:41:25 UTC 3.5W 50.8V

PoE Summary
PoE is a fantastic tool that you can use for a variety of devices, including IP phones.
The support of the end device will be an important driver if PoE is successful and useful
in your network. However, with the port cost savings, it’s wise to purchase phones with
PoE support. Next, let’s examine Link Layer Discovery Protocol, a concept that is
probably very familiar to most people, though perhaps by a different name.

Power over Ethernet | 567

Link Layer Discovery Protocol
LLDP is a standards-based (IEEE 802.1AD) Layer 2 protocol that allows network de-
vices to advertise their major capabilities on the same LAN segment. This protocol was
modeled after proprietary protocols such as Cisco Discovery Protocol (CDP), Extreme
Discovery Protocol (EDP), and the little-used Nortel Discovery Protocol (NDP). The
information that is distributed is stored by its recipients in a standard Management
Information Base (MIB) that can be captured by Simple Network Management Protocol
(SNMP) for later analysis or topology creation.

LLDP is a one-way protocol, meaning that an LLDP agent can send and receive infor-
mation, but can never solicit information. Also, LLDP operates over a Layer 2 or Layer
3 interface in untagged mode, which enables the protocol to build a topology regardless
of any VLAN configuration.

LLDP sends its frames to a link local multicast address of 01-80-C2-00-00-OE, so frames
are never relayed to another connected neighbor. Figure 10-4 shows the LLDP frame.

Figure 10-4. LLDP frame

The LLDP Protocol Data Unit (PDU) contains device capabilities in the form of type
length values (TLVs), shown in Figure 10-5.

Figure 10-5. LLDP TLVs

Here are the four mandatory TLVs:

Chassis ID
Identifies the chassis end station. This can be identified in several ways, depending
on the chassis subtype, but the most common value is the Media Access Control
(MAC) address of the transmitting station.

568 | Chapter 10: IP Telephony

Port ID
Identifies the port component of the transmitting LLDP agent. As with the chassis,
a port can be identified in several ways. The most common value is the name of
the interface.

Time to Live (TTL)
Identifies the number of seconds that the recipient LLDP agent is to store the in-
formation. If this value is 0, it indicates that information associated with this system
should be deleted.

End of LLDD-PDU
A 2-octet, all-zero TLV that marks the end of the TLV sequence.

Some optional TLVs may also be included in the LLDP PDU:

Port description
Advertises the port description, which is an alphanumeric string with a maximum
of 256 characters.

System name
The name of the system, which is an alphanumeric string with a maximum of 256
characters. This is usually referred to as the hostname.

System description
Contains information about the software and current version.

System capabilities
Identifies the primary functions of the system and whether these primary functions
are enabled. Table 10-2 shows the possible capabilities.

Management address
Contains the IPv4 management address of the system.

Organizational-specific TLVs
Contain specific information defined by an organization such as IEEE or IETF, or
by a vendor. For example, VLAN IDs or maximum transmission units (MTUs) may
be advertised.

Table 10-2. System capabilities

Bit Capability Reference

0 Other N/A

1 Repeater RFC 2108

2 Bridge RFC 2674

3 WLAN access point 802.11

4 Router RFC 1812

5 Telephone RFC 2011

6 DOCSIS device RFCs 2669 and 2670

7 End station only RFC 2011

Link Layer Discovery Protocol | 569

Bit Capability Reference

8–15 Reserved N/A

LLDP sends periodic updates of these messages (the default is 30 seconds) to neigh-
boring devices. Also, if any information needs to be updated on the device, a “triggered”
update can be sent before the default transmit time. No authentication or acknowl-
edgment is defined in LLDP messages. LLDP messages are held in the receiver’s data-
base for a time of:

msgTxInterval × msgTxHold

The default in JUNOS software is 30 × 4, or 120 seconds.

JUNOS LLDP
To configure LLDP in JUNOS, enable an interface under [edit protocols lldp]:

lab@Ethanol# set protocols lldp ?
Possible completions:
 advertisement-interval Transmit interval for LLDP messages (5..32768 seconds)
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable LLDP
 hold-multiplier Hold timer interval for LLDP messages (2..10 seconds)
> interface Interface configuration
 lldp-configuration-notification-interval Time interval for LLDP notification
 ptopo-configuration-maximum-hold-time Hold time for physical topology
connection entries
 ptopo-configuration-trap-interval Interval for physical topology configuration
change trap
> traceoptions Trace options for LLDP
 transmit-delay Transmit delay time interval for LLDP messages (seconds)

The default configuration has all the interfaces enabled, as traceoptions can also be
configured for troubleshooting:

lab@Ethanol> show configuration protocols lldp
traceoptions {
 file lldp.log;
 flag all;
}
interface all;

A variety of show lldp commands are available. The first command that you should
run is the show lldp neighbors command. Ethanol has two neighbors in multiple in-
terfaces in Brandy and Bourbon. Since the port info has to be unique per LLDP message,
you see the option of the name of the interface or the SNMP index number for multiple
interfaces between neighbors:

lab@Ethanol> show lldp neighbors
LocalInterface Chassis Id Port info System Name
ge-0/0/2.0 00:1f:12:30:96:80 ge-0/0/5.0 Brandy

570 | Chapter 10: IP Telephony

ge-0/0/12.0 00:1f:12:30:96:80 142 Brandy
ge-0/0/8.0 00:1f:12:30:96:80 156 Brandy
ge-0/0/9.0 00:1f:12:30:96:80 157 Brandy
ge-0/0/3.0 00:1f:12:30:c4:80 ge-0/0/5.0 Bourbon
ge-0/0/12.0 00:1f:12:30:c4:80 143 Bourbon

You can view associated timers and supported TLVs with the detail switch. Notice
some of the additional 802 and MED TLVs that are supported in this system:

lab@Ethanol> show lldp detail

LLDP : Enabled
Advertisement interval : 30 seconds
Transmit delay : 2 seconds
Hold timer : 4 seconds
Notification interval : 5 Second(s)
Config Trap Interval : 60 seconds
Connection Hold timer : 300 seconds

LLDP MED : Enabled
MED fast start count : 3 Packets

Interface LLDP LLDP-MED Neighbor count
all Enabled Enabled 6

Interface Vlan-id Vlan-name
ge-0/0/2.0 0 default
ge-0/0/3.0 0 default
ge-0/0/8.0 0 default
ge-0/0/9.0 0 default
ge-0/0/12.0 0 default

LLDP basic TLVs supported:
Chassis identifier, Port identifier, Port description, System name, System
description, System capabilities, Management address.

Supported LLDP 802 TLVs:
Power via MDI, Link aggregation, Maximum frame size, Port VLAN tag, Port
VLAN name.

Supported LLDP MED TLVs:
LLDP MED capabilities, Network policy, Endpoint location, Extended power
Via MDI.

To examine the local information that is placed in the TLVs, use the local-
information switch:

lab@Ethanol> show lldp local-information

LLDP Local MIB details

Chassis ID : 00:1f:12:30:98:40
System name : Ethanol
System descr : Juniper Networks, Inc. ex3200-24t Espresso, version 9.2R1.9
 Build date: 2008-08-05 07:46:56 UTC

Link Layer Discovery Protocol | 571

Interface name Interface ID Interface description
me0.0 34 me0.0
ge-0/0/2.0 113 ge-0/0/2.0
ge-0/0/3.0 115 ge-0/0/3.0
ge-0/0/8.0 142 ge-0/0/8.0
ge-0/0/9.0 143 ge-0/0/9.0
ge-0/0/12.0 146 ge-0/0/12.0

All of this information is placed into MIBs that can be retrieved via SNMP. These MIBs
include the local MIB, neighbors MIB, neighbors management MIB, and neighbors
unknown MIB. Here’s an example of the neighbors MIB shown from Ethanol:

lab@Ethanol> show lldp neighbors-mib
chasidsubtyp portidsubtyp remote system description
capsup capenab
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC 40 8
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC 40 8
4 7 Juniper Networks, Inc. ex3200-24t Espresso, version
9.2R1.9 Build date: 2008-08-05 07:46:56 UTC

Finally, LLDP statistics can be viewed:

lab@Ethanol> show lldp statistics
Interface Received Unknown TLVs With Errors Transmitted Untransmitted
me0.0 0 0 0 197 1
ge-0/0/2.0 193 0 0 195 0
ge-0/0/3.0 194 0 0 195 0
ge-0/0/8.0 193 0 0 195 0
ge-0/0/9.0 193 0 0 195 0
ge-0/0/12.0 387 0 0 23155 0

The command show lldp statistics seems to have a strange field of
untransmitted frames. Due to the non-descriptive nature of this field,
the field has been changed to Discarded in later code.

LLDP Summary
LLDP is the standards-based approach to proprietary protocols such as CDP. LLDP
can be used for inventory, and to verify the connectivity and capabilities of LLDP
neighbors. LLDP by itself is a broad protocol, independent from IP telephony. How-
ever, the next section discusses some extensions to LLDP that connect its functionality
with IP telephony.

572 | Chapter 10: IP Telephony

LLDP with Media Endpoint Discovery
With so many IP telephony pieces and vendors available, it’s often difficult to ensure
that each device is configured and operating properly. This is usually done with some
type of manual configuration and discovery.

LLDP comes to the rescue with Media Endpoint Discovery, which is an LLDP extension
defined in TIA-1057. TIA-1057 was specifically written in order to support interoper-
ability and discovery between VoIP devices. These devices can include IP phones, gate-
ways, IP media servers, and so on.

LLDP-MED provides the following benefits:

Network policy discovery
Allows endpoints to advertise VLAN IDs and DSCP settings

PoE management
Allows endpoints to advertise their PoE requirements

Inventory management discovery
Stores all the relevant information (software, serial number, etc.) for inventory and
reporting purposes

Location discovery
Identifies the location of the IP phone on the switch port for E-911 services

Not all vendors support LLDP-MED. Examples of IP phones that support LLDP-MED
functionality include:

• Avaya 9600 series with firmware 1.2.1

• Avaya 9600 series with firmware 2.6

• Cisco phones (7609G, 7911G, 7931G, 7941G, 7945G, 7961G, 7965G, 7970G,
7971G, and 7975G)

• Nortel phones (1110, 1150, 1210, 1220, and 1230)

LLDP-MED is essentially additional TLVs that are advertised in a standard LLDP
message. So, all the LLDP features discussed previously are maintained. Essentially,
new TLVs are defined; here are some common LLDP-MED TLVs:

LLDP-MED capabilities
Define the capability of the IP telephony device and endpoint class. Class 1 is all
LLDP devices, Class 2 includes devices with IP media capabilities, and Class 3 is
end-user IP communications, such as a phone.

IEEE 802.3 MAC/PHY configuration/status
Advertises the LAN speed and duplex.

Extended power via MDI
Advertises the power requirements of the device.

LLDP with Media Endpoint Discovery | 573

Network policy
Contains VLAN IDs, Layer 2 priority values, or DSCP settings, as well as the
application type (see Table 10-3).

LLDP-MED location identification
Contains information for emergency call services (emergency location identifica-
tion number, or ELIN).

Inventory management
Contains information such as the hardware, firmware, and software version of the
devices, as well as serial number, manufacturer name, asset ID, and model name.

Table 10-3. Application types for network policy TLV

Value Value meaning Description

0 Reserved Reserved for future use

1 Voice Used for dedicated IP telephony handsets

2 Voice signaling Used for network topologies that require a different policy for voice signaling and media

3 Guest voice A limited feature set for guest users

4 Guest voice signaling Same as value 2 for the guest voice capability

5 Soft phone voice For soft phone applications such as PCs

6 Video conferencing Used for real-time dedicated video conferencing equipment

7 Streaming video Used for broadcast or multicast video content distribution

8 Video signaling Used for network topologies that require a different policy for video signaling and media

Finally, LLDP-MED works in conjunction with 802.1X, discussed in Chapter 9. When
802.1X is in effect, LLDP frames are advertised and processed only when the port is
authenticated. If an IP phone and a PC are connected on the same switch port,
authentication can happen separately. If only the IP phone or the PC is 802.1X-capable,
use single-supplicant mode.

LLDP-MED and JUNOS
A EX Series switch will automatically advertise LLDP-MED values if they receive LLDP-
MED TLVs. Initially, however, only LLDP TLVs are advertised, and the EX Series device
will toggle when it receives LLDP-MED TLVs (Figure 10-6).

To enable LLDP-MED, configure interfaces under [edit protocols lldp-med]:

lab@Ethanol# show protocols lldp-med
interface all;

574 | Chapter 10: IP Telephony

Figure 10-6. EX Series LLDP-MED behavior

To verify that LLDP-MED is enabled, use the detail switch:

lab@Ethanol> show lldp detail

LLDP : Enabled
Advertisement interval : 30 seconds
Transmit delay : 2 seconds
Hold timer : 4 seconds
Notification interval : 5 Second(s)
Config Trap Interval : 60 seconds
Connection Hold timer : 300 seconds

LLDP MED : Enabled
MED fast start count : 3 Packets

Interface LLDP LLDP-MED Neighbor count
all Enabled Enabled 6

Interface Vlan-id Vlan-name
ge-0/0/2.0 0 default
ge-0/0/3.0 0 default
ge-0/0/8.0 0 default
ge-0/0/9.0 0 default
ge-0/0/12.0 0 default

LLDP basic TLVs supported:
Chassis identifier, Port identifier, Port description, System name, System
description, System capabilities, Management address.

Supported LLDP 802 TLVs:
Power via MDI, Link aggregation, Maximum frame size, Port VLAN tag, Port
VLAN name.

Supported LLDP MED TLVs:
LLDP MED capabilities, Network policy, Endpoint location, Extended power
Via MDI.

LLDP with Media Endpoint Discovery | 575

One of the few settings that currently can be configured is the frequency at which LLDP-
MED advertisements are sent from the switch in the first second after it has detected
an LLDP-MED device. This can be modified with the fast-start knob:

[edit protocols lldp-med]
lab@Ethanol# set ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable LLDP
 fast-start Discovery count for MED (1..10)
> interface Interface configuration

You can also configure the location information that is advertised from the switch to
the LLDP-MED device:

[edit protocols lldp-med]
lab@Ethanol# set interface all ?
Possible completions:
 <[Enter]> Execute this command
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
 disable Disable LLDP
> location
 | Pipe through a command

The rest of the commands are the same as discussed in the LLDP section. Here is an
example of a sample LLDP message being sent to an IP phone that was captured with
the monitor traffic command:

07:18:17.250893 Out LLDP, length 245
 Chassis ID TLV (1), length 7
 Subtype MAC address (4): 0:1f:12:30:98:40
 Port ID TLV (2), length 4
 Subtype Local (7): 136
 Time to Live TLV (3), length 2: TTL 120s
 System Name TLV (5), length 7: Ethanol
 System Description TLV (6), length 96
 Juniper Networks, Inc. ex3200-24t Espresso, version 9.2R1.9 Build date:
2008-08-05 07:46:56 UTC
 Management Address TLV (8), length 24
 Management Address length 5, AFI IPv4 (1): 172.16.69.8
 Interface Index Interface Numbering (2): 34
 OID length 12\001\003\006\001\002\001\037\001\001\001\001"
 Port Description TLV (4), length 10: ge-0/0/0.0
 System Capabilities TLV (7), length 4
 System Capabilities [Bridge, Router] (0x0014)
 Enabled Capabilities [Bridge] (0x0004)
 Organization specific TLV (127), length 9: OUI IEEE 802.3 Private
(0x00120f)
 Link aggregation Subtype (3)
 aggregation status [supported], aggregation port ID 0
 Organization specific TLV (127), length 6: OUI IEEE 802.3 Private
(0x00120f)
 Max frame size Subtype (4)

576 | Chapter 10: IP Telephony

 MTU size 1514
 Organization specific TLV (127), length 6: OUI Ethernet bridged
(0x0080c2)
 0x0000: 0080 c201 0064
 Organization specific TLV (127), length 11: OUI Ethernet bridged
(0x0080c2)
 0x0000: 0080 c203 0000 0464 6174 61
 Organization specific TLV (127), length 12: OUI Ethernet bridged
(0x0080c2)
 0x0000: 0080 c203 0064 0576 6f69 6365
 Organization specific TLV (127), length 7: OUI ANSI/TIA
(0x0012bb)
 LLDP-MED Capabilities Subtype (1)
 Media capabilities [LLDP-MED capabilities, network policy, location
identification, extended power via MDI-PD] (0x0017)
 Device type [network connectivity] (0x04)
 Organization specific TLV (127), length 8: OUI ANSI/TIA
(0x0012bb)
 Network policy Subtype (2)
 Application type [voice] (0x01), Flags [Tagged]
 Vlan id 100, L2 priority 0, DSCP value 0 ^
 End TLV (0), length 0

LLDP-MED Summary
LLDP provides for a true plug-and-play voice solution. The capabilities of the IP
telephony devices can be advertised to the switch, which can make dynamic adjust-
ments. In turn, an IP phone can be automatically configured based on the information
it receives over the switch port in the LLDP-MED TLVs. The final piece of the puzzle
is to find an easy way to separate the voice and data traffic in order to provide reliable
QoS for the duration of a phone call.

Voice VLAN
An important step in IP telephony concerns separating the data traffic from the voice
traffic, especially in a deployment scenario such as the one depicted previously in
Figure 10-1. A feature called the voice VLAN can be used for this purpose. The voice
VLAN allows for tagged and untagged traffic to be accepted, and also allows you to
associate each type of traffic with distinct and separate VLANs. This helps to prioritize
voice traffic over data traffic and deploy CoS.

If LLDP-MED is used, the CoS implementation is greatly simplified, as the IP phones
will be dynamically associated with the appropriate voice VLAN as well as 802.1p
values based on the forwarding class settings. This essentially allows for plug-and-play
functionality. If LLDP-MED is not used, the configuration is more manual in nature.

First, define the voice VLAN and associated VLAN (see Chapter 5 for information on
VLAN configuration). This example also uses an FC called expedited-forwarding, so
that value will be sent to the IP phone if there is LLDP-MED support:

Voice VLAN | 577

ethernet-switching-options {
 voip {
 interface ge-0/0/0.0 {
 vlan voice;
 forwarding-class expedited-forwarding;
 }
 }
}

lab@Ethanol> show configuration vlans
voice {
 vlan-id 100;
}

Prior to 9.3, the TLV for DSCP and LLDP-MED did not exist. This is
tracked in PR 313953.

Next, apply the voice VLAN to the interface:

lab@Ethanol> show configuration interfaces ge-0/0/0
unit 0 {
 family ethernet-switching {
 vlan {
 members voice;
 }
 }

Then verify the configuration by examining the voice VLAN:

lab@Ethanol> show vlans voice detail
VLAN: voice, 802.1Q Tag: 100, Admin State: Enabled
Number of interfaces: 1 (Active = 1)
 Untagged interfaces: ge-0/0/0.0*
 Tagged interfaces: ge-0/0/0.0*

Case Studies
We will now examine a few quick case studies with a very simple topology, depicted
in Figure 10-7. Several phones are connected off Cisco switch Schnapps, and due to port
capacity issues, new phones are connected off Ethanol. The current call manager (Cisco
Express Call Manager) is connected off Rum. The goal is to make a phone call from the
IP phone at Ethanol to a phone located at Schnapps. It also should be noted that many
of the IP phones will have a PC connected to it at a later time. We will look at two
different scenarios off Ethanol. In the first scenario, LLDP-MED is not supported on
the phone, and in the second it is supported.

578 | Chapter 10: IP Telephony

Figure 10-7. IP telephony topology

Without LLDP-MED Support
First, let’s examine the current network and the VLANs that are being used. VLAN 100
is defined as the voice VLAN, in which all traffic for call setup and voice bearer traffic
is placed. VLAN 200 is used for all other non-voice-related traffic, and is called the data
VLAN. Rum is connected to the call manager for the IP telephony network. This is im-
plemented on a Cisco 2811 router running IOS 12.4(15)T4 using Call Manager Express
4.2. The call manager acts as the controller for the IP telephony network, controlling
the phone configuration, call routing, and call setup. In this network, it is also acting
as a Dynamic Host Configuration Protocol (DHCP) server to avoid any static IP address
configuration on the phone. The interface on Rum toward the call manager is configured
as an access port and assigned to the voice VLAN:

lab@Rum> show configuration interfaces ge-0/0/5
unit 0 {
 family ethernet-switching {
 port-mode access;

Case Studies | 579

 vlan {
 members voice;
 }
 }
}

For VLAN configurations and descriptions, please review Chapter 5.

Also, interface ge-0/0/4 toward Bourbon is configured as a trunk port to allow the voice
and data VLAN to be transmitted:

lab@Rum> show vlans
Name Tag Interfaces
data 200
 ge-0/0/4.0*
default
 ge-0/0/0.0, ge-0/0/1.0, ge-0/0/2.0, ge-0/0/3.0,
 ge-0/0/8.0
voice 100
 ge-0/0/4.0*, ge-0/0/5.0*

Walking through the topology, we can see that Bourbon’s VLANs are displayed. The
interfaces toward Rum and toward Schnapps (ge-0/0/6) are also configured as trunk
ports:

lab@Bourbon> show vlans
Name Tag Interfaces
data 200
 ge-0/0/2.0, ge-0/0/3.0*, ge-0/0/5.0*, ge-0/0/6.0*,
 ge-0/0/7.0
default
 ge-0/0/1.0, ge-0/0/4.0, ge-0/0/12.0
voice 100
 ge-0/0/3.0*, ge-0/0/5.0*, ge-0/0/6.0*

The interface toward Schnapps is configured as a trunk port because it will be receiving
data from the IP phones on the voice VLANs, as well as data from attached PCs.
Schnapps is a Cisco 3750 that supports PoE:

lab@Bourbon> show configuration interfaces ge-0/0/6
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [voice data];
 }
 }
}

580 | Chapter 10: IP Telephony

For completeness, the snippet of relevant interface configuration is also displayed for
Schnapps. Notice that the Fast Ethernet connection toward an IP phone is using the
same voice VLAN feature available in JUNOS:

interface FastEthernet1/0/1
 description Trunk Connection to Bourbon GE-0/0/5
 switchport trunk encapsulation dot1q
 switchport mode trunk
 spanning-tree portfast
!
interface FastEthernet1/0/2
 description Connection to VOIP-1
 switchport access vlan 200
 switchport voice vlan 100
 spanning-tree portfast
!
interface FastEthernet1/0/3
 switchport access vlan 200
 switchport mode access
 switchport voice vlan 100
 spanning-tree portfast
!
interface FastEthernet1/0/4
 switchport access vlan 200
 switchport mode access
 switchport voice vlan 100
 spanning-tree portfast
!
interface FastEthernet1/0/5
 switchport access vlan 200
 switchport mode access
 switchport voice vlan 100
 spanning-tree portfast
!
interface FastEthernet1/0/6
 switchport access vlan 200
 switchport mode access
 switchport voice vlan 100
 spanning-tree portfast

........

Plug-and-play solution without LLDP-MED

A Cisco 7960 phone is plugged into Ethanol’s ge-0/0/0 port. This phone does support
PoE and powers up fine, but the issue is that it does not support LLDP-MED, and is
auto-configured using a Cisco proprietary protocol. This protocol automatically con-
figures the VLAN tag that the phone should use to transmit frames. If the phone does
not receive this information, it will simply send untagged frames to the switch after a
timeout period. Since JUNOS does not support this proprietary protocol, the phone
must either be manually configured for the proper VLAN or configured as an access

Case Studies | 581

port in order to receive the untagged frames. The plug-and-play solution would be to
have no static configuration configured on the phone, and the port configured as an
access port in the voice VLAN:

lab@Ethanol> show configuration interfaces ge-0/0/0
unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members voice;
 }
 }
}

Looking at the switching table on Ethanol, we can see the local phone’s MAC address
of 00:06:53:56:a8:f3, learned over the access port. Also shown are other IP phones that
are being learned on the trunk port toward Bourbon:

lab@Ethanol> show ethernet-switching table
Ethernet-switching table: 8 entries, 6 learned
 VLAN MAC address Type Age Interfaces
 voice * Flood - All-members
 voice 00:06:53:56:a8:f3 Learn 0 ge-0/0/0.0
 voice 00:0f:1f:26:6b:9a Learn 0 ge-0/0/3.0
 voice 00:19:30:a3:51:a8 Learn 0 ge-0/0/3.0
 voice 00:22:bd:ab:70:83 Learn 0 ge-0/0/3.0
 voice 00:30:94:c3:2a:7a Learn 3:47 ge-0/0/3.0
 data * Flood - All-members
 data 00:22:bd:ab:70:83 Learn 0 ge-0/0/3.0

This solution works fine if there is no PC or other device connected behind the IP phone.
However, our design goal is to have a deployment such as the one in Figure 10-1, with
a PC and IP phone on the same switch port. In the current configuration, if a PC were
plugged into the phone attached to Ethanol, it would be mapped to the voice VLAN
instead of the data VLAN. This could cause less than desirable results, such as con-
nectivity issues and packet contention problems. The solution to this is to use the voice
VLAN feature and tag the frames that are transmitted from the phone.

Voice VLAN and IP phone configuration

In order to solve the problem with the previous example, the voice VLAN feature should
be implemented on Ethanol. This allows both untagged data traffic and tagged voice
traffic to be received on a single switch port. The first step is to configure the IP phone
for the proper VLAN. Without LLDP-MED, this will be a manual configuration on the
phone. On the Cisco 7960 phone, this requires setting the Admin VLAN to 100 by
using the menu and navigating to Networking Settings→Admin VLAN.

We configure the port toward the IP phone as an access port with the data VLAN,
which allows untagged frames from locally attached PCs to be received on the switch
port:

582 | Chapter 10: IP Telephony

lab@Ethanol> show configuration interfaces ge-0/0/0
unit 0 {
 family ethernet-switching {
 port-mode access;
 vlan {
 members data;
 }
 }
}

Next, configure the voice VLAN under [edit ethernet-switching-options]. In this
example, Ethanol’s ge-0/0/0.0 interface will be assigned the voice VLAN with a tag of
100. This allows a VLAN tag of 100 to be received on the same interface as untagged
frames. In addition, all VLAN 100 traffic will be classified into an FC called expedited-
forwarding, and the proper DSCP bits will be sent to the phone. However, without
LLDP-MED, this configuration is non-functional unless the phone accepts manual
DSCP code point settings (see the sidebar “CoS for Voice Network” on page 584):

lab@Ethanol> show configuration ethernet-switching-options
voip {
 interface ge-0/0/0.0 {
 vlan 100;
 forwarding-class expedited-forwarding;
 }
}

View the VLANs on Ethanol to verify that both the data and voice VLANs are assigned
to access port ge-0/0/0 and trunk port ge-0/0/3:

lab@Ethanol> show vlans
Name Tag Interfaces
data 200
 ge-0/0/0.0*, ge-0/0/3.0*, ge-0/0/7.0
default
 ge-0/0/2.0, ge-0/0/8.0, ge-0/0/9.0, ge-0/0/12.0
voice 100
 ge-0/0/0.0*, ge-0/0/3.0*

lab@Ethanol> show vlans voice detail
VLAN: voice, 802.1Q Tag: 100, Admin State: Enabled
Number of interfaces: 2 (Active = 2)
 Tagged interfaces: ge-0/0/0.0*, ge-0/0/3.0*

The MAC table on Ethanol now shows that tagged and untagged frames are being
received on ge-0/0/0:

lab@Ethanol> show ethernet-switching table
Ethernet-switching table: 9 entries, 7 learned
 VLAN MAC address Type Age Interfaces
 voice * Flood - All-members
 voice 00:06:53:56:a8:f3 Learn 0 ge-0/0/0.0
 voice 00:0f:1f:26:6b:9a Learn 0 ge-0/0/3.0
 voice 00:19:30:a3:51:a8 Learn 0 ge-0/0/3.0
 voice 00:22:bd:ab:70:83 Learn 0 ge-0/0/3.0
 voice 00:30:94:c3:2a:7a Learn 3:47 ge-0/0/3.0

Case Studies | 583

 data * Flood - All-members
 data 00:06:53:56:f8:b3 Learn 1:03 ge-0/0/0.0
 data 00:22:bd:ab:70:83 Learn 0 ge-0/0/3.0

A phone call is completed, and we see that MAC address 00:06:53:56:a8:f3 for the new
IP phone is learned on all the switches:

lab@Bourbon> show ethernet-switching table
Ethernet-switching table: 11 entries, 9 learned
 VLAN MAC address Type Age Interfaces
 data * Flood - All-members
 data 00:06:53:56:a8:f3 Learn 1:02 ge-0/0/5.0
 data 00:22:bd:ab:70:83 Learn 0 ge-0/0/6.0
 voice * Flood - All-members
 voice 00:03:e3:62:f4:7a Learn 0 ge-0/0/6.0
 voice 00:06:53:56:a8:f3 Learn 25 ge-0/0/5.0
 voice 00:0f:1f:26:6b:9a Learn 0 ge-0/0/6.0
 voice 00:19:30:a3:51:a8 Learn 0 ge-0/0/3.0
 voice 00:22:bd:ab:70:83 Learn 0 ge-0/0/6.0
 voice 00:30:94:c3:2a:7a Learn 0 ge-0/0/6.0
 voice 00:30:94:c3:2f:3e Learn 0 ge-0/0/6.0

lab@Rum> show ethernet-switching table
Ethernet-switching table: 11 entries, 9 learned
 VLAN MAC address Type Age Interfaces
 voice * Flood - All-members
 voice 00:06:53:56:a8:f3 Learn 0 ge-0/0/4.0
 voice 00:0f:1f:26:6b:9a Learn 0 ge-0/0/4.0
 voice 00:19:30:a3:51:a8 Learn 0 ge-0/0/5.0
 voice 00:22:bd:ab:70:83 Learn 0 ge-0/0/4.0
 voice 00:30:94:c3:2a:7a Learn 0 ge-0/0/4.0
 voice 00:30:94:c3:2f:14 Learn 0 ge-0/0/4.0
 voice 00:30:94:c3:2f:3e Learn 0 ge-0/0/4.0
 data * Flood - All-members
 data 00:06:53:56:a8:f3 Learn 29 ge-0/0/4.0
 data 00:22:bd:ab:70:83 Learn 0 ge-0/0/4.0

This is verified from the call manager log as the local phone 7502 calls phones 7503,
7504, and 7505:

Reports > Call History
ID Start Time Originating Number Terminating Number Duration
1 18:29:11 EDT Sat Apr 18 2009 7502 7503 <Unknown>
2 18:29:15 EDT Sat Apr 18 2009 7502 7504 <Unknown>
3 18:29:18 EDT Sat Apr 18 2009 7502 7505 <Unknown>

CoS for Voice Network
It is recommended that CoS be deployed in your IP telephony network in order to
prioritize voice traffic over data traffic. You do this by placing your voice traffic into a
separate FC and then prioritizing that FC appropriately. If you are using the LLDP-
MED feature, DSCP markings can be advertised to the phone during the voice VLAN
configuration. This still requires a BA classifier or multifield classifier to map the pack-
ets coming from the phone to the correct FC.

584 | Chapter 10: IP Telephony

First, create a classifier that maps bits to an FC:

class-of-service {
 classifiers {
 dscp test {
 import default;
 forwarding-class expedited-forwarding {
 loss-priority low code-points 101110;
 loss-priority high code-points
101111;
 }
 }

Next, advertise those bit markings to the IP phone:

lab@Ethanol> show configuration ethernet-switching-options
voip {
 interface ge-0/0/0.0 {
 vlan 100;
 forwarding-class expedited-forwarding;
 }
}

Then apply the classifier to the incoming interface:

 interfaces {
 ge-0/0/0 {
 unit 0 {
 classifiers {
 dscp test;
 ieee-802.1 test;
 }

However, if you are not using LLDP-MED, the DSCP settings will not be sent to the
phone. Traffic can still be classified using either a BA classifier or a multifield classifier
with a firewall filter. In this case, the phone must accept manual DSCP settings, or you
must match on the default values. Most phones that use Skinny Call Control Protocol
(SCCP) packets will be marked CS3 or AF31, whereas voice Real-time Transport Pro-
tocol (RTP) packets will be marked EF. However, any standard firewall filter match
criteria can work in a multifield (MF) classifier. The result should be that voice traffic
is mapped to a separate FC, as seen in queue 5 from Ethanol:

lab@Ethanol> show interfaces queue ge-0/0/3
Physical interface: ge-0/0/3, Enabled, Physical link
is Up
 Interface index: 132, SNMP ifIndex: 114
Forwarding classes: 16 supported, 4 in use
Egress queues: 8 supported, 4 in use
Queue: 0, Forwarding classes: best-effort
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 13623
0 pps
 Bytes : 2998056
0 bps
 Tail-dropped packets : 0
0 pps
Queue: 1, Forwarding classes: assured-forwarding

Case Studies | 585

 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 0
0 pps
 Bytes : 0
0 bps
 Tail-dropped packets : 0
0 pps
Queue: 5, Forwarding classes: expedited-forwarding
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 512
0 pps
 Bytes : 109378
0 bps
 Tail-dropped packets : 0
0 pps
Queue: 7, Forwarding classes: network-control
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 0
0 pps
 Bytes : 0
0 bps
 Tail-dropped packets : 0
0 pps

The following code snippet shows a very basic CoS configuration for the egress inter-
face. This is displayed just as a syntax example:

lab@Ethanol> show configuration class-of-service
interfaces {
 ge-0/0/3 {
 scheduler-map VOIP;
 }
}
scheduler-maps {
 VOIP {
 forwarding-class best-effort scheduler be;
 forwarding-class expedited-forwarding
scheduler ef;
 forwarding-class network-control scheduler
nc;
 }
}
schedulers {
 ef {
 transmit-rate percent 10;
 priority low;
 }
 be {
 transmit-rate remainder;
 priority low;
 }
 nc {
 transmit-rate percent 5;
 priority low;

586 | Chapter 10: IP Telephony

 }
}

With LLDP-MED Support
For a true plug-and-play effect, it’s best if the IP phone has LLDP-MED support. Here,
the phone in the previous example is replaced by a Cisco G7960 with LLDP-MED
support. Once the phone is plugged in, it is automatically recognized as an LLDP
neighbor with LLDP-MED support:

lab@Ethanol> show lldp neighbors
LocalInterface Chassis Id Port info System Name
ge-0/0/3.0 00:1f:12:30:c4:80 ge-0/0/5.0 Bourbon
ge-0/0/0.0 0.0.0.0 SW PORT SEP001193123586.cisco.com

You can view the details of the phone in the lldp neighbors interface command. This
command includes important data such as capabilities, software versions, and model
numbers:

lab@Ethanol> show lldp neighbors interface ge-0/0/0.0
LLDP Neighbor Information:
Index: 10 Time to live: 180 Time mark: Sun Sep 7 02:31:48 2008 Age: 35 secs
Local interface : ge-0/0/0.0
Chassis type : Network address
Chassis ID : 0.0.0.0
Port type : Locally assigned
Port ID : 001193123586:P1
Port description : SW PORT
System name : SEP001193123586.cisco.com
System description : Cisco IP Phone CP-7970G,V, SCCP70.8-3-3SR2S

System capabilities
 Supported: Bridge Telephone
 Enabled : Bridge Telephone
Media endpoint class: Class III Device
MED Firmware revision : 7970_64060118.bin
MED Software revision : SCCP70.8-3-3SR2Sn
MED Serial number : INM08281G3T3SR2
MED Manufacturer name : Cisco Systems, Inc.
MED Model name : CP-7970Gstem
MED Asset id : CP-7

The phone then receives the settings based on the following configuration:

lab@Ethanol> show configuration ethernet-switching-options
voip {
 interface ge-0/0/0.0 {
 vlan 100;
 forwarding-class expedited-forwarding;
 }
}

Case Studies | 587

This configuration sends traffic via VLAN 100, using DSCP values that correspond to
the EF class. This is seen in the following monitor traffic command (it should be noted
that the switch was upgraded to 9.5R1.8 for this capture):

MD autoneg capability [10BASE-T hdx, 10BASE-T fdx, 100BASE-TX hdx, 100BASE-TX fdx,
Asym and Sym PAUSE for fdx, 1000BASE-{X LX SX CX} fdx, 1000BASE-T fdx] (0xa836)
 MAU type Unknown (0x0000)
 Organization specific TLV (127), length 7: OUI IEEE 802.3 Private
(0x00120f)
 Power via MDI Subtype (2)
 MDI power support [PSE, enabled], power pair signal, power class class2
 Organization specific TLV (127), length 9: OUI IEEE 802.3 Private
(0x00120f)
 Link aggregation Subtype (3)
 aggregation status [supported], aggregation port ID 0
 Organization specific TLV (127), length 6: OUI IEEE 802.3 Private
(0x00120f)
 Max frame size Subtype (4)
 MTU size 1514
 Organization specific TLV (127), length 6: OUI Ethernet bridged (0x0080c2)
 0x0000: 0080 c201 00c8
 Organization specific TLV (127), length 16: OUI Juniper (0x009069)
 0x0000: 0090 6901 4248 3032 3038 3138 3832 3439
 Organization specific TLV (127), length 11: OUI Ethernet bridged (0x0080c2)
 0x0000: 0080 c203 00c8 0464 6174 61
 Organization specific TLV (127), length 12: OUI Ethernet bridged (0x0080c2)
 0x0000: 0080 c203 0064 0576 6f69 6365
 Organization specific TLV (127), length 7: OUI ANSI/TIA (0x0012bb)
 LLDP-MED Capabilities Subtype (1)
 Media capabilities [LLDP-MED capabilities, network policy, location
identification, extended power via MDI-PD] (0x0017)
 Device type [network connectivity] (0x04)
 Organization specific TLV (127), length 7: OUI ANSI/TIA (0x0012bb)
 Extended power-via-MDI Subtype (4)
 Power type [PSE device], Power source [PSE - primary power source]
 Power priority [low] (0x03), Power 4.9 Watts
 Organization specific TLV (127), length 8: OUI ANSI/TIA (0x0012bb)
 Network policy Subtype (2)
 Application type [voice] (0x01), Flags [Tagged]
 Vlan id 100, L2 priority 4, DSCP value 46
 End TLV (0), length 0

Verify that the phone and call manager are communicating before the call by examining
the keepalives to and from the phone:

CME#debug ephone keepalive
EPHONE keepalive debugging is enabled
CME#
Apr 23 03:24:11.149: ephone-5 If FastEthernet0/0 ETHERNET 200.2.2.8 via ARP
Apr 23 03:24:11.149: ephone-5[4][SEP003094C32A7A]:Keepalive socket[4]
SEP003094C32A7A
CME#
Apr 23 03:24:12.337: ephone-4 If FastEthernet0/0 ETHERNET 200.2.2.7 via ARP
Apr 23 03:24:12.337: ephone-4[5][SEP003094C32F14]:Keepalive socket[5]
SEP003094C32F14

588 | Chapter 10: IP Telephony

CME#
CME#
Apr 23 03:24:29.429: ephone-3 If FastEthernet0/0 ETHERNET 200.2.2.12 via ARP
Apr 23 03:24:29.429: ephone-3[1][SEP003094C32F3E]:Keepalive socket[1]
SEP003094C32F3E
Apr 23 03:24:29.653: ephone-7 If FastEthernet0/0 ETHERNET 200.2.2.13 via ARP
Apr 23 03:24:29.653: ephone-7[3][SEP0003E362F47A]:Keepalive socket[3]
SEP0003E362F47A
CME#
Apr 23 03:24:41.145: ephone-5 If FastEthernet0/0 ETHERNET 200.2.2.8 via ARP
Apr 23 03:24:41.145: ephone-5[4][SEP003094C32A7A]:Keepalive socket[4]
SEP003094C32A7A
CME#
Apr 23 03:24:42.333: ephone-4 If FastEthernet0/0 ETHERNET 200.2.2.7 via ARP
Apr 23 03:24:42.333: ephone-4[5][SEP003094C32F14]:Keepalive socket[5] SEP00

A phone call is made (trust us on that), and the traffic is mapped to the EF class based
on a BA classifier. In this case, we decided to use a DSCP and IEEE-802.1 classifier.
Our phone used only the IEEE-802.1 settings when receiving both bit markings in
LLDP-MED, but this may change based on phone model. Normally, we would just
send the DSCP settings and use the proper DSCP classifier:

interfaces {
 ge-0/0/0 {
 unit 0 {
 classifiers {
 dscp test;
 ieee-802.1 test;
 }
 }
 }

lab@Ethanol> show interfaces queue ge-0/0/3
Physical interface: ge-0/0/3, Enabled, Physical link is Up
 Interface index: 132, SNMP ifIndex: 164
Forwarding classes: 16 supported, 4 in use
Egress queues: 8 supported, 4 in use
Queue: 0, Forwarding classes: best-effort
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 454
 Bytes : 53163
 Tail-dropped packets : 0
Queue: 1, Forwarding classes: assured-forwarding
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 0
 Bytes : 0
 Tail-dropped packets : 0
Queue: 5, Forwarding classes: expedited-forwarding
 Queued:
 Packets : Not Available
 Bytes : Not Available

Case Studies | 589

 Packets : 2091
 Bytes : 463790
 Tail-dropped packets : 0
Queue: 7, Forwarding classes: network-control
 Queued:
 Packets : Not Available
 Bytes : Not Available
 Packets : 347
 Bytes : 96989
 Tail-dropped packets : 0

Case Study Summary
We examined two case studies, one in which the IP phone supported LLDP-MED, and
another in which LLDP-MED was supported on the end device. LLDP-MED provides
true plug-and-play support, with no configuration needed on the IP phone. Without
LLDP-MED, some manual configuration is required on the phone, but nothing too
complex.

Conclusion
IP telephony can no longer be considered an immature technology—many offices
around the world have IP phones on their desks. In fact, most people don’t realize that
their office utilizes IP telephony due to the improved voice quality, compression tech-
niques, and ease of use. For years, IP telephony solutions were proprietary solutions,
but the standards organizations have taken charge, creating features such as Power over
Ethernet, LLDP-MED, and IP signaling protocols. With any luck, when you deploy
your IP telephony network, all you will have to do is plug it in.

Chapter Review Questions
1. What is the most common IP telephony deployment scenario?

a. IP phone plugged into a PC

b. IP phone and PC plugged into different switch ports

c. IP phone and PC plugged into the same switch port

d. IP phone plugged into an IP gateway

2. What type of power management scheme allows for different wattage based on the
type of device?

a. Static

b. Class

c. Random

d. Policy

590 | Chapter 10: IP Telephony

3. True or false: every Ethernet port on an EX is PoE-capable by default.

4. In which layer does LLDP operate?

a. Layer 2

b. Layer 3

c. Layer 4

d. Layer 5

5. Which TLVs are valid for LLDP? (Choose two.)

a. Port ID

b. Router ID

c. System ID

d. Protocols supported

6. What is the primary goal of LLDP-MED?

a. To adjust the BGP metric of IP phones

b. To signal the existence of a phone to a call manager

c. To discover the capabilities of an IP endpoint

d. To provide a secure and encrypted neighbor discovery protocol

7. Which JUNOS feature allows the use of tagged and untagged frames on the same
interface?

a. Trunk mode

b. Access mode

c. Promiscuous mode

d. Voice VLAN

8. When does an EX Series switch begin to send out LLDP-MED frames?

a. As soon as LLDP-MED is configured

b. When it receives an LLDP-MED TLV

c. When the voice VLAN is configured

d. When an RTP message is received

9. Where is the voice VLAN ID configured?

a. [edit vlans]

b. [edit ethernet-switching-options]

c. [edit interfaces]

d. [edit voice]

10. What are two ways to classify incoming packets in JUNOS software?

a. BA classifiers

b. Rewrite rule

Chapter Review Questions | 591

c. Scheduler

d. Multifield classifier

e. IP classifier

11. How do you make a non-LLDP-MED phone work with an EX Series switch?

a. You can’t

b. Configure the switch port as a trunk port

c. Configure the switch port and an access port

d. Plug the phone into a PC

12. Which command displays LLDP-MED information received from an IP phone?

a. show lldp-med detail

b. show lldp neighbors interface <interface-name>

c. show voice lldp

d. show lldp-med database

Chapter Review Answers
1. Answer: C. The most common and port-cost-efficient model is to plug the IP phone

and PC into the same switch port. This is accomplished by using the data port on
the IP phone and then plugging the IP phone into the switch port.

2. Answer: B. The class of device can determine the amount of power that can be
assigned to a port.

3. Answer: C. Ah, a trick question. The number of PoE ports that can be supported
depends on the card and power supply type.

4. Answer A. LLDP is a Layer 2, Data Link layer protocol.

5. Answer: A, C. These are two of the many TLVs that may be sent in an LLDP
message.

6. Answer: C. LLDP-MED is an endpoint discovery protocol, which is used to learn
the capabilities of an endpoint. This information could then be used to configure
the device.

7. Answer: D. The voice VLAN feature allows for tagged and untagged frames to be
received on the same port. This is usually reserved for use by an IP phone that is
tagging packets and a PC that is sending untagged frames.

8. Answer: B. EX Series switches do not automatically advertise LLDP-MED infor-
mation until they receive LLDP-MED information from an LLDP neighbor.

9. Answer: B. The voice VLAN is configured under [edit ethernet-switching-
options] and not at the VLAN or interface level, like other VLAN configurations.

10. Answer: A, D. BA classifiers can classify packets based on 802.1p, DSCP, or IP
precedence bits. A multifield classifier uses any field available in a firewall filter.

592 | Chapter 10: IP Telephony

11. Answer: C. One option is to configure the switch as an access port to allow the
phone to send untagged frames. This removes any configuration requirements on
the phone itself; however, it does not provide data traffic separation if a PC is also
attached to the switch port.

12. Answer: B. There are no specific LLDP-MED commands, so standard LLDP com-
mands should be used to view the LLDP-MED information. This is seen most easily
by viewing a particular interface.

Chapter Review Answers | 593

CHAPTER 11

High Availability

High Availability (HA) has been a hot topic ever since two devices were networked
together over a piece of barbwire. What happens if the wire breaks? What is the backup
plan, and how long will it take to solve a problem? That’s the essence of High Availa-
bility: ensuring some level of reliability and redundancy. One of the difficult elements
of HA is measuring the success of and understanding all the components involved. Is
HA measured on a time factor, a packet loss, or a delay? The answer is all of the above,
so when 99% reliability is advertised, you must look at the factors that go into the
calculation of that measurement. To look at a non-network example, imagine you own
a bar in San Francisco that makes top-notch margaritas.* You need to ensure that the
drink tastes the same each time it is served. This requires the ingredients to be readily
available and consistent. Some of the factors that could affect a margarita include:

• Type of tequila

• Number of fresh limes

• Amount of agave nectar

Many of these items can be quantitatively measured; we could say that if all the ingre-
dients are measured and are available every day, 99% of the time the drink should taste
the same. However, could any other factors affect the taste? The quality of the lime, for
instance, or the quality of the agave nectar? Perhaps the type of food the person was
eating at the same time could affect the taste. These variables could significantly lower
that 99% value. The point is, just as you think you have a total grasp on HA, another
wrench is thrown into the puzzle that may affect your measurements. The lesson
learned: be aware of the factors that are measured when one vendor claims 99.99999%
HA while another claims 99.99%. Is it really an apples-to-apples comparison?

Let’s stagger out of the bar for a bit and look at the EX Series switch and its place in
network HA. Remember, a switch is just one component of a network, and even if the
switch locally fails to another link in subseconds, it does no good if the spanning tree

* Maybe one at 1824 Irving Street. Of course, this is all hypothetical.

595

takes 30 seconds for the coverage of traffic to that link. Therefore, always treat HA as
a network measurement with many individual parts.

On an EX Series switch, HA can be achieved by offering redundant hardware, a JUNOS
software feature, or new protocol features. We will examine all of these pieces in this
chapter.

HA is a very large topic that should really have more than a chapter—
more like an entire book. Luckily, such a book exists; see JUNOS High
Availability, by James Sonderegger et al. (O’Reilly), for more informa-
tion.

The topics covered in this chapter include:

• Hardware redundancy

• Bidirectional Forwarding Detection (BFD)

• Aggregated Ethernet (AE)

• Virtual Router Redundancy Protocol (VRRP)

• In-Service Software Upgrades (ISSU)

Hardware Redundancy
As we discussed in many of the chapters in this book, there are many redundant hard-
ware components in EX3200 and EX4200–8200 series switches. See Table 11-1 for a
quick summary.

Table 11-1. Redundant hardware components

Switch series Redundant power Fans Redundant RE

3200 Yes (RPS) No No

4200 Yes Yes Yes (VC)

8200 Yes Yes Yes

The EX3200 is the smallest of the EX Series switches and, thus, does not require as
much hardware redundancy. In the base model, it supports a single field-replaceable
power supply unit (PSU) and a fan tray with a single blower. However, you can also
use an optional remote power supply (RPS) to provide redundant power.

The EX4200 supports redundant load-sharing PSUs and a multiblower fan module,
both of which can be hot-swapped in the field. As with the EX3200, the remote PSU
option is also supported on the EX4200 for added redundancy.

The EX8200 series switches offer fully redundant routing engines (REs), switching fab-
ric, power supplies, and cooling to maximize reliability and uptime.

596 | Chapter 11: High Availability

http://oreilly.com/catalog/9780596523046/
http://oreilly.com/catalog/9780596523046/

The EX8208 provides two switch fabric/RE slots. The EX8208 uses a single fan tray
that provides side-to-side airflow with redundant multispeed fans. It also contains a
whopping six power supply bays, located on the front of the chassis base. Each AC
power supply delivers 2,000 watts of power at high-line (12 A at 200–240 V) or 1,200
watts at low-line (15 A at 100–120 V). The actual number of power supplies required
depends on the combination of Line Cards (LCs) installed and the desired level of
redundancy. For example, 6,000 watts is required to support a chassis that is fully
populated with sixty-four 10 Gigabit Ethernet (GE) ports, whereas 3,600 watts will
support various 10 Gigabit Ethernet and Gigabit Ethernet LC combinations. At the
time of this writing, a redundant RE chassis requires 1,400 watts of power and an eight-
port 10 GE SFP + LC requires 880 watts. Consult the latest Juniper documentation for
updated power consumption values.

The EX8216 also has two route engine slots on the front of the chassis and six power
supply bays at the front base of the chassis. However, it also incorporates two fan trays
(side-to-side airflow).

Routing Engine Failover
The 4200 and 8200 switches support redundant REs. The 8200 supports a redundant
SRE in the same chassis, and the 4200 supports RE redundancy in a Virtual Chassis
(VC) configuration.

Recall that in a VC, the master acts as the master RE, and the backup acts as the backup
RE. The master RE, which is in the master of the VC, has full control over the VC
configuration. The backup RE is in the backup of the VC configuration. Depending on
the configuration, it stays in sync with the master RE in terms of protocol states, for-
warding tables (FTs), and so forth. If the master becomes unavailable, the backup RE
takes over the functions that the master RE performs.

As seen in this capture, the RE in slot 0 is the master RE for Vodkila:

lab@Vodkila> show chassis routing-engine
Routing Engine status:
 Slot 0:
 Current state Master
 Temperature 43 degrees C / 109 degrees F
 DRAM 1024 MB
 Memory utilization 19 percent
 CPU utilization:
 User 11 percent
 Kernel 21 percent
 Interrupt 0 percent
 Idle 67 percent
 Model EX4200-24T, 8 POE
 Serial ID BM0208269834
 Start time 2005-01-24 10:05:37 UTC
 Uptime 3 days, 10 hours, 32 minutes, 5 seconds
 Load averages: 1 minute 5 minute 15 minute
 0.30 0.25 0.17

Hardware Redundancy | 597

Routing Engine status:
 Slot 1:
 Current state Backup
 Temperature 40 degrees C / 104 degrees F
 DRAM 1024 MB
 Memory utilization 21 percent
 CPU utilization:
 User 9 percent
 Kernel 2 percent
 Interrupt 0 percent
 Idle 88 percent
 Model EX4200-24T, 8 POE
 Serial ID BM0208269767
 Start time 2005-01-24 10:05:38 UTC
 Uptime 3 days, 10 hours, 32 minutes, 4 seconds
 Load averages: 1 minute 5 minute 15 minute
 0.39 0.20 0.12

To connect to the backup RE, you can use either the Out of Band (OoB) management
interface, if configured, or an internal channel. In this case, we are using the internal
channel to connect to the backup RE:

lab@Vodkila> request session member 1
€
--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC

lab@Vodkila-fpc1-BK>

Now is a good time to chat about what it really means to be the backup RE. By default,
without any configuration, the backup RE is just waiting around to become the master
in case of a failure. The backup does not run all processes and does not pull information
from the Packet Forwarding Engine (PFE), so information such as PFE interfaces and
chassis components is not available. In a failover scenario, the new RE would have to
connect to the PFE, causing a reset and flush of all the memory tables that are used for
forwarding:

lab@Vodkila-fpc1-BK> show chassis routing-engine

lab@Vodkila-fpc1-BK> show chassis hardware
Aborted! This command can only be used on the master routing engine.
lab@Vodkila> show interfaces terse
Interface Admin Link Proto Local Remote
vcp-255/1/0 up up
vcp-255/1/0.32768 up up
vcp-0 up up
vcp-0.32768 up up
vcp-1 up up
vcp-1.32768 up up
bme0 up up
bme0.32768 up up inet 128.0.0.17/2
 128.0.0.32/2
 tnp 0x11
bme0.32770 down up eth-switch
dsc up up

598 | Chapter 11: High Availability

gre up up
ipip up up
lo0 up up
lo0.0 up up inet 10.10.1.3 --> 0/0
lsi up up
me0 up up
me0.0 up up eth-switch
mtun up up
pimd up up
pime up up
tap up up

This causes default failover time to be much longer than usually desired, as the RE will
have to connect to the PFE. This time increases if the RE has to restart any protocols,
such as Open Shortest Path First (OSPF) or Rapid Spanning Tree Protocol (RSTP), that
are running on the switch. We will discuss improvements to this later in this chapter.
But first, let’s start with a basic scenario.

Default Failover Layer 2
In our first scenario, we have Vodkila configured as a VC, and we are narrowing our
focus between Scotch and Host1. Vodkila is in pure Layer 2 mode and Scotch is acting
as the default gateway (200.2.2.254) for Host1 (Figure 11-1).

Figure 11-1. Layer 2 default RE switchover

Vodkila does not have any special configuration, so it’s using the default parameters.
This means if a failover of the primary RE occurs, the backup will have to connect to
the PFE and re-create the tables. As a test, a ping is issued from Scotch to Host1. A
failover is initiated on Vodkila using the request chassis RE master switch command.
Here’s the result:

Hardware Redundancy | 599

lab@Scotch> ping 200.2.1.1 count 100
PING 200.2.1.1 (200.2.1.1): 56 data bytes
64 bytes from 200.2.1.1: icmp_seq=0 ttl=255 time=5.218 ms
64 bytes from 200.2.1.1: icmp_seq=1 ttl=255 time=39.622 ms
64 bytes from 200.2.1.1: icmp_seq=2 ttl=255 time=3.416 ms
64 bytes from 200.2.1.1: icmp_seq=3 ttl=255 time=3.426 ms
64 bytes from 200.2.1.1: icmp_seq=4 ttl=255 time=3.440 ms
64 bytes from 200.2.1.1: icmp_seq=5 ttl=255 time=3.440 ms
64 bytes from 200.2.1.1: icmp_seq=6 ttl=255 time=3.441 ms
64 bytes from 200.2.1.1: icmp_seq=7 ttl=255 time=10.293 ms
64 bytes from 200.2.1.1: icmp_seq=8 ttl=255 time=3.447 ms
64 bytes from 200.2.1.1: icmp_seq=9 ttl=255 time=3.419 ms
64 bytes from 200.2.1.1: icmp_seq=10 ttl=255 time=3.452 ms
64 bytes from 200.2.1.1: icmp_seq=11 ttl=255 time=32.833 ms
64 bytes from 200.2.1.1: icmp_seq=12 ttl=255 time=3.413 ms
64 bytes from 200.2.1.1: icmp_seq=13 ttl=255 time=4.952 ms
64 bytes from 200.2.1.1: icmp_seq=14 ttl=255 time=3.412 ms
36 bytes from 172.16.9.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 4c68 0 0000 3f 01 b124 172.16.9.9 200.2.1.1

36 bytes from 172.16.9.1: Destination Host Unreachable
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
 4 5 00 0054 4c69 0 0000 3f 01 b123 172.16.9.9 200.2.1.1

64 bytes from 200.2.1.1: icmp_seq=25 ttl=255 time=26.386 ms
64 bytes from 200.2.1.1: icmp_seq=26 ttl=255 time=3.441 ms
64 bytes from 200.2.1.1: icmp_seq=27 ttl=255 time=3.445 ms
64 bytes from 200.2.1.1: icmp_seq=28 ttl=255 time=3.194 ms
64 bytes from 200.2.1.1: icmp_seq=29 ttl=255 time=3.441 ms
64 bytes from 200.2.1.1: icmp_seq=30 ttl=255 time=3.452 ms
64 bytes from 200.2.1.1: icmp_seq=31 ttl=255 time=39.320 ms
64 bytes from 200.2.1.1: icmp_seq=32 ttl=255 time=3.416 ms
64 bytes from 200.2.1.1: icmp_seq=33 ttl=255 time=3.435 ms

After packet 14, forwarding is not resumed until packet 25, with a loss of about 11
seconds. Two packets are received with a destination Host Unreachable, as Scotch has
a default router to the “Internet” that is in use when the interface on Vodkila bounces.
This failover is not the end of the world, but 11 seconds does not fall into the five 9s of
uptime that we are trying to achieve.

Default Failover Layer 3
Let’s change the scenario a bit and add some Layer 3 into the mix. In this case,
Vodkila is the default gateway for Host1. Vodkila and Scotch are OSPF neighbors.
Scotch can reach Host1 through an OSPF route advertised by Vodkila by virtue of a
passive OSPF interface toward Host1 (see Figure 11-2):

lab@Scotch> show route 200.2.1.1

inet.0: 15 destinations, 16 routes (15 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

600 | Chapter 11: High Availability

200.2.1.0/24 *[OSPF/10] 00:20:28, metric 11
 > to 10.3.9.3 via ge-0/0/0.0

Figure 11-2. Layer 3 switchover

The same test is used as in the Layer 2 case, but Scotch issues a ping command to
Host1, while Vodkila issues a request chassis RE master acquire command:

lab@Scotch> ping 200.2.1.1 count 100
PING 200.2.1.1 (200.2.1.1): 56 data bytes
64 bytes from 200.2.1.1: icmp_seq=0 ttl=254 time=3.663 ms
64 bytes from 200.2.1.1: icmp_seq=1 ttl=254 time=3.472 ms
64 bytes from 200.2.1.1: icmp_seq=2 ttl=254 time=3.399 ms
64 bytes from 200.2.1.1: icmp_seq=3 ttl=254 time=4.179 ms
64 bytes from 200.2.1.1: icmp_seq=4 ttl=254 time=3.435 ms
64 bytes from 200.2.1.1: icmp_seq=5 ttl=254 time=5.212 ms
64 bytes from 200.2.1.1: icmp_seq=6 ttl=254 time=3.386 ms
64 bytes from 200.2.1.1: icmp_seq=7 ttl=254 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=8 ttl=254 time=28.372 ms
64 bytes from 200.2.1.1: icmp_seq=9 ttl=254 time=3.431 ms
64 bytes from 200.2.1.1: icmp_seq=10 ttl=254 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=11 ttl=254 time=5.213 ms
64 bytes from 200.2.1.1: icmp_seq=12 ttl=254 time=3.652 ms
64 bytes from 200.2.1.1: icmp_seq=13 ttl=254 time=3.429 ms
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host

Hardware Redundancy | 601

ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
64 bytes from 200.2.1.1: icmp_seq=76 ttl=254 time=4.420 ms
64 bytes from 200.2.1.1: icmp_seq=77 ttl=254 time=4.158 ms
64 bytes from 200.2.1.1: icmp_seq=78 ttl=254 time=45.458 ms
64 bytes from 200.2.1.1: icmp_seq=79 ttl=254 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=80 ttl=254 time=4.175 ms
64 bytes from 200.2.1.1: icmp_seq=81 ttl=254 time=4.167 ms
64 bytes from 200.2.1.1: icmp_seq=82 ttl=254 time=5.219 ms
64 bytes from 200.2.1.1: icmp_seq=83 ttl=254 time=4.168 ms
64 bytes from 200.2.1.1: icmp_seq=84 ttl=254 time=3.435 ms
64 bytes from 200.2.1.1: icmp_seq=85 ttl=254 time=4.431 ms
64 bytes from 200.2.1.1: icmp_seq=86 ttl=254 time=4.125 ms

602 | Chapter 11: High Availability

64 bytes from 200.2.1.1: icmp_seq=87 ttl=254 time=3.423 ms
64 bytes from 200.2.1.1: icmp_seq=88 ttl=254 time=37.474 ms
64 bytes from 200.2.1.1: icmp_seq=89 ttl=254 time=4.155 ms
64 bytes from 200.2.1.1: icmp_seq=90 ttl=254 time=3.435 ms
64 bytes from 200.2.1.1: icmp_seq=91 ttl=254 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=92 ttl=254 time=3.393 ms
64 bytes from 200.2.1.1: icmp_seq=93 ttl=254 time=3.403 ms
64 bytes from 200.2.1.1: icmp_seq=94 ttl=254 time=4.410 ms
64 bytes from 200.2.1.1: icmp_seq=95 ttl=254 time=4.158 ms
64 bytes from 200.2.1.1: icmp_seq=96 ttl=254 time=4.160 ms
64 bytes from 200.2.1.1: icmp_seq=97 ttl=254 time=3.421 ms
64 bytes from 200.2.1.1: icmp_seq=98 ttl=254 time=26.816 ms
64 bytes from 200.2.1.1: icmp_seq=99 ttl=254 time=3.427 ms

--- 200.2.1.1 ping statistics ---
100 packets transmitted, 38 packets received, 62% packet loss
round-trip min/avg/max/stddev = 3.386/7.105/45.458/9.731 ms

In this case, the failover time is much worse, with approximately 62 packets lost and
about a full minute of time. When the failover occurs, the RE switches over in several
seconds and is notified almost immediately. You can observe this by looking at the
mastership log on Vodkila:

lab@vodkilla> show log mastership
Jan 27 20:37:23 *** mcontrol init V01 ***
Jan 27 21:09:26 mcontrol toggle sig from init ***
Jan 27 21:09:26 The local RE becomes the master

So, why the long failover? The No route to host output from the ping command is a
hint. Essentially, the OSPF neighbor was lost, so the route to Host1 disappeared. Let’s
look at the first step in improving both scenarios.

Graceful Routing Engine Switchover
One of the problems in the default behavior is the fact that the PFE resets when an RE
switchover occurs. A feature in JUNOS software called Graceful Routing Engine
Switchover (GRES) removes the PFE reboot by synchronizing state between the two
REs. It uses the internal control channel to synchronize kernel and forwarding infor-
mation, as well as to send keepalives. These keepalives allow the backup RE to deter-
mine whether the master is present. If the backup RE does not receive a keepalive from
the master RE after two seconds, it determines that the master RE has failed and
acquires mastership.

When a switchover occurs, the PFE disconnects from the old master RE and connects
to the new master RE without rebooting. Therefore, traffic should not be affected. The
new master RE and PFE then synchronize to make sure all the information is up-to-
date, as the FTs were not updated during the switchover.

To enable GRES, a simple command is issued on the switch, graceful switchover:

lab@Vodkila> show configuration chassis
redundancy {

Hardware Redundancy | 603

 graceful-switchover;
}

When GRES is turned on, the command-line interface (CLI) prompt will change to
indicate that the RE is either {master} or {backup}:

{master}
lab@Vodkila>

View the state of the synchronization between REs by issuing a show system
switchover on the backup RE:

lab@Vodkila> show system switchover
Graceful switchover: On
Configuration database: Ready
Kernel database: Ready
Peer state: Steady State

The kernel and chassis states are synchronized between the two REs, which means that
interface status and configuration can now be seen on the backup RE:

--- JUNOS 9.2R1.9 built 2008-08-05 07:25:22 UTC
{backup}
lab@Vodkila-fpc1-BK> show interfaces terse
Interface Admin Link Proto Local Remote
vcp-255/1/0 up up
vcp-255/1/0.32768 up up
ge-0/0/0 up up
ge-0/0/0.0 up up inet 10.3.5.1/24
ge-0/0/1 up up
ge-0/0/2 up up
ge-0/0/3 up up
ge-0/0/3.0 up up inet 10.1.3.3/24
ge-0/0/4 up down
ge-0/0/5 up down
ge-0/0/6 up down
ge-0/0/7 up up
ge-0/0/7.0 up up inet 200.1.3.3/24
 200.2.1.50/24
 200.2.1.254/24
ge-0/0/8 up up
ge-0/0/8.0 up up inet 10.3.9.3/24
ge-0/0/9 up up
ge-0/0/9.0 up up inet 172.16.3.3/24
ge-0/0/10 up down
ge-0/0/11 up down
ge-0/0/12 up down
ge-0/0/13 up down
ge-0/0/14 up down
ge-0/0/15 up down
ge-0/0/16 up down
ge-0/0/17 up down
ge-0/0/18 up down
ge-0/0/19 up down
ge-0/0/20 up down
ge-0/0/21 up up

604 | Chapter 11: High Availability

ge-0/0/22 up down
ge-0/0/23 up up
ge-0/1/1 up down
ge-0/1/1.0 up down eth-switch
ge-1/0/0 up up
ge-1/0/0.0 up up inet 10.4.5.4/24
ge-1/0/1 up up
ge-1/0/1.0 up up inet 10.4.6.4/24
ge-1/0/2 up up
ge-1/0/2.0 up up inet 10.4.7.4/24
ge-1/0/3 up down
ge-1/0/3.0 up down inet 10.2.4.4/24
ge-1/0/4 up down
ge-1/0/5 up down
ge-1/0/6 up down
ge-1/0/7 up down
ge-1/0/8 up down
ge-1/0/8.0 up down inet 10.1.4.4/24
ge-1/0/9 up down
ge-1/0/10 up down
ge-1/0/11 up down
ge-1/0/12 up down
ge-1/0/13 up down
ge-1/0/14 up down
ge-1/0/15 up down
ge-1/0/16 up down
ge-1/0/17 up down
ge-1/0/18 up down
ge-1/0/19 up down
ge-1/0/20 up down
ge-1/0/21 up up
ge-1/0/22 up up
ge-1/0/23 up down
ge-1/1/1 up down
ge-2/0/0 up down
ge-2/0/1 up down
ge-2/0/2 up down
ge-2/0/3 up down
ge-2/0/4 up down
ge-2/0/5 up down
ge-2/0/6 up down
ge-2/0/7 up down
ge-2/0/8 up down
ge-2/0/9 up down
ge-2/0/10 up down
ge-2/0/11 up down
ge-2/0/12 up down
ge-2/0/13 up down
ge-2/0/14 up down
ge-2/0/15 up down
ge-2/0/16 up down
ge-2/0/17 up down
ge-2/0/18 up down
ge-2/0/19 up down
ge-2/0/20 up down

Hardware Redundancy | 605

ge-2/0/21 up down
ge-2/0/22 up up
ge-2/0/23 up up
vcp-0 up up
vcp-0.32768 up up
vcp-1 up up
vcp-1.32768 up up
bme0 up up
bme0.32768 up up inet 128.0.0.17/2
 128.0.0.32/2
 tnp 0x11
bme0.32770 down up eth-switch
dsc up up
gre up up
ipip up up
lo0 up up
lo0.0 up up inet 10.10.1.3 --> 0/0
lsi up up
me0 up up
me0.0 up up eth-switch
mtun up up
pimd up up
pime up up
tap up up
vlan up up

Enabling GRES also allows for the configuration of non-stop bridging.
This feature additionally saves Layer 2 Control Protocol (L2CP) infor-
mation by running the L2CP process (l2cpd) on the backup RE. This
essentially maintains Spanning Tree Protocol (STP), RSTP, and Multiple
Spanning Tree Protocol (MSTP). Currently, this is supported only on
the MX Series, but future support on the EX Series is expected.

GRES with Layer 2

Returning to the previous scenario without GRES (Figure 11-2), Scotch is going to issue
a ping command to Host1. With GRES turned on, the results are much better!

As before, the switchover command is issued on Vodkila:

lab@Vodkila> request chassis routing-engine master switch
Toggle mastership between routing engines ? [yes,no] (no) yes

lab@Vodkila>

A ping is issued from the switch during the switchover and no packet drops occur, as
the PFE is never rebooted:

lab@Scotch> ping 200.2.1.1 count 50
PING 200.2.1.1 (200.2.1.1): 56 data bytes
64 bytes from 200.2.1.1: icmp_seq=0 ttl=255 time=10.226 ms
64 bytes from 200.2.1.1: icmp_seq=1 ttl=255 time=4.169 ms
64 bytes from 200.2.1.1: icmp_seq=2 ttl=255 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=3 ttl=255 time=3.456 ms

606 | Chapter 11: High Availability

64 bytes from 200.2.1.1: icmp_seq=4 ttl=255 time=3.443 ms
64 bytes from 200.2.1.1: icmp_seq=5 ttl=255 time=3.176 ms
64 bytes from 200.2.1.1: icmp_seq=6 ttl=255 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=7 ttl=255 time=3.443 ms
64 bytes from 200.2.1.1: icmp_seq=8 ttl=255 time=4.174 ms
64 bytes from 200.2.1.1: icmp_seq=9 ttl=255 time=3.432 ms
64 bytes from 200.2.1.1: icmp_seq=10 ttl=255 time=3.177 ms
64 bytes from 200.2.1.1: icmp_seq=11 ttl=255 time=3.448 ms
64 bytes from 200.2.1.1: icmp_seq=12 ttl=255 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=13 ttl=255 time=3.181 ms
64 bytes from 200.2.1.1: icmp_seq=14 ttl=255 time=3.435 ms
64 bytes from 200.2.1.1: icmp_seq=15 ttl=255 time=3.431 ms
64 bytes from 200.2.1.1: icmp_seq=16 ttl=255 time=3.434 ms
64 bytes from 200.2.1.1: icmp_seq=17 ttl=255 time=4.241 ms
64 bytes from 200.2.1.1: icmp_seq=18 ttl=255 time=3.291 ms
64 bytes from 200.2.1.1: icmp_seq=19 ttl=255 time=3.444 ms
64 bytes from 200.2.1.1: icmp_seq=20 ttl=255 time=4.173 ms
64 bytes from 200.2.1.1: icmp_seq=21 ttl=255 time=3.435 ms
64 bytes from 200.2.1.1: icmp_seq=22 ttl=255 time=5.204 ms
64 bytes from 200.2.1.1: icmp_seq=23 ttl=255 time=4.157 ms
64 bytes from 200.2.1.1: icmp_seq=24 ttl=255 time=4.954 ms
64 bytes from 200.2.1.1: icmp_seq=25 ttl=255 time=4.165 ms
64 bytes from 200.2.1.1: icmp_seq=26 ttl=255 time=5.215 ms
64 bytes from 200.2.1.1: icmp_seq=27 ttl=255 time=4.270 ms
64 bytes from 200.2.1.1: icmp_seq=28 ttl=255 time=74.606 ms
64 bytes from 200.2.1.1: icmp_seq=29 ttl=255 time=3.436 ms
64 bytes from 200.2.1.1: icmp_seq=30 ttl=255 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=31 ttl=255 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=32 ttl=255 time=3.432 ms
64 bytes from 200.2.1.1: icmp_seq=33 ttl=255 time=5.214 ms
64 bytes from 200.2.1.1: icmp_seq=34 ttl=255 time=3.433 ms
64 bytes from 200.2.1.1: icmp_seq=35 ttl=255 time=3.475 ms
64 bytes from 200.2.1.1: icmp_seq=36 ttl=255 time=3.427 ms
64 bytes from 200.2.1.1: icmp_seq=37 ttl=255 time=5.215 ms
64 bytes from 200.2.1.1: icmp_seq=38 ttl=255 time=40.354 ms
64 bytes from 200.2.1.1: icmp_seq=39 ttl=255 time=3.433 ms
64 bytes from 200.2.1.1: icmp_seq=40 ttl=255 time=5.208 ms
64 bytes from 200.2.1.1: icmp_seq=41 ttl=255 time=4.170 ms
64 bytes from 200.2.1.1: icmp_seq=42 ttl=255 time=3.433 ms
64 bytes from 200.2.1.1: icmp_seq=43 ttl=255 time=3.442 ms
64 bytes from 200.2.1.1: icmp_seq=44 ttl=255 time=4.186 ms
64 bytes from 200.2.1.1: icmp_seq=45 ttl=255 time=5.216 ms
64 bytes from 200.2.1.1: icmp_seq=46 ttl=255 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=47 ttl=255 time=5.218 ms
64 bytes from 200.2.1.1: icmp_seq=48 ttl=255 time=32.536 ms
64 bytes from 200.2.1.1: icmp_seq=49 ttl=255 time=3.434 ms

--- 200.2.1.1 ping statistics ---
50 packets transmitted, 50 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.176/6.712/74.606/11.674 ms

Hardware Redundancy | 607

GRES with Layer 3

The result is slightly different if we go back to the Layer 3 scenario, due to the fact that
GRES syncs up the kernel and chassis information, but does not synchronize any in-
formation associated with the Routing Protocol Daemon (RPD). This process controls
all routing protocols, so during a switchover, the process needs to be restarted. This
means any dynamic routing protocols such as Routing Information Protocol (RIP),
OSPF, or Border Gateway Protocol (BGP) will also be restarted.

Observe this behavior by once again manually initiating a switchover on Vodkila and
issuing a ping command from Scotch:

lab@Scotch> ping 200.2.1.1 count 100
PING 200.2.1.1 (200.2.1.1): 56 data bytes
64 bytes from 200.2.1.1: icmp_seq=0 ttl=254 time=44.453 ms
64 bytes from 200.2.1.1: icmp_seq=1 ttl=254 time=3.423 ms
64 bytes from 200.2.1.1: icmp_seq=2 ttl=254 time=3.390 ms
64 bytes from 200.2.1.1: icmp_seq=3 ttl=254 time=3.168 ms
64 bytes from 200.2.1.1: icmp_seq=4 ttl=254 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=5 ttl=254 time=4.413 ms
64 bytes from 200.2.1.1: icmp_seq=6 ttl=254 time=4.163 ms
64 bytes from 200.2.1.1: icmp_seq=7 ttl=254 time=5.217 ms
64 bytes from 200.2.1.1: icmp_seq=8 ttl=254 time=3.437 ms
64 bytes from 200.2.1.1: icmp_seq=9 ttl=254 time=4.163 ms
64 bytes from 200.2.1.1: icmp_seq=10 ttl=254 time=26.783 ms
64 bytes from 200.2.1.1: icmp_seq=11 ttl=254 time=5.213 ms
64 bytes from 200.2.1.1: icmp_seq=12 ttl=254 time=3.176 ms
64 bytes from 200.2.1.1: icmp_seq=13 ttl=254 time=3.427 ms
64 bytes from 200.2.1.1: icmp_seq=14 ttl=254 time=3.448 ms
64 bytes from 200.2.1.1: icmp_seq=15 ttl=254 time=5.971 ms
64 bytes from 200.2.1.1: icmp_seq=16 ttl=254 time=3.428 ms
64 bytes from 200.2.1.1: icmp_seq=17 ttl=254 time=3.399 ms
64 bytes from 200.2.1.1: icmp_seq=18 ttl=254 time=4.165 ms
64 bytes from 200.2.1.1: icmp_seq=19 ttl=254 time=3.407 ms
64 bytes from 200.2.1.1: icmp_seq=20 ttl=254 time=41.399 ms
64 bytes from 200.2.1.1: icmp_seq=21 ttl=254 time=5.978 ms
64 bytes from 200.2.1.1: icmp_seq=22 ttl=254 time=3.421 ms
64 bytes from 200.2.1.1: icmp_seq=23 ttl=254 time=4.430 ms
64 bytes from 200.2.1.1: icmp_seq=24 ttl=254 time=4.163 ms
64 bytes from 200.2.1.1: icmp_seq=25 ttl=254 time=3.392 ms
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
ping: sendto: No route to host
64 bytes from 200.2.1.1: icmp_seq=31 ttl=254 time=3.432 ms
64 bytes from 200.2.1.1: icmp_seq=32 ttl=254 time=3.424 ms
64 bytes from 200.2.1.1: icmp_seq=33 ttl=254 time=4.180 ms
64 bytes from 200.2.1.1: icmp_seq=34 ttl=254 time=4.963 ms
64 bytes from 200.2.1.1: icmp_seq=35 ttl=254 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=36 ttl=254 time=4.162 ms
64 bytes from 200.2.1.1: icmp_seq=37 ttl=254 time=4.414 ms
64 bytes from 200.2.1.1: icmp_seq=38 ttl=254 time=3.397 ms
64 bytes from 200.2.1.1: icmp_seq=39 ttl=254 time=3.185 ms

608 | Chapter 11: High Availability

64 bytes from 200.2.1.1: icmp_seq=40 ttl=254 time=26.110 ms
64 bytes from 200.2.1.1: icmp_seq=41 ttl=254 time=4.427 ms
64 bytes from 200.2.1.1: icmp_seq=42 ttl=254 time=3.433 ms
64 bytes from 200.2.1.1: icmp_seq=43 ttl=254 time=3.449 ms
64 bytes from 200.2.1.1: icmp_seq=44 ttl=254 time=3.402 ms
64 bytes from 200.2.1.1: icmp_seq=45 ttl=254 time=3.428 ms
64 bytes from 200.2.1.1: icmp_seq=46 ttl=254 time=4.157 ms
64 bytes from 200.2.1.1: icmp_seq=47 ttl=254 time=4.422 ms
64 bytes from 200.2.1.1: icmp_seq=48 ttl=254 time=5.211 ms
64 bytes from 200.2.1.1: icmp_seq=49 ttl=254 time=3.178 ms
64 bytes from 200.2.1.1: icmp_seq=50 ttl=254 time=68.221 ms
64 bytes from 200.2.1.1: icmp_seq=51 ttl=254 time=3.431 ms
64 bytes from 200.2.1.1: icmp_seq=52 ttl=254 time=3.452 ms
64 bytes from 200.2.1.1: icmp_seq=53 ttl=254 time=3.436 ms
64 bytes from 200.2.1.1: icmp_seq=54 ttl=254 time=3.396 ms
64 bytes from 200.2.1.1: icmp_seq=55 ttl=254 time=4.149 ms
64 bytes from 200.2.1.1: icmp_seq=56 ttl=254 time=3.407 ms
64 bytes from 200.2.1.1: icmp_seq=57 ttl=254 time=3.426 ms
64 bytes from 200.2.1.1: icmp_seq=58 ttl=254 time=3.172 ms
64 bytes from 200.2.1.1: icmp_seq=59 ttl=254 time=6.234 ms
64 bytes from 200.2.1.1: icmp_seq=60 ttl=254 time=32.687 ms
64 bytes from 200.2.1.1: icmp_seq=61 ttl=254 time=4.187 ms
64 bytes from 200.2.1.1: icmp_seq=62 ttl=254 time=3.446 ms
64 bytes from 200.2.1.1: icmp_seq=63 ttl=254 time=3.404 ms
64 bytes from 200.2.1.1: icmp_seq=64 ttl=254 time=4.163 ms
64 bytes from 200.2.1.1: icmp_seq=65 ttl=254 time=3.424 ms
64 bytes from 200.2.1.1: icmp_seq=66 ttl=254 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=67 ttl=254 time=3.176 ms
64 bytes from 200.2.1.1: icmp_seq=68 ttl=254 time=5.211 ms
64 bytes from 200.2.1.1: icmp_seq=69 ttl=254 time=3.430 ms
64 bytes from 200.2.1.1: icmp_seq=70 ttl=254 time=26.575 ms
64 bytes from 200.2.1.1: icmp_seq=71 ttl=254 time=3.428 ms
64 bytes from 200.2.1.1: icmp_seq=72 ttl=254 time=3.390 ms
64 bytes from 200.2.1.1: icmp_seq=73 ttl=254 time=3.400 ms
64 bytes from 200.2.1.1: icmp_seq=74 ttl=254 time=3.615 ms
64 bytes from 200.2.1.1: icmp_seq=75 ttl=254 time=4.410 ms
64 bytes from 200.2.1.1: icmp_seq=76 ttl=254 time=5.209 ms
64 bytes from 200.2.1.1: icmp_seq=77 ttl=254 time=3.427 ms
64 bytes from 200.2.1.1: icmp_seq=78 ttl=254 time=3.433 ms
64 bytes from 200.2.1.1: icmp_seq=79 ttl=254 time=3.447 ms
64 bytes from 200.2.1.1: icmp_seq=80 ttl=254 time=40.982 ms
64 bytes from 200.2.1.1: icmp_seq=81 ttl=254 time=3.428 ms
64 bytes from 200.2.1.1: icmp_seq=82 ttl=254 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=83 ttl=254 time=4.166 ms
64 bytes from 200.2.1.1: icmp_seq=84 ttl=254 time=3.413 ms
64 bytes from 200.2.1.1: icmp_seq=85 ttl=254 time=3.421 ms
64 bytes from 200.2.1.1: icmp_seq=86 ttl=254 time=3.172 ms
64 bytes from 200.2.1.1: icmp_seq=87 ttl=254 time=5.215 ms
64 bytes from 200.2.1.1: icmp_seq=88 ttl=254 time=4.164 ms
64 bytes from 200.2.1.1: icmp_seq=89 ttl=254 time=3.182 ms
64 bytes from 200.2.1.1: icmp_seq=90 ttl=254 time=33.141 ms
64 bytes from 200.2.1.1: icmp_seq=91 ttl=254 time=3.452 ms
64 bytes from 200.2.1.1: icmp_seq=92 ttl=254 time=3.169 ms
64 bytes from 200.2.1.1: icmp_seq=93 ttl=254 time=3.403 ms
64 bytes from 200.2.1.1: icmp_seq=94 ttl=254 time=3.415 ms

Hardware Redundancy | 609

64 bytes from 200.2.1.1: icmp_seq=95 ttl=254 time=4.160 ms
64 bytes from 200.2.1.1: icmp_seq=96 ttl=254 time=4.417 ms
64 bytes from 200.2.1.1: icmp_seq=97 ttl=254 time=3.400 ms
64 bytes from 200.2.1.1: icmp_seq=98 ttl=254 time=3.429 ms
64 bytes from 200.2.1.1: icmp_seq=99 ttl=254 time=3.441 ms

--- 200.2.1.1 ping statistics ---
100 packets transmitted, 95 packets received, 5% packet loss
round-trip min/avg/max/stddev = 3.168/7.047/68.221/10.702 ms

The number of packets that were lost was reduced, but Scotch does lose packets when
RPD is restarted and OSPF is reestablished.

Graceful Restart
With the advent of separate control and forwarding planes, and the need for a restart
event of the control plane while keeping routing stable, Graceful Restart was created.
The idea of Graceful Restart is that a restarting router can tell its neighbors about that
event. The neighbors will, in turn, still use the restarting router for forwarding, as well
as hide the restarting event from the rest of the network. The operation of the protocol
during the restarting event varies, depending on the protocol. For instance, there are
RFCs describing Graceful Restart for OSPF (RFC 3623) and for BGP (RFC 4724).
Table 11-2 lists protocols and RFCs.

Table 11-2. Protocols and RFCs

Protocol RFC EX support (9.2R1.9)

OSPF 3623 Yes

BGP 4724 Yes

IS-IS 5306 Yes

OSPFv3 5187 No

RSVP 4558 No

LDP 3478 No

STP N/A Yes

In every protocol, the mechanism is the same but there are two types of devices: a
restarting router and a helper. The restarting router (or switch) informs its neighbor
that a restart will occur, which means that control messages will not be seen during a
grace period, but the forwarding of packets will proceed as normal. The helper routers
support this event by not informing their neighbors that a change has occurred during
this grace period. If contact is reestablished before the grace period ends, the helper
aids in synchronizing any data that may have changed during the switchover. If contact
is not established and the grace time expires, the helper informs its neighbors of the
event and no longer uses the restarting router for forwarding.

610 | Chapter 11: High Availability

In JUNOS software, Graceful Restart is enabled globally under [edit routing-
options], which turns on Graceful Restart for all supported protocols. The feature can
be disabled if desired under the individual protocol configuration:

lab@Vodkila# set routing-options graceful-restart

{master}[edit]
lab@Vodkila# commit and-quit

With Graceful Restart turned on in Vodkila and Scotch, an RE switchover is initiated
according to Figure 11-2, and no loss of packets occurs!

lab@Scotch> ping 200.2.1.1 count 100
PING 200.2.1.1 (200.2.1.1): 56 data bytes
64 bytes from 200.2.1.1: icmp_seq=0 ttl=254 time=3.933 ms
64 bytes from 200.2.1.1: icmp_seq=1 ttl=254 time=5.212 ms

--- 200.2.1.1 ping statistics ---
100 packets transmitted, 100 packets received, 0% packet loss
round-trip min/avg/max/stddev = 3.166/4.730/40.835/5.064 ms

OSPF Graceful Restart
Graceful Restart for OSPF uses one of the opaque link state advertisements (LSAs) in
OSPF, number 9 with opaque type 3 and ID 0. This LSA has link local scope and is
generated only during a restarting event. This LSA will contain information such as the
grace timer, restarting reason, type of interface, and interface IP:

lab@Scotch> show ospf database

 OSPF link state database, Area 0.0.0.0
 Type ID Adv Rtr Seq
Age Opt Cksum Len
Router 10.10.1.3 10.10.1.3 0x80000017
125 0x22 0xb88b 168
Router *10.10.1.9 10.10.1.9 0x8000000c
210 0x22 0xf08e 48
Network *10.3.9.9 10.10.1.9 0x80000005
725 0x22 0x635f 32

 OSPF Link-Local link state database, interface
ge-0/0/0.0
 Type ID Adv Rtr Seq
Age Opt Cksum Len
OpaqLoc 3.0.0.0 10.10.1.3 0x80000001
08 0x22 0xeb24 44

lab@Scotch> show ospf database detail | find "OSPF
Link-Local"

 OSPF Link-Local link state database, interface
ge-0/0/0.0
 Type ID Adv Rtr Seq
Age Opt Cksum Len
OpaqLoc 3.0.0.0 10.10.1.3 0x80000001
14 0x22 0xeb24 44
 Link-Local grace LSA

Hardware Redundancy | 611

 Grace 210
 Reason 1
 IPAddr 10.3.9.3

In this case, 10.10.1.3 is restarting on interface 10.3.9.2. The grace time is 210 seconds,
and the device has been restarting for 14 seconds based on the age timer. The reason
is type 1, which stands for software restart. Other options are software upgrade (type
2) and switch to a redundant route processor (type 3).

After the restarting event has occurred, the restarting router will flush the opaque LSAs
and resynchronize the link state database (LSDB) with its neighbors to ensure that no
information has changed or was lost during the switchover.

Non-Stop Routing
The problem with Graceful Restart is that a restarting event relies not only on the
restarting router, but also on helpers. If the helpers do not support a Graceful Restart,
packet loss will occur. This is especially problematic in a mixed-vendor environment,
where some equipment could be configured as helpers and some not. A classic case is
OSPF Graceful Restart on Juniper and Cisco. Cisco implemented a prestandard Grace-
ful Restart mechanism that did not interoperate with Juniper. Since Graceful Restart
was not supported in IOS, to alleviate the need for helper support, Juniper implemented
a feature called NSR (Non-Stop Routing). This feature has all the same mechanisms as
we previously discussed regarding GRES, except that it also runs the RPD on the backup
RE, as well as synchronized Transmission Control Protocol (TCP) state information.
As a result, during a failure, routing protocol state is maintained without the need for
helper device support. In other words, the rest of the network has no idea that a restart
event is happening, as it stays local to that device. To enable NSR, configure Non-Stop
Routing under the [edit routing-options] hierarchy.

At the time of this writing, NSR is not supported in EX devices. But this
feature could be available by the time this book is published.

GRES, GR, NSR, Oh My!
We just threw a slew of acronyms at you, and you may be confused as to which features
to use and the differences between them! The first step in any RE HA is to activate
GRES in order to get kernel synchronization between two REs. Without this feature,
the PFE resets after an RE change. Then, if the RPD needs to be involved in the process,
either Graceful Restart or NSR needs to be configured in order to prevent protocols
from advertising the restart event. Graceful Restart relies on neighbor devices, whereas
NSR does not. NSR is the preferred method, if it is supported on your device.

612 | Chapter 11: High Availability

VRRP
Anybody using a PC for Internet surfing, music downloads, gaming, or video down-
loads will use IP as the network protocol. The PC will have an IP address assigned, as
well as a default gateway address to reach any destinations that are not on the local
subnet.

If the default gateway is a single device and that device fails, the PC won’t be able to
reach destinations outside the local subnet. In other words, the infamous “the Internet
is down” support call will occur. In a fault-tolerant network, it would be ideal to have
a backup gateway device, without having to modify the configuration on any PCs, as
well as being able to load-share with multiple PCs on the LAN.

Virtual Router Redundancy Protocol was created to eliminate single points of behavior
that are inherent to static default routed networks. VRRP creates a logical grouping of
multiple physical routers to a “virtual” router that will be used as the default gateway
for end hosts. In modern networks, this device could physically be a router or any other
device that supports VRRP, such as an EX Series switch. Regardless, VRRP allows the
PC to always maintain the same gateway address even if the physical gateway has
changed (Figure 11-3). The “routers” that are part of the same VRRP logical group will
share this “virtual” IP address, as well as sharing a “virtual” Media Access Control
(MAC) address. Essentially, VRRP describes an election protocol in order to maintain
ownership of this virtual IP address and MAC address. One “router” in the VRRP group
will be the master router, controlling the virtual IP address unless a failure occurs that
results in a release of that ownership. Such a failure would cause another “router” to
claim ownership of the virtual IP by issuing a VRRP message and a Gratuitous ARP to
claim the virtual MAC address. Once a “router” becomes the master, it periodically
advertises VRRP messages to indicate its overall health and reachability.

Please consult Chapter 7 for more VRRP details.

VRRP | 613

Figure 11-3. VRRP example

In-Service Software Upgrades
Another feature that is very useful is the idea of an In-Service Software Upgrade (ISSU).
This is a software upgrade that allows you to move to a new JUNOS release with no
disruption in the control plane, and little if any disruption in the forwarding plane. This
feature is supported only on dual RE platforms, including the VC, and the REs must
be running the same JUNOS software version before ISSU. Lastly, in order for this
feature to work, GRES and NSR must also be enabled.

As in the NSR warning, ISSU is currently not supported on EX Series
devices, but the word is that it is planned.

Perform ISSU by issuing the following steps:

614 | Chapter 11: High Availability

1. Enable GRES and non-stop active routing. Verify that the REs and protocols are
synchronized.

2. Download the new software package from the Juniper Networks website and then
copy the package to the router.

3. Issue the request system software in-service-upgrade command on the master RE.

During ISSU, both the master and backup will be upgraded to the new versions of the
JUNOS software. Since this is not yet supported on the EX, we won’t include additional
details here.

Aggregated Ethernet
Aggregated Ethernet (AE) enables you to group multiple Ethernet interfaces to form a
single physical link at the MAC layer, allowing you to increase your speed beyond what
a single link can provide, as well as increasing redundancy. AE has had several names
over the years. Officially, it is a standard in 802.1AX; however, many people still refer
to it as 802.3ad because it appeared in section 41 of that standard. Other names that
have been used by various vendors include NIC teaming, port channel, port teaming,
port trunking, link bundling, and EtherChannel. In this chapter, however, we will refer
to the link as AE.

How does a standard get its name, such as 802.1AX or 802.3ad? Well,
the 802 refers to an actual working group for the standard. The letters
themselves have no meaning; letters are just incremented starting from
a and going to z. So, in order: a, aa, ab, b, bb, and so on. The capitali-
zation indicates a standalone document, whereas lowercase denotes a
supplement to an existing document. At least, that was the idea when
the naming convention was created.

Historically, link aggregation is configured statically, meaning that the local device
bonds the physical interfaces together. This meant that there was no way to link path
failures (if there was an intermediate device) or to know whether the other end of the
link was also bundling the interface. For that reason, the industry-standard Link Ag-
gregation Control Protocol (LACP) was created. Essentially, LACP sends messages to
the remote end of the link to determine bundle parameters as well as link availability.
This creates a “bundle” with multiple physical “members.”

Although AE interfaces were originally created for redundancy, an added benefit may
be the ability to balance traffic across each member link. The actual algorithm is vendor-
independent, and could be platform-independent. Since load balancing is an outbound
forwarding decision, in an EX Series switch load balancing is achieved by creating a
hash on the Layer 3 and Layer 4 information in the packet. Every packet with the same

Aggregated Ethernet | 615

hash will always take the same link, whereas a different hash may take another link.
The key point is that a hash will always choose the same link.

You specify up to eight Ethernet ports when configuring a bundle. This interface can
reside on any cards in the switch, as long as they have the same speed and are in full
duplex (FD) mode. This includes a port on a VC with a VC having an additional limi-
tation of 64 bundles, whereas an EX8200 series can support up to 127 bundles.

LACP in Action
LACP is not necessary in order to create an AE link. You can create the configuration
statically on each link, essentially telling the system to bundle several links together
and be on its way. However, there are some problems with static configuration:

• There is no keepalive mechanism to determine whether the entire path is up if there
is an intermediate device between the bundle.

• There is no way to ensure that the port physically connects to the correct device
(see Figure 11-3, shown previously).

• There is no way to ensure that the configuration is correct on both sides.

LACP solves this without any change to the actual Ethernet frame format used for
transport across the bundle. Essentially, LACP periodically advertises the aggregation
capabilities and state information across each member link. The partner (the other end
of the link) compares its own configuration to what was received, and decides whether
the link should be part of the bundle. Also, if a link was already determined to be part
of the same bundle, and LACP messages are not received for a period of time, that link
can be brought down.

These messages are sent on a link-by-link basis, asynchronously. No synchronization
is necessary for the bundle.

On each aggregated link, a partner and an actor are created. The actor is the device that
takes the action, and the partner is the device sending the message. An actor compares
its local configuration with the received partner message. This messaging happens in
both directions; as a result, a given link is always an actor or a partner—the name is
relative to a given direction. This means, however, that an additional check can be
made. In confusing terms, we can say that the partner’s partner information is a view
of the actor’s current configuration. Thus, the partner’s partner information can be
compared with its own actor state to make sure the partner received the correct infor-
mation from the actor. In simpler terms, the received state is sent back to the sender in
order to verify that the sender information was received.

In order to make sure aggregated bundles are formed only with links that interconnect
the same devices, some type of identifier must be used to identify the bundle. LACP
uses a system ID to identify messages from a device, and only messages received from
the partner with the same system ID will be considered for link aggregation.

616 | Chapter 11: High Availability

The system ID is a 64-bit value, with 48 bits used for the MAC address and 16 bits used
for a priority field. The priority field is used for network administrator control for
dynamic changes to the bundle. The system with the lowest system identifier is allowed
to make dynamic changes to its aggregated link capabilities. This prevents two partners
from trying to make changes at the same time and causing instability. A port ID and
priority are also given to each port; these determine the order in which a given link can
be added to the bundle.

Also, the fact that a link terminates at the same partner system does not necessarily
mean that it will be part of the link bundle. Each link is assigned a key value, and a link
must have the same key in order to be eligible to be aggregated. This key is a 16-bit
value assigned locally to a port, and links with different keys should never be aggregated
together. Here are some reasons links between systems might have different key values:

• The link speeds are different (1 Gbps versus 10 Gbps).

• The physical limitations of the hardware vary; perhaps a link could be aggregated
on only a single LC, and cannot span multiple LCs.

• A system administrator may configure a maximum number of links that can be
part of the bundle, and that limit has already been reached.

Each system is in either active or passive mode. Active mode periodically sends LACP
messages, and passive mode will not transmit messages until it receives a message from
its partner. That way, if a switch connects to a device that does not support LACP,
unnecessary transmissions are not performed. If at a later date that interface begins to
support LACP, no reconfiguration is necessary.

As previously mentioned, LACP messages are sent at a periodic rate of every second
(fast rate) or every 30 seconds (slow rate). The rate is determined by the partner; the
fastest rate is the default.

LACP messages are always sent with address 01-80-C2-00-00-02, which is a link local
address. Inside the LACP messages are type length values (TLVs) for the actor infor-
mation, partner information, collector information, and terminator. The actor infor-
mation is the information that has been sent to the other end of the link. The partner
information is the actor’s view of the received information. The collector information
is for determining the timer to switch a flow from one link to another (more on this
later), and the terminator TLV simply marks an end to the message. So, the partner/
actor information transmitted in the TLV is:

• System priority

• System ID

• Key

• Port priority

• Port number

• State

Aggregated Ethernet | 617

The state information is 8 bits, and the bits are classified as shown in Table 11-3.

Table 11-3. Classification of 8-bit state information

Bit Name Definitions

0 Activity 0 = passive mode

1 = active mode

1 Timeout 0 = long timeout (90 seconds)

1 = short timeout (3 seconds)

2 Aggregation 0 = link cannot be aggregated

1 = link can be aggregated

3 Synchronization 0 = port is not bound to aggregator

1 = port is bound to aggregator

4 Collecting 0 = collector disabled

1 = collector enabled

5 Distributing 0 = distributor disabled

1 = distributor enabled

6 Defaulted 0 = device is using configured partner information

1 = device is using received partner information

7 Expired 0 = LACP state is not expired

1 = LACP state is expired

In an EX switch, you can view LACP messages by issuing a monitor traffic command
on the member link:

lab@Brandy> monitor traffic interface ge-0/0/3 layer2-headers extensive
15:47:46.338554 bpf_flags 0x80, Out
 Juniper PCAP Flags [Ext], PCAP Extension(s) total length 16
 Device Media Type Extension TLV #3, length 1, value: Ethernet (1)
 Logical Interface Encapsulation Extension TLV #6, length 1, value:
Ethernet (14)
 Device Interface Index Extension TLV #1, length 2, value: 35328
 Logical Interface Index Extension TLV #4, length 4, value: 68
 -----original packet-----
 2:1f:12:30:98:40 > 1:80:c2:0:0:2, ethertype Slow Protocols (0x8809),
length 124: LACPv1, length 110
 Actor Information TLV (0x01), length 20
 System 0:1f:12:30:98:40, System Priority 0, Key 1, Port 520, Port
Priority 127
 State Flags [Activity, Timeout, Aggregation, Synchronization,
Collecting, Distributing]
 0x0000: 001f 1230 9840 0001 007f 0208 3f00 0000
 0x000f: 0214
 Partner Information TLV (0x02), length 20
 System 0:1f:12:30:96:80, System Priority 0, Key 1, Port 520, Port

618 | Chapter 11: High Availability

Priority 127
 State Flags [Activity, Timeout, Aggregation, Synchronization,
Collecting, Distributing]
 0x0000: 001f 1230 9680 0001 007f 0208 3f00 0000
 0x000f: 0310
 Collector Information TLV (0x03), length 16
 Max Delay 0
 0x0000: 0000 0000 0000 0000 0000 0000 0000
 Terminator TLV (0x00), length 0 (=52)
 0x0000: 0000 0000 0000 0000 0000 0000 0000 0000
 0x000f: 0000 0000 0000 0000 0000 0000 0000 0000
 0x001f: 0000 0000 0000 0000 0000 0000 0000 0000
 0x002f:
 packet exceeded snapshot
15:47:46.930512 bpf_flags 0x81, In
 Juniper PCAP Flags [Ext, In], PCAP Extension(s) total length 16
 Device Media Type Extension TLV #3, length 1, value: Ethernet (1)
 Logical Interface Encapsulation Extension TLV #6, length 1, value:
Ethernet (14)
 Device Interface Index Extension TLV #1, length 2, value: 35328
 Logical Interface Index Extension TLV #4, length 4, value: 68
 -----original packet-----
 2:1f:12:30:96:80 > 1:80:c2:0:0:2, ethertype Slow Protocols (0x8809),
length 124: LACPv1, length 110
 Actor Information TLV (0x01), length 20
 System 0:1f:12:30:96:80, System Priority 0, Key 1, Port 520, Port
Priority 127
 State Flags [Activity, Timeout, Aggregation, Synchronization,
Collecting, Distributing]
 0x0000: 001f 1230 9680 0001 007f 0208 3f00 0000
 0x000f: 0214
 Partner Information TLV (0x02), length 20
 System 0:1f:12:30:98:40, System Priority 0, Key 1, Port 520, Port
Priority 127
 State Flags [Activity, Timeout, Aggregation, Synchronization,
Collecting, Distributing]
 0x0000: 001f 1230 9840 0001 007f 0208 3f00 0000
 0x000f: 0310
 Collector Information TLV (0x03), length 16
 Max Delay 0
 0x0000: 0000 0000 0000 0000 0000 0000 0000
 Terminator TLV (0x00), length 0 (=52)
 0x0000: 0000 0000 0000 0000 0000 0000 0000 0000
 0x000f: 0000 0000 0000 0000 0000 0000 0000 0000
 0x001f: 0000 0000 0000 0000 0000 0000 0000 0000
 0x002f:
 packet exceeded snapshot

You also can view messages by turning on traceoptions under [edit protocols lacp]:

lab@Brandy# show protocols
lacp {
 traceoptions {
 file lacp.trace;
 flag all;
 }

Aggregated Ethernet | 619

}

lab@Brandy# run show log lacp.trace

Aug 22 19:02:02 ge-0/0/9: incoming lacp pdu
Aug 22 19:02:02 Received LACP pdu - interface ge-0/0/9
Aug 22 19:02:02 lacp subtype 0x1 lacp version number 0x1
Aug 22 19:02:02 first tlv type 0x1 actor info len 0x14
Aug 22 19:02:02 actor sys priority 0x0 actor sys 00:1f:12:30:98:40
Aug 22 19:02:02 actor key 0x1 actor port priority 0x7f actor port 0x209 actor
state 0x3f
Aug 22 19:02:02 second tlv type 0x2 partner info len 0x14
Aug 22 19:02:02 partner sys priority 0x0 partner sys 00:1f:12:30:96:80
Aug 22 19:02:02 partner key 0x1 partner port priority 0x7f partner port 0x209
partner state 0x3f
Aug 22 19:02:02 third tlv type 0x3 collector info len 0x10 collector max del 0x0
fourth tlv type 0x0 terminator len 0
Aug 22 19:02:02 ge-0/0/9: lacp recv state transition from CURRENT to CURRENT
Aug 22 19:02:02 ge-0/0/9: lacp mux state transition from COLLECTING_DISTRIBUTING
to COLLECTING_DISTRIBUTING
Aug 22 19:02:02 lacp_periodic_transmission_machine: begin 0, lacp enable 1, port
1, actor state 0x3f, partner state 0x3f
Aug 22 19:02:02 ge-0/0/9: lacp xmit state transition from FAST_PERIODIC to
FAST_PERIODIC
Aug 22 19:02:03 ge-0/0/5: process timer expired on 0x1993600 in FAST_PERIODIC state
Aug 22 19:02:03 lacp_periodic_transmission_machine: begin 0, lacp enable 1, port
1, actor state 0x3f, partner state 0x3f
Aug 22 19:02:03 ge-0/0/5: lacp xmit state transition from FAST_PERIODIC to
PERIODIC_TX
Aug 22 19:02:03 ge-0/0/5: process_periodic_tx_state: need to transmit lacpdu
Aug 22 19:02:03 Transmitting LACP pdu - interface ge-0/0/5
Aug 22 19:02:03 lacp subtype 0x1 lacp version number 0x1
Aug 22 19:02:03 first tlv type 0x1 actor info len 0x14
Aug 22 19:02:03 actor sys priority 0x0 actor sys 00:1f:12:30:96:80
Aug 22 19:02:03 actor key 0x1 actor port priority 0x7f actor port 0x205 actor
state 0x3f
Aug 22 19:02:03 second tlv type 0x2 partner info len 0x14
Aug 22 19:02:03 partner sys priority 0x0 partner sys 00:1f:12:30:98:40
Aug 22 19:02:03 partner key 0x1 partner port priority 0x7f partner port 0x202
partner state 0x3f
Aug 22 19:02:03 third tlv type 0x3 collector info len 0x10 collector max del 0x0
fourth tlv type 0x0 terminator len 0
Aug 22 19:02:03 lacp_periodic_transmission_machine: begin 0, lacp enable 1, port
1, actor state 0x3f, partner state 0x3f
Aug 22 19:02:03 ge-0/0/5: lacp xmit state transition from PERIODIC_TX to
FAST_PERIODIC
Aug 22 19:02:03 ge-0/0/8: process timer expired on 0x1993800 in FAST_PERIODIC state
Aug 22 19:02:03 lacp_periodic_transmission_machine: begin 0, lacp enable 1, port
1, actor state 0x3f, partner state 0x3f

JUNOS Configuration
Configure a Link Aggregated Group (LAG) by specifying the link number as a physical
device and then associating a set of ports with the link. All the ports must have the same

620 | Chapter 11: High Availability

speed and be in FD mode. JUNOS software for EX Series switches assigns a unique ID
and port priority to each port. The ID and priority are not configurable. In Fig-
ure 11-4, interfaces ge-0/0/3, ge-0/0/8, and ge-0/0/9 are all part of the bundle on AE0.

Figure 11-4. AE between Brandy and Ethanol

This AE interface is a Layer 2 interface providing virtual LAN (VLAN) trunking for two
VLANs. The first step is to enable an AE interface on the switch at the [edit
chassis] level. This enables a bundle to be formed and indicates the maximum
number of bundles that are allowed (1–32). In this case, just one bundle is going to be
configured:

[edit]
lab@Brandy# show chassis
aggregated-devices {
 ethernet {
 device-count 1;
 }
}

Next, associate the member link with a bundle (ae0) and configure the bundle interface
itself. On the AE0 interface, LACP is configured, as the default operation is passive mode:

lab@Ethanol# show interfaces
ge-0/0/2 {
 ether-options {
 802.3ad ae0;
 }
}
ge-0/0/3 {

Aggregated Ethernet | 621

 unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [20 10];
 }
 }
 }
}
ge-0/0/8 {
 ether-options {
 802.3ad ae0;
 }
}
ge-0/0/9 {
 ether-options {
 802.3ad ae0;
 }
}
ge-0/0/12 {
 disable;
}
ge-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
}
xe-0/1/0 {
 unit 0 {
 family ethernet-switching;
 }
}
ge-0/1/1 {
 unit 0 {
 family ethernet-switching;
 }
}
xe-0/1/1 {
 unit 0 {
 family ethernet-switching;
 }
}
ge-0/1/2 {
 unit 0 {
 family ethernet-switching;
 }
}
ge-0/1/3 {
 unit 0 {
 family ethernet-switching;
 }
}
ae0 {
 unit 0 {
 family ethernet-switching {

622 | Chapter 11: High Availability

 port-mode trunk;
 vlan {
 members [admin sales];
 }
 }
 }
}
lo0 {
 unit 0 {
 family inet {
 address 10.10.1.8/32;
 }
 }
}
me0 {
 unit 0 {
 family inet {
 address 172.16.69.8/24;
 }
 }
}

Verify that the interfaces are mapped to the correct bundle:

[edit]
lab@Brandy# run show interfaces terse
Interface Admin Link Proto Local Remote
ge-0/0/0 up up
ge-0/0/1 up up
ge-0/0/1.0 up up eth-switch
ge-0/0/2 up up
ge-0/0/2.0 up up eth-switch
ge-0/0/3 up up
ge-0/0/3.0 up up eth-switch
ge-0/0/4 up up
ge-0/0/4.0 up up eth-switch
ge-0/0/5 up up
ge-0/0/5.0 up up aenet --> ae0.0
ge-0/0/6 up down
ge-0/0/7 up up
ge-0/0/7.0 up up eth-switch
ge-0/0/8 up up
ge-0/0/8.0 up up aenet --> ae0.0
ge-0/0/9 up up
ge-0/0/9.0 up up aenet --> ae0.0
ge-0/0/10 up down
ge-0/0/11 up down
ge-0/0/12 up up
ge-0/0/12.0 up up eth-switch
ge-0/0/13 up down
ge-0/0/14 up down
ge-0/0/15 up down
ge-0/0/16 up down
ge-0/0/17 up down
ge-0/0/18 up down
ge-0/0/19 up down

Aggregated Ethernet | 623

ge-0/0/20 up down
ge-0/0/21 up down
ge-0/0/22 up down
ge-0/0/23 up down
ae0 up up
ae0.0 up up eth-switch
bme0 up up
bme0.32768 up up inet 128.0.0.1/2
 128.0.0.16/2
 128.0.0.32/2
 tnp 0x10
dsc up up
gre up up
ipip up up
lo0 up up
lo0.0 up up inet 10.10.1.6 --> 0/0
lsi up up
me0 up up
me0.0 up up inet 172.16.69.6/24
mtun up up
pimd up up
pime up up
tap up up
vlan up up

Next, verify that LACP is configured and working properly over each member link:

lab@Brandy# run show lacp interfaces
Aggregated interface: ae0
 LACP state: Role Exp Def Dist Col Syn Aggr Timeout Activity
 ge-0/0/5 Actor No No Yes Yes Yes Yes Fast Active
 ge-0/0/5 Partner No No Yes Yes Yes Yes Fast Active
 ge-0/0/8 Actor No No Yes Yes Yes Yes Fast Active
 ge-0/0/8 Partner No No Yes Yes Yes Yes Fast Active
 ge-0/0/9 Actor No No Yes Yes Yes Yes Fast Active
 ge-0/0/9 Partner No No Yes Yes Yes Yes Fast Active
 LACP protocol: Receive State Transmit State Mux State
 ge-0/0/5 Current Fast periodic Collecting distributing
 ge-0/0/8 Current Fast periodic Collecting distributing
 ge-0/0/9 Current Fast periodic Collecting distributing

A link that is not eligible for part of the bundle but is locally configured
for that bundle would be in the detached state:

lab@Brandy# run show lacp interfaces
Aggregated interface: ae0
 LACP state: Role Exp Def Dist Col
Syn Aggr Timeout Activity
 ge-0/0/5 Actor No No Yes Yes
Yes Yes Fast Active
 ge-0/0/5 Partner No No Yes Yes
Yes Yes Fast Active
 ge-0/0/8 Actor No No Yes Yes
Yes Yes Fast Active
 ge-0/0/8 Partner No No Yes Yes
Yes Yes Fast Active
 ge-0/0/9 Actor No No Yes Yes

624 | Chapter 11: High Availability

Yes Yes Fast Active
 ge-0/0/9 Partner No No Yes Yes
Yes Yes Fast Active
 ge-0/0/3 Actor No Yes No No
No Yes Fast Active
 ge-0/0/3 Partner No Yes No No
No Yes Fast Passive
 LACP protocol: Receive State Transmit State
Mux State
 ge-0/0/5 Current Fast periodic
Collecting distributing
 ge-0/0/8 Current Fast periodic
Collecting distributing
 ge-0/0/9 Current Fast periodic
Collecting distributing ge-0/0/3
Defaulted Fast periodic Detached

Traffic should be seen transmitting over the bundle:

lab@Brandy> show interfaces ae0 extensive
Physical interface: ae0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 158, Generation: 131
 Link-level type: Ethernet, MTU: 1514, Speed: 3000mbps,
 MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
 Flow control: Disabled, Minimum links needed: 1, Minimum bandwidth needed: 0
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Current address: 02:1f:12:30:96:80, Hardware address: 02:1f:12:30:96:80
 Last flapped : Never
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 21862038 0 bps
 Output bytes : 49314673 0 bps
 Input packets: 110918 0 pps
 Output packets: 542012 0 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
 Policed discards: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 21, Errors: 0, Drops: 0, MTU errors: 0,
 Resource errors: 0

 Logical interface ae0.0 (Index 65) (SNMP ifIndex 159) (Generation 130)
 Flags: SNMP-Traps 0x0 Encapsulation: ENET2
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 0 0 0 0
 Output: 94538569 0 5901432513 0
 Protocol eth-switch, MTU: 0, Generation: 142, Route table: 0
 Flags: Is-Primary, Trunk-Mode

Aggregated Ethernet | 625

Traffic should also be seen flowing over a member link, depending on the flows that
are being sent:

lab@Brandy> show interfaces ge-0/0/5 extensive
Physical interface: ge-0/0/5, Enabled, Physical link is Up
 Interface index: 135, SNMP ifIndex: 118, Generation: 138
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps,
 MAC-REWRITE Error: None, Loopback: Disabled, Source filtering: Disabled,
 Flow control: Disabled, Auto-negotiation: Enabled, Remote fault: Online
 Device flags : Present Running
 Interface flags: SNMP-Traps Internal: 0x0
 Link flags : None
 CoS queues : 8 supported, 8 maximum usable queues
 Hold-times : Up 0 ms, Down 0 ms
 Current address: 02:1f:12:30:96:80, Hardware address: 00:1f:12:30:96:86
 Last flapped : 2008-08-22 18:22:22 UTC (00:02:21 ago)
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 12442024 0 bps
 Output bytes : 39952569 512 bps
 Input packets: 56154 0 pps
 Output packets: 487302 1 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
 L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
 FIFO errors: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 7, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
 FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
 Egress queues: 8 supported, 4 in use
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 54783 0
 1 assured-forw 0 0 0
 5 expedited-fo 0 0 0
 7 network-cont 0 432519 0
 Active alarms : None
 Active defects : None
 MAC statistics: Receive Transmit
 Total octets 12442024 39952569
 Total packets 56154 487302
 Unicast packets 0 0
 Broadcast packets 0 0
 Multicast packets 56154 487302
 CRC/Align errors 0 0
 FIFO errors 0 0
 MAC control frames 0 0
 MAC pause frames 0 0
 Oversized frames 0
 Jabber frames 0
 Fragment frames 0

626 | Chapter 11: High Availability

 VLAN tagged frames 0
 Code violations 0
 Filter statistics:
 Input packet count 0
 Input packet rejects 0
 Input DA rejects 0
 Input SA rejects 0
 Output packet count 0
 Output packet pad count 0
 Output packet error count 0
 CAM destination filters: 0, CAM source filters: 0
 Autonegotiation information:
 Negotiation status: Complete
 Link partner:
 Link mode: Full-duplex, Flow control: None, Remote fault: OK,
 Link partner Speed: 1000 Mbps
 Local resolution:
 Flow control: None, Remote fault: Link OK
 Packet Forwarding Engine configuration:
 Destination slot: 0
 Direction : Output
 CoS transmit queue Bandwidth Buffer Priority Limit
 % bps % usec
 0 best-effort 95 950000000 95 NA low none
 7 network-control 5 50000000 5 NA low none

 Logical interface ge-0/0/5.0 (Index 71) (SNMP ifIndex 119) (Generation 136)
 Flags: SNMP-Traps Encapsulation: ENET2
 Traffic statistics:
 Input bytes : 0
 Output bytes : 5834273
 Input packets: 0
 Output packets: 27391
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Local statistics:
 Input bytes : 0
 Output bytes : 5834273
 Input packets: 0
 Output packets: 27391
 Transit statistics:
 Input bytes : 0 0 bps
 Output bytes : 0 0 bps
 Input packets: 0 0 pps
 Output packets: 0 0 pps
 IPv6 transit statistics:
 Input bytes : 0
 Output bytes : 0
 Input packets: 0
 Output packets: 0
 Protocol aenet, AE bundle: ae0.0, Generation: 148, Route table: 0

Aggregated Ethernet | 627

Source MAC Selection
The source MAC address of packets transmitted over the bundle must be the same
across any member link. In JUNOS, the AE interface MAC addresses are chosen out
of the possible public MAC addresses:

lab@Ethanol# run show chassis mac-addresses
 FPC 0 MAC address information:
 Public base address 00:1f:12:30:98:40
 Public count 64

This public MAC address is then assigned to the member links while the link is part of
the bundle. This address is a reserved address that should never be forwarded:

lab@Ethanol# run show interfaces | match
02:1f:12:30:98:40
 Current address: 02:1f:12:30:98:40, Hardware
address: 00:1f:12:30:98:43
 Current address: 02:1f:12:30:98:40, Hardware
address: 00:1f:12:30:98:49
 Current address: 02:1f:12:30:98:40, Hardware
address: 00:1f:12:30:98:4a
 Current address: 02:1f:12:30:98:40, Hardware
address: 02:1f:12:30:98:40

Additional configuration options

By default, when there are multiple links in a bundle, all links are used for sending
traffic and the bundle is considered in the Up state if at least one member link is up. To
change this behavior, configure the minimum links command under the aggregated
bundle. For example, setting the minimum links requirement to 2 means that at least
two member links must be up, or the aggregated interface will be in the down state:

lab@Brandy# set interfaces ae0 aggregated-ether-options minimum-links ?
Possible completions:
 <minimum-links> Minimum number of aggregated links (1..8)
[edit]

If you have only two links in a bundle, you can configure LACP link protection. This
creates standby and backup links:

lab@Brandy# show interfaces ae0
aggregated-ether-options {
 link-protection;
 lacp {
 active;
 }
}
unit 0 {
 family ethernet-switching {
 port-mode trunk;
 vlan {
 members [sales admin];
 }

628 | Chapter 11: High Availability

 }
}

[edit]
lab@Brandy# show interfaces ge-0/0/8
ether-options {
 802.3ad {
 ae0;
 primary;
 }
}

[edit]
lab@Brandy# show interfaces ge-0/0/9
ether-options {
 802.3ad {
 ae0;
 backup;
 }
}

Load balancing over AE

When sending traffic over multiple member links, the draft specifies that traffic that is
part of the same “conversation” should always be on the same link. This is done by
creating a hash, based on the conversation and specifying that every packet with that
hash takes the same link. The exact details of the conversation are not defined, but in
JUNOS the hashing works as follows:

• Non-IP traffic hashes on the source and destination MAC addresses (SMAC and
DMAC).

• IP traffic uses the SMAC and DMAC addresses and the IP address, and, if Layer 4
is present, port numbers.

These flows are not user-configurable at this time.

The hash is used only for transit traffic over the AE link. CPU control
packets are always sent out on the lowest-numbered link.

Bidirectional Forwarding Detection (BFD)
BFD is a protocol that was created to detect link failures very quickly. Essentially, it is
a very fast hello protocol that gets around the slower protocol timers in OSPF, RIP,
Intermediate System to Intermediate System (IS-IS), and so on. In a routed environ-
ment, this is especially useful when two Layer 3 devices are connected to a Layer 2
device in the middle (Figure 11-5). The problem is that the Router1 link could go down
on Tequila, but Router2 would not detect the failure until the protocol timed out as a

Bidirectional Forwarding Detection (BFD) | 629

result of its local link remaining up. If OSPF was running, this could take up to 40
seconds with default timers. BFD was created to speed up this detection.

Figure 11-5. Layer 2 interconnection issue

The exact operation of BFD is beyond the scope of this book, but let’s take a look at a
basic description. BFD establishes a session between two endpoints over a particular
link. If more than one link exists between two systems, multiple BFD sessions may be
established to monitor each link. The session is established with a three-way hand-
shake, and is torn down the same way.

BFD does not discover neighbors that are explicitly configured. It uses any underlying
media that is available, and also piggybacks on protocols such as BGP, OSPF, or IS-IS.
The idea is that BFD should be implemented in the PFE of the system for quicker
detection and closer proximity. After all, this protocol is intended to protect the for-
warding from one device to another. In a JUNOS EX Series switch, BFD is configured
under the protocol values. Common protocols in which BFD is used include:

• OSPF

• IS-IS

• BGP

• RIP

• Static Routes

• Protocol Independent Multicast (PIM)

Here’s a quick example. BFD is configured to ride on top of OSPF. The hello interval
is configured for 200 milliseconds, with a total detect time of three times that value
(600 ms):

lab@Rum# show protocols ospf
area 0.0.0.0 {

630 | Chapter 11: High Availability

 interface all {
 bfd-liveness-detection {
 version automatic;
 minimum-interval 200;
 transmit-interval {
 minimum-interval 200;
 }
 }
 }
}

The 200 ms values are just an example, as many options can be set:

[edit]
lab@Rum# set protocols ospf area 0 interface all bfd-liveness-detection ?
Possible completions:
+ apply-groups Groups from which to inherit configuration data
+ apply-groups-except Don't inherit configuration data from these groups
> detection-time Detection-time options
 minimum-interval Minimum transmit and receive interval (milliseconds)
 minimum-receive-interval Minimum receive interval (1..255000 milliseconds)
 multiplier Detection time multiplier (1..255)
 no-adaptation Disable adaptation
> transmit-interval Transmit-interval options
 version BFD protocol version number
[edit]

Verify that the BFD session is up by issuing the run show bfd session extensive
command:

[edit]
lab@Rum# run show bfd session extensive
 Detect Transmit
Address State Interface Time Interval Multiplier
10.5.7.7 Up ge-0/0/4.0 0.600 0.200 3
 Client OSPF Area 0.0.0.0, TX interval 0.200, RX interval 0.200
 Session up time 00:00:13
 Local diagnostic NbrSignal, remote diagnostic None
 Remote state Up, version 1
 Min async interval 0.200, min slow interval 1.000
 Adaptive async TX interval 0.200, RX interval 0.200
 Local min TX interval 0.200, minimum RX interval 0.200, multiplier 3
 Remote min TX interval 0.200, min RX interval 0.200, multiplier 3
 Local discriminator 1, remote discriminator 1
 Echo mode disabled/inactive

1 session, 1 client
Cumulative transmit rate 10.0 pps, cumulative receive rate 10.0 pps

For more information on BFD, please consult JUNOS High Availabil-
ity (O’Reilly).

Bidirectional Forwarding Detection (BFD) | 631

High Availability Summary
We examined several HA features in this chapter, including ISSU, AE, and BFD. These
tools aid in HA goals. ISSU will allow you to upgrade the switch with minimal for-
warding impact, while AE allows for high bandwidth and more reliability by imple-
menting LACP. Lastly, we examined BFD as a mechanism to achieve fast hellos over
links such as the very popular Ethernet that do not contain fast—or, at times, any—
keepalive mechanism.

Conclusion
This chapter examined some of the pieces in High Availability on a single switch, to
help improve your overall system availability. These strategies include hardware fea-
tures such as redundant components, and software features such as ISSU and GRES.
There are even protocols that increase availability, such as LACP for aggregated Ether-
net and the ultra-fast hello mechanism of BFD. Remember that you are only as strong
as your weakest link, and as you add more systems to your network, achieving High
Availability becomes more difficult. As these systems are added, there is a greater prob-
ability of software bugs, component failures, and/or link failures. Keep these issues in
mind as you are deciding to buy that new device for added redundancy!

Chapter Review Questions
1. Which two switches support the remote power supply option?

a. EX3200

b. EX4200

c. EX8208

d. EX8216

2. True or false: all EX Series switches have redundant routing engines.

3. Which feature must be enabled in order to avoid forwarding engine reset during a
routing engine switchover?

a. Hitless switchover

b. Graceful Routing Engine Switchover

c. VRRP

d. BFD

4. How many routers can be in a given VRRP group?

a. 16

b. 8

c. 6

632 | Chapter 11: High Availability

d. Limitless

5. Which feature synchronizes routing state between two routing engines?

a. Synchronized commits

b. Graceful Restart

c. Non-Stop Routing

d. Mirror disk

6. True or false: Graceful Restart needs to be enabled only on the restarting switch.

7. True or false: you can have multiple backup routing engines in a Virtual Chassis.

8. Which end of the link transmits its LACP parameters?

a. Actor

b. Sender

c. Partner

d. Initiator

e. Director

f. Producer

9. Which JUNOS software CLI command allows the switch to respond only to initial
LACP messages?

a. active

b. listen

c. partner

d. passive

10. Which JUNOS software command will show the state of the LACP messages?

a. show eth0

b. show interfaces aggregated-ethernet

c. show lacp interfaces

d. show log lacp messages

11. Which two protocols allow for the sending of BFD messages in JUNOS software?

a. OSPF

b. RSTP

c. EIGRP

d. RIP

12. Which configuration allows an aggregated Ethernet to be created on the chassis?

a. aggregated-devices {
 ethernet {
 device-count 1;
 }
}

Chapter Review Questions | 633

b. ge-0/0/9 {
 ether-options {
 802.3ad ae0;
 }
}

c. ae0 {
 unit 0 {
 family ethernet-switching

d. ae0 {
 ether-options {
 802.3ad ae0;

Chapter Review Answers
1. Answer: A, B. The 3200 and 4200 both support remote power supply options;

however, support is not as common on the 4200, as it also has the option of a
redundant power supply.

2. Answer: False. Only the 8200 series has redundant routing engines; however, the
4200 supports dual REs in a VC configuration.

3. Answer: B. GRES must be enabled to avoid a forwarding reset. This is not the
default behavior of the switch, and must be configured.

4. Answer: D. VRRP can support multiple routers in a group, a single primary, and
multiple backups. In most common deployments a single backup is used.

5. Answer: C. Non-Stop Routing copies routing tables, databases, and TCP state to
the backup routing engine.

6. Answer: False. Graceful Restart has two types of routers: a restarting router and a
helper router. The helper and restarting router must have Graceful Restart config-
ured in order to understand the special messaging that will be exchanged.

7. Answer: False. Although each member switch may contain a routing engine, only
a master and backup routing engine will be active at a given time. The other switch’s
routing engine will be in a cold start state.

8. Answer: C. The partner is the device that will actually send the messages, and the
actor is the end of the link that acts on the message. So far, no one has added a
producer or director to the script.

9. Answer: D. When in passive mode, the switch responds to LACP messages—the
“Don’t speak until I tell you to” method.

10. Answer: C. This is the only command that will show LACP message statistics and
state.

11. Answer: A, D. OSPF and RIP currently support transport of BFD. Thankfully,
EIGRP is not allowed in JUNOS, and spanning tree is not supported in BFD at the
time of this writing.

634 | Chapter 11: High Availability

12. Answer: A. The first step in creating an aggregated Ethernet bundle is to allow
aggregated devices in the chassis. The device count will specify how many bundles
are allowed on the system. Afterward, the actual interface parameters and bundle
mappings are configured.

Chapter Review Answers | 635

Glossary

Author’s note: This is the same glossary we
published in JUNOS Enterprise Routing,
the companion volume to this book. We
include it here for the reader focusing only
on JUNOS switching and the EX plat-
form.

3DES
Data Encryption Standard. Triple DES.

AAL
Asynchronous Transfer Mode (ATM) adap-
tation layer. A series of protocols enabling
various types of traffic, including voice,
data, image, and video, to run over an ATM
network.

AAL5 mode
Asynchronous Transfer Mode (ATM) adap-
tation Layer 5. One of four ATM adaptation
layers (AALs) recommended by the ITU-T.
AAL5 is used predominantly for the transfer
of classical IP over ATM. AAL5 is the least
complex of the current AAL recommenda-
tions. It offers low-bandwidth overhead and
simpler processing requirements in ex-
change for reduced bandwidth capacity and
error-recovery capability. It is a Layer 2 cir-
cuit transport mode that allows you to send
ATM cells between ATM2 IQ interfaces
across a Layer 2 circuit-enabled network.
You use Layer 2 circuit AAL5 transport
mode to tunnel a stream of AAL5-encoded
ATM segmentation and reassembly Proto-
col Data Units (SAR-PDUs) over a Multi-
protocol Label Switching (MPLS) or IP
backbone.

See also cell-relay mode, Layer 2 circuits, standard AAL5
mode, trunk mode.

ABR
Area border router. Router that belongs to
more than one area. Used in Open Shortest
Path First (OSPF).

See also OSPF.

access concentrator
Router that acts as a server in a Point-to-
Point Protocol over Ethernet (PPPoE)
session—for example, an E Series router.

accounting services
Method of collecting network data related
to resource usage.

ACFC
Address and Control Field Compression.
Enables routers to transmit packets without
the two 1-byte address and control fields
(0xff and 0x03) which are normal for Point-
to-Point Protocol (PPP)-encapsulated pack-
ets, thus transmitting less data and conserv-
ing bandwidth. ACFC is defined in RFC
1661, “The Point-to-Point Protocol (PPP).”

See also PFC.

active route
Route chosen from all routes in the routing
table to reach a destination. Active routes
are installed into the forwarding table.

adaptive services
Set of services or applications that you can
configure on an Adaptive Services PIC
(ASP). The services and applications include

637

stateful firewall, Network Address Transla-
tion (NAT), intrusion detection services
(IDSs), Internet Protocol Security (IPSec),
Layer 2 Tunneling Protocol (L2TP), and
voice services.

See also tunneling protocol.

address match conditions
Use of an IP address as a match criterion in
a routing policy or a firewall filter.

adjacency
Portion of the local routing information that
pertains to the reachability of a single neigh-
bor over a single circuit or interface.

Adjacency-RIB-In
Logical software table that contains Border
Gateway Protocol (BGP) routes received
from a specific neighbor.

Adjacency-RIB-Out
Logical software table that contains Border
Gateway Protocol (BGP) routes to be sent to
a specific neighbor.

ADM
Add/drop multiplexer. SONET functional-
ity that allows lower-level signals to be drop-
ped from a high-speed optical connection.

ADSL
Asymmetrical digital subscriber line. A tech-
nology that allows more data to be sent over
existing copper telephone lines, using the
public switched telephone network (PSTN).
ADSL supports data rates from 1.5 Mbps to
9 Mbps when receiving data (downstream
rate) and from 16 Kbps to 640 Kbps when
sending data (upstream rate).

ADSL interface
Asymmetrical digital subscriber line inter-
face. Physical WAN interface that connects
a router to a digital subscriber line access
multiplexer (DSLAM). An ADSL interface
allocates line bandwidth asymmetrically.
Downstream (provider-to-customer) data
rates can be up to 8 Mbps for ADSL, 12
Mbps for ADSL2, and 25 Mbps for
ADSL2+. Upstream (customer-to-provider)
rates can be up to 800 Kbps for ADSL and 1

Mbps for ADSL2 and ADSL2+, depending
on the implementation.

ADSL2 interface
ADSL interface that supports ITU-T Stand-
ard G.992.3 and ITU-T Standard G.992.4.
ADSL2 allocates downstream (provider-to-
customer) data rates of up to 12 Mbps and
upstream (customer-to-provider) rates of up
to 1 Mbps.

ADSL2+ interface
ADSL interface that supports ITU-T Stand-
ard G.992.5. ADSL2+ allocates down-
stream (provider-to-customer) data rates of
up to 25 Mbps and upstream (customer-to-
provider) rates of up to 1 Mbps.

AES
Advanced Encryption Standard. Defined in
FIPS PUB 197. The AES algorithm uses keys
of 128, 192, or 256 bits to encrypt and de-
crypt data in blocks of 128 bits.

aggregate route
Combination of groups of routes that have
common addresses into a single entry in a
routing table.

aggregated interface
Logical bundle of physical interfaces. The
aggregated interface is managed as a single
interface with one IP address. Network traf-
fic is dynamically distributed across ports,
so administration of data flowing across a
given port is done automatically within the
aggregated link. Using multiple ports in par-
allel provides redundancy and increases the
link speed beyond the limits of any single
port.

AH
Authentication header. A component of the
IPSec protocol used to verify that the con-
tents of a packet have not changed, and to
validate the identity of the sender.

ALI
ATM line interface. Interface between Asyn-
chronous Transfer Mode (ATM) and 3G
systems.

address match conditions

638 | Glossary

See also ATM.

ANSI
American National Standards Institute. The
U.S. representative to the International
Organization for Standardization (ISO).

APN
Access point name. When mobile stations
connect to IP networks over a wireless net-
work, the Gateway GPRS Support Node
(GGSN) uses the APN to distinguish among
the connected IP networks (known as APN
networks). In addition to identifying these
connected networks, an APN is also a con-
figured entity that hosts the wireless ses-
sions, which are called Packet Data Protocol
(PDP) contexts.

APQ
Alternate priority queuing. Dequeuing
method that has a special queue, similar to
strict-priority queuing (SPQ), which is vis-
ited only 50% of the time. The packets in the
special queue still have a predictable la-
tency, although the upper limit of the delay
is higher than that with SPQ. Since the other
configured queues share the remaining 50%
of the service time, queue starvation is usu-
ally avoided.

See also SPQ.

APS
Automatic Protection Switching. Technol-
ogy used by SONET add/drop multiplexers
(ADMs) to protect against circuit faults be-
tween the ADM and a router and to protect
against failing routers.

area
1. Routing subdomain that maintains
detailed routing information about its own
internal composition as well as routing
information that allows it to reach other
routing subdomains. In Intermediate
System-to-Intermediate System Level 1 (IS-
IS), an area corresponds to a Level 1 subdo-
main. 2. In IS-IS and Open Shortest Path
First (OSPF), a set of contiguous networks
and hosts within an Autonomous System

(AS) that have been administratively
grouped together.

ARP
Address Resolution Protocol. Protocol used
for mapping IPv4 addresses to Media Access
Control (MAC) addresses.

See also NDP.

AS
Autonomous System. Set of routers under a
single technical administration. Each AS
normally uses a single Interior Gateway Pro-
tocol (IGP) and metrics to propagate routing
information within the set of routers. Also
called a routing domain.

ASBR
Autonomous System Boundary Router. In
Open Shortest Path First (OSPF), a router
that exchanges routing information with
routers in other Autonomous Systems
(ASs).

ASBR Summary LSA
OSPF link state advertisement (LSA) sent by
an area border router (ABR) to advertise the
router ID of an Autonomous System Boun-
dary Router (ASBR) across an area
boundary.

See also ASBR.

AS external link advertisement
OSPF link state advertisement (LSA) sent by
Autonomous System Boundary Routers
(ASBRs) to describe external routes that
they have detected. These LSAs are flooded
throughout the Autonomous System (AS)
(except for stub areas).

ASIC
Application-specific integrated circuit. Spe-
cialized processors that perform specific
functions on the router.

ASM
Adaptive Services Module. On a Juniper
Networks M7i router, provides the same
functionality as the Adaptive Services PIC
(ASP).

ASM

Glossary | 639

ASM
Any Source Multicast. A network that sup-
ports both one-to-many and many-to-many
communication models. An ASM network
must determine all the sources of a group
and deliver all of them to interested
subscribers.

ASP
Adaptive Services PIC.

See also adaptive services.

AS path
In the Border Gateway Protocol (BGP), the
route to a destination. The path consists of
the Autonomous System (AS) numbers of all
routers that a packet must go through to
reach a destination.

ATM
Asynchronous Transfer Mode. A high-
speed multiplexing and switching method
utilizing fixed-length cells of 53 octets to
support multiple types of traffic.

ATM-over-ADSL interface
Asynchronous Transfer Mode (ATM) inter-
face used to send network traffic through a
point-to-point connection to a DSL access
multiplexer (DSLAM). ATM-over-ADSL in-
terfaces are intended for asymmetrical digi-
tal subscriber line (ADSL) connections only,
not for direct ATM connections.

atomic
Smallest possible operation. An atomic op-
eration is performed either entirely or not at
all. For example, if machine failure prevents
a transaction from completing, the system is
rolled back to the start of the transaction,
with no changes taking place.

AUC
Authentication center. Part of the Home Lo-
cation Register (HLR) in third-generation
(3G) systems; performs computations to
verify and authenticate a mobile phone user.

automatic policing
Policer that allows you to provide strict
service guarantees for network traffic. Such
guarantees are especially useful in the

context of differentiated services for traffic-
engineered label-switched paths (LSPs),
providing better emulation for Asynchro-
nous Transfer Mode (ATM) wires over a
Multiprotocol Label Switching (MPLS)
network.

auto-negotiation
Used by Ethernet devices to configure
interfaces automatically. If interfaces sup-
port different speeds or different link modes
(half duplex or full duplex), the devices at-
tempt to settle on the lowest common
denominator.

Autonomous System external link advertisement
OSPF link state advertisement (LSA) sent by
Autonomous System Boundary Routers
(ASBRs) to describe external routes that
they have detected. These LSAs are flooded
throughout the Autonomous System (AS)
(except for stub areas).

Autonomous System path
In the Border Gateway Protocol (BGP), the
route to a destination. The path consists of
the Autonomous System (AS) numbers of all
the routers a packet must pass through to
reach a destination.

auto-RP
Method of electing and announcing the ren-
dezvous point-to-group address mapping in
a multicast network. JUNOS software sup-
ports this vendor-proprietary specification.

See also RP.

backbone area
In Open Shortest Path First (OSPF), an area
that consists of all networks in area ID
0.0.0.0, their attached routers, and all area
border routers (ABRs).

backbone router
Open Shortest Path First (OSPF) router with
all operational interfaces within area
0.0.0.0.

backplane
See midplane.

ASM

640 | Glossary

backup designated router
Open Shortest Path First (OSPF) router on
a broadcast segment that monitors the op-
eration of the designated router and takes
over its functions if the designated router
fails.

BA classifier
Behavior aggregate classifier. A method of
classification that operates on a packet as it
enters the router. The packet header con-
tents are examined, and this single field de-
termines the class-of-service (CoS) settings
applied to the packet.

See also multifield classifier.

bandwidth
Range of transmission frequencies a net-
work can use, expressed as the difference
between the highest and lowest frequencies
of a transmission channel. In computer net-
works, greater bandwidth indicates a faster
data transfer rate capacity.

bandwidth model
In Differentiated Services-aware traffic en-
gineering, determines the value of the avail-
able bandwidth advertised by the Interior
Gateway Protocols (IGPs).

bandwidth on demand
1. A technique to temporarily provide addi-
tional capacity on a link to handle bursts in
data, videoconferencing, or other variable
bit rate applications. Also called flexible
bandwidth allocation. 2. On a Services
Router, an Integrated Services Digital Net-
work (ISDN) cost-control feature defining
the bandwidth threshold that must be
reached on links before a Services Router
initiates additional ISDN data connections
to provide more bandwidth.

B-channel
Bearer channel. A 64 Kbps channel used for
voice or data transfer on an Integrated Serv-
ices Digital Network (ISDN) interface.

See also D-channel.

BECN
Backward explicit congestion notification.
In a Frame Relay network, a header bit
transmitted by the destination device re-
questing that the source device send data
more slowly. BECN minimizes the possibil-
ity that packets will be discarded when more
packets arrive than can be handled.

See also FECN.

Bellman-Ford algorithm
Algorithm used in distance-vector routing
protocols to determine the best path to all
routes in the network.

BERT
Bit error rate test. A test that can be run on
the following interfaces to determine
whether they are operating properly: E1, E3,
T1, T3, and channelized (DS3, OC3, OC12,
and STM1) interfaces.

BFD
Bidirectional Forwarding Detection. A sim-
ple hello mechanism that detects failures in
a network. Used with routing protocols to
speed up failure detection.

BGP
Border Gateway Protocol. Exterior gateway
protocol used to exchange routing informa-
tion among routers in different Autono-
mous Systems (ASs).

bit field match conditions
Use of fields in the header of an IP packet as
match criteria in a firewall filter.

bit rate
Number of bits transmitted per second.

BITS
Building Integrated Timing Source. Dedica-
ted timing source that synchronizes all
equipment in a particular building.

Blowfish
Unpatented, symmetric cryptographic
method developed by Bruce Schneier and
used in many commercial and freeware soft-
ware applications. Blowfish uses variable-
length keys of up to 448 bits.

Blowfish

Glossary | 641

BOOTP
Bootstrap protocol. A User Datagram Pro-
tocol (UDP)/IP-based protocol that allows a
booting host to configure itself dynamically
and without user supervision. BOOTP pro-
vides a means to notify a host of its assigned
IP address, the IP address of a boot server
host, and the name of a file to be loaded into
memory and executed. Other configuration
information, such as the local subnet mask,
the local time offset, the addresses of default
routers, and the addresses of various Inter-
net servers, can also be communicated to a
host using BOOTP.

bootstrap router
Single router in a multicast network respon-
sible for distributing candidate rendezvous
point (RP) information to all Physical Inter-
face Module (PIM)-enabled routers.

BPDU
Bridge Protocol Data Unit. A Spanning Tree
Protocol (STP) hello packet that is sent out
at intervals to exchange information across
bridges and detect loops in a network
topology.

BRI
Basic Rate Interface. Integrated Services
Digital Network (ISDN) interface intended
for home and small enterprise applications.
BRI consists of two 64 Kbps B-channels to
carry voice or data, and one 16 Kbps
D-channel for control and signaling.

See also B-channel, D-channel.

bridge
Device that uses the same communications
protocol to connect and pass packets
between two network segments. A bridge
operates at Layer 2 of the Open Systems
Interconnection (OSI) reference model.

broadcast
Operation of sending network traffic from
one network node to all other network
nodes.

BSC
Base station controller. Key network node
in third-generation (3G) systems that super-
vises the functioning and control of multiple
base transceiver stations.

BSS
Base station subsystem. Composed of the
base transceiver station (BTS) and base sta-
tion controller (BSC).

BSSGP
Base Station System GPRS Protocol. Pro-
cesses routing and quality-of-service (QoS)
information for the base station subsystem
(BSS).

BTS
Base transceiver station. Mobile telephony
equipment housed in cabinets and colloca-
ted with antennas. (Also known as a radio
base station.)

buffers
Memory space for handling data in transit.
Buffers compensate for differences in pro-
cessing speed between network devices and
handle bursts of data until they can be pro-
cessed by slower devices.

bundle
1. Multiple physical links of the same type,
such as multiple asynchronous lines, or
physical links of different types, such as
leased synchronous lines and dial-up asyn-
chronous lines. 2. Collection of software
that makes up a JUNOS software release.

bypass LSP
Carries traffic for a label-switched path
(LSP) whose link-protected interface has
failed. A bypass LSP uses a different inter-
face and path to reach the same destination.

CA
Certificate authority. A trusted third-party
organization that creates, enrolls, validates,
and revokes digital certificates. The CA
guarantees a user’s identity and issues pub-
lic and private keys for message encryption
and decryption (coding and decoding).

BOOTP

642 | Glossary

CAC
Call admission control. In Differentiated
Services-aware traffic engineering, checks
for adequate bandwidth on the path before
the label-switched path (LSP) is established.
If the bandwidth is insufficient, the LSP is
not established and an error is reported.

CAIDA
Cooperative Association for Internet Data
Analysis. An association that provides tools
and analyses promoting the engineering and
maintenance of a robust, scalable Internet
infrastructure. One tool, cflowd, allows you
to collect an aggregate of sampled flows and
send the aggregate to a specified host that
runs the cflowd application available from
CAIDA.

callback
Alternative feature to dial-in that enables a
J Series services router to call back the caller
from the remote end of a backup Integrated
Services Digital Network (ISDN) connec-
tion. Instead of accepting a call from the
remote end of the connection, the router re-
jects the call, waits a configured period of
time, and calls a number configured on the
router’s dialer interface.

See also dial-in.

caller ID
Telephone number of the caller on the re-
mote end of a backup Integrated Services
Digital Network (ISDN) connection, used
to dial in and to identify the caller. Multiple
caller IDs can be configured on an ISDN
dialer interface. During dial-in, the router
matches the incoming call’s caller ID against
the caller IDs configured on its dialer inter-
faces. Each dialer interface accepts calls only
from callers whose caller IDs are configured
on it.

CAMEL
Customized Applications of Mobile En-
hanced Logic. An ETSI standard for GSM
networks that enhances the provision of In-
telligent Network services.

candidate configuration
File maintained by the JUNOS software
containing changes to the router’s active
configuration. This file becomes the active
configuration when a user issues the
commit command.

candidate RP advertisements
Information sent by routers in a multicast
network when they are configured as a local
rendezvous point (RP). This information is
unicast to the bootstrap router for the mul-
ticast domain.

carrier-of-carriers VPN
Virtual private network (VPN) service sup-
plied to a network service provider that is
supplying either Internet service or VPN
service to an end customer. For a carrier-of-
carriers VPN, the customer’s sites are
configured within the same Autonomous
System (AS).

CB
Control Board. On a T640 routing node,
part of the host subsystem that provides
control and monitoring functions for router
components.

CBC
Cipher block chaining. A mode of encryp-
tion using 64 or 128 bits of fixed-length
blocks in which each block of plain text is
XORed with the previous cipher text block
before being encrypted.

See also XOR.

CBR
Constant bit rate. For ATM1 and ATM2 in-
telligent queuing (IQ) interfaces, data that is
serviced at a constant, repetitive rate. CBR
is used for traffic that does not need to pe-
riodically burst to a higher rate, such as non-
packetized voice and audio.

CCC
Circuit cross-connect. A JUNOS software
feature that allows you to configure trans-
parent connections between two circuits. A
circuit can be a Frame Relay data-link con-
nection identifier (DLCI), an Asynchronous

CCC

Glossary | 643

Transfer Mode (ATM) virtual channel, a
Point-to-Point Protocol (PPP) interface, a
Cisco High-Level Data Link Control
(HDLC) interface, or a Multiprotocol Label
Switching (MPLS) label-switched path
(LSP).

CDMA
Code Division Multiple Access. Technology
for digital transmission of radio signals be-
tween, for example, a mobile telephone and
a base transceiver station (BTS).

CDMA2000
Radio transmission and backbone technol-
ogy for the evolution to third-generation
(3G) mobile networks.

CDR
Call Detail Record. A record containing data
(such as origination, termination, length,
and time of day) unique to a specific call.

CE device
Customer edge device. Router or switch in
the customer’s network that is connected to
a service provider’s provider edge (PE)
router and participates in a Layer 3 virtual
private network (VPN).

cell relay
Data transmission technology based on the
use of small, fixed-size packets (cells) that
can be processed and switched in hardware
at high speeds. Cell relay is the basis for
many high-speed network protocols, in-
cluding Asynchronous Transfer Mode
(ATM) and IEEE 802.6.

cell-relay mode
Layer 2 circuit transport mode that sends
Asynchronous Transfer Mode (ATM) cells
between ATM2 intelligent queuing (IQ) in-
terfaces over a Multiprotocol Label Switch-
ing (MPLS) core network. You use Layer 2
circuit cell-relay transport mode to tunnel a
stream of ATM cells over an MPLS or IP
backbone.

See also AAL5 mode, Layer 2 circuits, standard AAL5
mode, trunk mode.

cell tax
Physical transmission capacity used by
header information when sending data
packets in an Asynchronous Transfer Mode
(ATM) network. Each ATM cell uses a 5-
byte header.

CFEB
Compact Forwarding Engine Board. In M7i
and M10i routers, provides route lookup,
filtering, and switching to the destination
port.

cflowd
Application available from CAIDA that col-
lects an aggregate of sampled flows and
sends the aggregate to a specified host run-
ning the cflowd application.

CFM
Cubic feet per minute. Measure of air flow
in volume per minute.

channel
Communication circuit linking two or more
devices. A channel provides an input/output
interface between a processor and a periph-
eral device, or between two systems. A sin-
gle physical circuit can consist of one or
many channels, or two systems carried on a
physical wire or wireless medium. For ex-
ample, the dedicated channel between a
telephone and the central office (CO) is a
twisted-pair copper wire.

See also frequency-division multiplexed channel, time-
division multiplexed channel.

channel group
Combination of DS0 interfaces partitioned
from a channelized interface into a single
logical bundle.

channelized E1
A 2.048 Mbps interface that can be config-
ured as a single clear-channel E1 interface or
channelized into as many as 31 discrete DS0
interfaces. On most channelized E1 interfa-
ces, time slots are numbered from 1 through
32, and time slot 1 is reserved for framing.
On some legacy channelized E1 interfaces,

CDMA

644 | Glossary

time slots are numbered from 0 through 31,
and time slot 0 is reserved for framing.

channelized interface
Interface that is a subdivision of a larger in-
terface, minimizing the number of Physical
Interface Cards (PICs) or Physical Interface
Modules (PIMs) that an installation re-
quires. On a channelized PIC or PIM, each
port can be configured as a single clear chan-
nel or partitioned into multiple discrete T3,
T1, E1, and DS0 interfaces, depending on
the size of the channelized PIC or PIM.

channelized T1
A 1.544 Mbps interface that can be config-
ured as a single clear-channel T1 interface
or channelized into as many as 24 discrete
DS0 interfaces. Time slots are numbered
from 1 through 24.

CHAP
Challenge Handshake Authentication Pro-
tocol. A protocol that authenticates remote
users. CHAP is a server-driven, three-step
authentication mechanism that depends on
a shared secret password that resides on
both the server and the client.

chassisd
Chassis daemon. A JUNOS software proc-
ess responsible for managing the interaction
of the router’s physical components.

CIDR
Classless Inter-Domain Routing. A method
of specifying Internet addresses in which
you explicitly specify the bits of the address
to represent the network address instead of
determining this information from the first
octet of the address.

CIP
Connector Interface Panel. On an M160
router, the panel that contains connectors
for the routing engines (REs), BITS interfa-
ces, and alarm relay contacts.

CIR
Committed information rate. The CIR
specifies the average rate at which packets
are admitted to the network. As each packet

enters the network, it is counted. Packets
that do not exceed the CIR are marked
green, which corresponds to low loss prior-
ity. Packets that exceed the CIR but are be-
low the peak information rate (PIR) are
marked yellow, which corresponds to me-
dium loss priority.

See also trTCM, PIR.

Cisco-RP-Announce
Message advertised into a multicast net-
work by a router configured as a local ren-
dezvous point (RP) in an auto-RP network.
A Cisco-RP-Announce message is adver-
tised in Dense-mode Physical Interface
Module (PIM) to the 224.0.1.39 multicast
group address.

Cisco-RP-Discovery
Message advertised by the mapping agent in
an auto-RP network. A Cisco-RP-Discovery
message contains the rendezvous point (RP)
to multicast group address assignments for
the domain. It is advertised in Dense-mode
Physical Interface Module (PIM) to the
224.0.1.40 multicast group address.

classification
In class of service (CoS), the examination of
an incoming packet that associates the
packet with a particular CoS servicing level.
There are two kinds of classifiers: behavior
aggregate (BA) and multifield.

See also BA classifier, multifield classifier.

classifier
Method of reading a sequence of bits in a
packet header or label and determining how
the packet should be forwarded internally
and scheduled (queued) for output.

class type
In Differentiated Services-aware traffic en-
gineering, a collection of traffic flows that
are treated equally in a Differentiated
Services domain. A class type maps to a
queue and is much like a class-of-service
(CoS) forwarding class in concept. It is also
known as a traffic class.

class type

Glossary | 645

clear channel
Interface configured on a channelized Phys-
ical Interface Card (PIC) or Physical Inter-
face Module (PIM) that operates as a single
channel, does not carry signaling, and uses
the entire port bandwidth.

CLEC
(Pronounced “see-lek.”) Competitive local
exchange carrier. Company that competes
with the already established local telecom-
munications business by providing its own
network and switching.

CLEI
Common Language Equipment Identifier.
Inventory code used to identify and track
telecommunications equipment.

CLI
Command-line interface. Interface provi-
ded for configuring and monitoring the
routing protocol software.

client peer
In a Border Gateway Protocol (BGP) route
reflection, a member of a cluster that is not
the route reflector.

See also nonclient peer.

CLNP
Connectionless Network Protocol. An ISO-
developed protocol for Open Systems Inter-
connection (OSI) connectionless network
service. CLNP is the OSI equivalent of IP.

CLNS
Connectionless Network Service. A Layer 3
protocol, similar to Internet Protocol ver-
sion 4 (IPv4). CLNS uses network service
access points (NSAPs) instead of the prefix
addresses found in IPv4 to specify end sys-
tems and intermediate systems.

cluster
In the Border Gateway Protocol (BGP), a set
of routers that have been grouped together.
A cluster consists of one system that acts as
a route reflector, along with any number of
client peers. The client peers receive their
route information only from the route

reflector system. Routers in a cluster do not
need to be fully meshed.

CO
Central office. The local telephone company
building that houses circuit-switching
equipment used for subscriber lines in a
given area.

code-point alias
Name assigned to a pattern of code-point
bits. This name is used, instead of the bit
pattern, in the configuration of other class-
of-service (CoS) components, such as clas-
sifiers, drop-profile maps, and rewrite rules.

command completion
Function of a router’s command-line inter-
face (CLI) that allows a user to enter only
the first few characters in any command.
Users access this function through the space
bar or Tab key.

commit
JUNOS software command-line interface
(CLI) configuration-mode command that
saves changes made to a router configura-
tion, verifies the syntax, applies the changes
to the configuration currently running on
the router, and identifies the resultant file as
the current operational configuration.

commit script
Script that enforces custom configuration
rules. A script runs each time a new candi-
date configuration is committed and in-
spects the configuration. If a configuration
breaks your custom rules, the script can gen-
erate actions for the JUNOS software.

commit script macro
Sequence of commands that allows you to
create custom configuration syntax to sim-
plify the task of configuring a routing plat-
form. By itself, your custom syntax has no
operational impact on the routing platform.
A corresponding commit script macro uses
your custom syntax as input data for
generating standard JUNOS configuration
statements that execute your intended
operation.

clear channel

646 | Glossary

community
1. In the Border Gateway Protocol (BGP), a
group of destinations that share a common
property. Community information is inclu-
ded as one of the path attributes in BGP up-
date messages. 2. In the Simple Network
Management Protocol (SNMP), an authen-
tication scheme that authorizes SNMP cli-
ents based on the source IP address of in-
coming SNMP packets, defines which Man-
agement Information Base (MIB) objects are
available, and specifies the operations (read-
only or read-write) allowed on those
objects.

confederation
In the Border Gateway Protocol (BGP), a
group of systems that appears to external
Autonomous Systems (ASs) as a single AS.

configuration mode
JUNOS software mode that allows a user to
alter the router’s current configuration.

Connect
Border Gateway Protocol (BGP) neighbor
state in which the local router has initiated
the Transmission Control Protocol (TCP)
session and is waiting for the remote peer to
complete the TCP connection.

constrained path
In traffic engineering, a path determined us-
ing the CSPF algorithm. The ERO carried in
the Resource Reservation Protocol (RSVP)
packets contains the constrained path
information.

See also ERO.

context node
Node that the Extensible Stylesheet Lan-
guage for Transformations (XSLT) pro-
cessor is currently examining. XSLT
changes the context as it traverses the XML
document’s hierarchy.

See also XSLT.

context-sensitive help
Function of the router’s command-line
interface (CLI) that allows a user to request
information on the JUNOS software

hierarchy. You can access context-sensitive
help in both operational and configuration
modes.

contributing routes
Active IP routes in the routing table that
share the same most-significant bits and are
more specific than an aggregate or generated
route.

control plane
Virtual network path used to set up, main-
tain, and terminate data plane connections.

See also data plane.

core
Central backbone of the network.

CoS
Class of service. Method of classifying traffic
on a packet-by-packet basis using informa-
tion in the type-of-service (ToS) byte to
provide different service levels to different
traffic.

cosd
Class-of-service (CoS) process that enables
the routing platform to provide different lev-
els of service to applications based on packet
classifications.

CPE
Customer premises equipment. Telephone,
modem, router, or other service provider
equipment located at a customer site.

craft interface
Mechanisms used by a Communication
Workers of America craftsperson to oper-
ate, administer, and maintain equipment or
provision data communications. On a Juni-
per Networks router, the craft interface al-
lows you to view status and troubleshooting
information and perform system control
functions.

CRL
Certificate revocation list. A list of digital
certificates that have been invalidated, in-
cluding the reasons for revocation and the
names of the entities that issued them. A
CRL prevents usage of digital certificates

CRL

Glossary | 647

and signatures that have been compro-
mised.

CRTP
Compressed Real-time Transport Protocol.
Protocol that decreases the size of the IP,
User Datagram Protocol (UDP), and Real-
Time Transport Protocol (RTP) headers and
works with reliable and fast point-to-point
links for Voice over IP traffic. CRTP is de-
fined in RFC 2508.

Crypto Accelerator Module
Processor card that speeds up certain cryp-
tographic IP Security (IPSec) services on
some J Series services routers. For the sup-
ported cryptographic algorithms, see the J
Series documentation.

Crypto Officer
Superuser responsible for the proper opera-
tion of a router running JUNOS-FIPS
software.

CSCP
Class Selector code point. Eight Differenti-
ated Services code point (DSCP) values of
the form xxx000 (where x can be 0 or 1).
Defined in RFC 2474.

CSNP
Complete sequence number PDU. Packet
that contains a complete list of all the label-
switched paths (LSPs) in the Intermediate
System-to-Intermediate System Level 1
(IS-IS) database.

CSP
Critical Security Parameter. On routers run-
ning JUNOS-FIPS software, a collection of
cryptographic keys and passwords that
must be protected at all times.

CSPF
Constrained Shortest Path First. A Multi-
protocol Label Switching (MPLS) algorithm
that has been modified to take into account
specific restrictions when calculating the
shortest path across the network.

CSU/DSU
Channel service unit/data service unit. A
channel service unit connects a digital
phone line to a multiplexer or other digital
signal device. A data service unit connects a
data terminating equipment (DTE) device
to a digital phone line.

CVS
Concurrent Versions System. A widely used
version control system for software devel-
opment or data archives.

daemon
Background process that performs opera-
tions for the system software and hardware.
Daemons normally start when the system
software is booted, and run as long as the
software is running. In the JUNOS software,
daemons are also referred to as processes.

damping
Method of reducing the number of update
messages sent between Border Gateway Pro-
tocol (BGP) peers, thereby reducing the load
on these peers without adversely affecting
the route convergence time for stable routes.

database description packet
Open Shortest Path First (OSPF) packet
type used in the formation of an adjacency.
The packet sends summary information
about the local router’s database to the
neighboring router.

data-MDT
Data-driven multicast distribution tree
(MDT) tunnel. A multicast tunnel created
and deleted based on defined traffic loads
and designed to ease loading on the default
MDT tunnel.

data packet
Chunk of data transiting the router from the
source to a destination.

data plane
Virtual network path used to distribute data
between nodes.

See also control plane.

CRTP

648 | Glossary

dcd
Device control process. A JUNOS software
interface process (daemon).

DCE
Data circuit-terminating equipment. An
RS-232C device, typically used for a modem
or printer, or a network access and packet
switching node.

D-channel
Delta channel. A circuit-switched channel
that carries signaling and control for B-chan-
nels. In Basic Rate Interface (BRI) applica-
tions, it can also support customer packet
data traffic at speeds up to 9.6 kbps.

See also B-channel, BRI.

DCU
Destination class usage. A means of tracking
traffic originating from specific prefixes on
the customer edge router and destined for
specific prefixes on the provider core router,
based on the IP source and destination
addresses.

DE
Discard-eligible bit. In a Frame Relay net-
work, a header bit notifying devices on the
network that traffic can be dropped during
congestion to ensure the delivery of higher-
priority traffic.

deactivate
Method of modifying the router’s active
configuration. Portions of the hierarchy
marked as inactive using this command are
ignored during the router’s commit process
as though they were not configured at all.

dead interval
Amount of time that an Open Shortest Path
First (OSPF) router maintains a neighbor re-
lationship before declaring that neighbor as
no longer operational. The JUNOS software
uses a default value of 40 seconds for this
timer.

dead peer detection
See DPD.

default address
Router address that is used as the source ad-
dress on unnumbered interfaces.

default route
Route used to forward IP packets when a
more specific route is not present in the
routing table. Often represented as
0.0.0.0/0, the default route is sometimes
referred to as the route of last resort.

demand circuit
Network segment whose cost varies with
usage, according to a service level agreement
(SLA) with a service provider. Demand cir-
cuits limit traffic based on either bandwidth
(bits or packets transmitted) or access time.

See also multicast.

Dense mode
Method of forwarding multicast traffic to
interested listeners. Dense mode forwarding
assumes that most of the hosts on the net-
work will receive the multicast data. Routers
flood packets and prune unwanted traffic
every three minutes.

DES
Data Encryption Standard. A method for
encrypting information using a 56-bit key.
Considered to be a legacy method and inse-
cure for many applications.

See also 3DES.

designated router
In Open Shortest Path First (OSPF), a router
selected by other routers that is responsible
for sending link state advertisements (LSAs)
that describe the network, thereby reducing
the amount of network traffic and the size
of the routers’ topological databases.

destination prefix length
Number of bits of the network address used
for the host portion of a Classless Inter-
Domain Routing (CIDR) IP address.

DFC
Dynamic flow capture. Process of collecting
packet flows that match a particular filter
list to one or more content destinations

DFC

Glossary | 649

using an on-demand control protocol that
relays requests from one or more control
sources.

DHCP
Dynamic Host Configuration Protocol. Al-
locates IP addresses dynamically so that
they can be reused when no longer needed.

dial backup
Feature that reestablishes network connec-
tivity through one or more backup Integra-
ted Services Digital Network (ISDN) dialer
interfaces after a primary interface fails.
When the primary interface is reestablished,
the ISDN interface is disconnected.

dialer filter
Stateless firewall filter that enables dial-on-
demand routing backup when applied to a
physical Integrated Services Digital Net-
work (ISDN) interface and its dialer inter-
face configured as a passive static route. The
passive static route has a lower priority than
dynamic routes. If all dynamic routes to an
address are lost from the routing table and
the router receives a packet for that address,
the dialer interface initiates an ISDN backup
connection and sends the packet over it.

See also dial-on-demand routing (DDR) backup, floating
static route.

dialer interface (dl)
Logical interface for configuring dialing
properties and the control interface for a
backup Integrated Services Digital Network
(ISDN) connection.

dialer profile
Set of characteristics configured for the In-
tegrated Services Digital Network (ISDN)
dialer interface. Dialer profiles allow the
configuration of physical interfaces to be
separated from the logical configuration of
dialer interfaces required for ISDN connec-
tivity. This feature also allows physical and
logical interfaces to be bound together dy-
namically on a per-connection basis.

dialer watch
Dial-on-demand routing (DDR) backup fea-
ture that provides reliable connectivity with-
out relying on a dialer filter to activate the
Integrated Services Digital Network (ISDN)
interface. The ISDN dialer interface moni-
tors the existence of each route on a watch
list. If all routes on the watch list are lost
from the routing table, dialer watch initiates
the ISDN interface for failover connectivity.

See also dial-on-demand routing (DDR) backup.

dial-in
Feature that enables J Series services routers
to receive calls from the remote end of a
backup Integrated Services Digital Network
(ISDN) connection. The remote end of the
ISDN call might be a service provider, a cor-
porate central location, or a customer prem-
ises equipment (CPE) branch office. All
incoming calls can be verified against caller
IDs configured on the router’s dialer
interface.

See also callback.

dial-on-demand routing (DDR) backup
Feature that provides a J Series services
router with full-time connectivity across an
Integrated Services Digital Network (ISDN)
line. When routes on a primary serial T1,
E1, T3, E3, Fast Ethernet, or Point-to-Point
Protocol over Ethernet (PPPoE) interface are
lost, an ISDN dialer interface establishes a
backup connection. To save connection
time costs, the services router drops the
ISDN connection after a configured period
of inactivity. Services routers with ISDN in-
terfaces support two types of DDR backup:
on-demand routing with a dialer filter and
with a dialer watch.

See also dialer filter, dialer watch.

Differentiated Services-aware traffic engineering
Type of constraint-based routing that can
enforce different bandwidth constraints for
different classes of traffic. It can also per-
form call admission control (CAC) on each
traffic engineering class when a label-
switched path (LSP) is established.

DHCP

650 | Glossary

Differentiated Services domain
Routers in a network that have Differenti-
ated Services enabled.

Diffie-Hellman
Method of key exchange across a nonsecure
environment, such as the Internet. The Dif-
fie-Hellman algorithm negotiates a session
key without sending the key itself across the
network by allowing each party to pick a
partial key independently and send part of
it to each other. Each side then calculates a
common key value. This is a symmetrical
method and keys are typically used for only
a short time, then discarded and regener-
ated.

DiffServ
Differentiated Services (based on RFC
2474). DiffServ uses the type-of-service
(ToS) byte to identify different packet flows
on a packet-by-packet basis. DiffServ adds a
Class Selector code point (CSCP) and a Dif-
ferentiated Services code point (DSCP).

DiffServ-aware
Paradigm that gives different treatment to
traffic based on the experimental (EXP) bits
in the Multiprotocol Label Switching
(MPLS) label header and allows you to pro-
vide multiple classes of service (CoS).

digital certificate
Electronic file based on private and public
key technology that verifies the identity of
the certificate’s holder to protect data
exchanged online. Digital certificates are
issued by a certificate authority (CA).

Dijkstra algorithm
See SPF.

DIMM
Dual inline memory module. A 168-pin
memory module that supports 64-bit data
transfer.

direct routes
See interface routes.

disable
Method of modifying the router’s active
configuration. When portions of the

hierarchy are marked as disabled (mainly
router interfaces), the router uses the con-
figuration but ignores the disabled portions.

discard
JUNOS software syntax command used in
a routing policy or a firewall filter. The com-
mand halts the logical processing of the pol-
icy or filter when a set of match conditions
is met. The specific route or IP packet is
dropped from the network silently. It can
also be a next hop attribute assigned to a
route in the routing table.

distance-vector
Method used in Bellman-Ford routing pro-
tocols to determine the best path to all rout-
ers in the network. Each router determines
the distance (metric) to the destination and
the vector (next hop) to follow.

Distributed Buffer Manager ASIC
Juniper Networks ASIC responsible for
managing the router’s packet storage
memory.

DLCI
Data-link connection identifier. Identifier
for a Frame Relay virtual connection (also
called a logical interface).

DLSw
Data link switching. Method of tunneling
IBM System Network Architecture (SNA)
and NetBIOS traffic over an IP network.
(The JUNOS software does not support
NetBIOS.)

See also tunneling protocol.

DLSw circuit
Path formed by establishing data link con-
trol (DLC) connections between an end sys-
tem and a local router configured for DLSw.
Each DLSw circuit is identified by the circuit
ID that includes the end system Media Ac-
cess Control (MAC) address, local service
access point (LSAP), and DLC port ID. Mul-
tiple DLSw circuits can operate over the
same DLSw connection.

DLSw circuit

Glossary | 651

DLSw connection
Set of Transmission Control Protocol (TCP)
connections between two data link switch-
ing (DLSw) peers that is established after the
initial handshake and successful capabilities
exchange.

DNS
Domain Name System. A system that stores
information about hostnames and domain
names. DNS provides an IP address for each
hostname, and lists the email exchange serv-
ers accepting email addresses for each
domain.

DoS
Denial of service. A system security breach
in which network services become unavail-
able to users.

DPD
Dead peer detection. Protocol that recogni-
zes the loss of the primary IPSec Internet Key
Exchange (IKE) peer and establishes a sec-
ondary IPSec tunnel to a backup peer.

DRAM
Dynamic random access memory. Storage
source on the router that can be accessed
quickly by a process.

drop probability
Percentage value that expresses the likeli-
hood that an individual packet will be
dropped from the network.

See also drop profile.

drop profile
Mechanism of random early detection
(RED) that defines parameters that allow
packets to be dropped from the network.
When you configure drop profiles, there are
two important values: the queue fullness
and the drop probability.

See also drop probability, queue fullness, RED.

DSAP
Destination service access point. Service
access point (SAP) that identifies the desti-
nation for which a Logical Link Control Pro-
tocol Data Unit (LPDU) is intended.

DS0
Digital signal level 0. In T-carrier systems, a
basic digital signaling rate of 64 Kbps. The
DS0 rate forms the basis for the North
American digital multiplex transmission
hierarchy.

DS1
Digital signal level 1. In T-carrier systems, a
digital signaling rate of 1.544 Mbps. A
standard used in telecommunications to
transmit voice and data among devices. Also
known as T1.

See also T1.

DS3
Digital signal level 3. In T-carrier systems, a
digital signaling rate of 44.736 Mbps. This
level of carrier can transport 28 DS1-level
signals and 672 DS0-level channels within
its payload. Also known as T3.

See also T3.

DSCP
Differentiated Services code point or Diff-
Serv code point. Values for a 6-bit field de-
fined for IPv4 and IPv6 packet headers that
can be used to enforce class-of-service (CoS)
distinctions in routers.

DSU
Data service unit. A device used to connect
data terminal equipment (DTE) to a digital
phone line. DSU converts digital data from
a router to voltages and encoding required
by the phone line.

See also CSU/DSU.

DTCP
Dynamic Tasking Control Protocol. A
means of communicating filter requests and
acknowledgments between one or more cli-
ents and a monitoring platform, used in
dynamic flow capture (DFC) and flow-tap
configurations. The protocol is defined in
Internet draft draft-cavuto-dtcp-00.txt.

DTD
Document type definition. Defines the
elements and structure of an Extensible

DLSw connection

652 | Glossary

Markup Language (XML) document or data
set.

DTE
Data terminal equipment. An RS-232-C
interface that a computer uses to exchange
information with a serial device.

DVMRP
Distance Vector Multicast Routing Proto-
col. Distributed multicast routing protocol
that dynamically generates IP multicast de-
livery trees using a technique called reverse-
path multicasting (RPM) to forward multi-
cast traffic to downstream interfaces.

DWDM
Dense wavelength-division multiplexing.
Technology that enables data from different
sources to be carried together on an optical
fiber, with each signal carried on its own
separate wavelength.

dynamic label-switched path
Multiprotocol Label Switching (MPLS) net-
work path established by signaling proto-
cols such as the Resource Reservation
Protocol (RSVP) and Label Distribution
Protocol (LDP).

E1
High-speed WAN digital communications
protocol that operates at a rate of 2.048
Mbps.

E3
High-speed WAN digital communications
protocol that operates at a rate of 34.368
Mbps and uses time-division multiplexing
to carry 16 E1 circuits.

EAL3
Common Criteria Evaluation Assurance
Level 3. Evaluation Assurance Level is an
assurance and compliance requirement de-
fined by Common Criteria. Higher levels
have more stringent requirements.

EBGP
External BGP. A Border Gateway Protocol
(BGP) configuration in which sessions are

established between routers in different Au-
tonomous Systems (ASs).

E-carrier
E stands for European. Standards that form
part of the Synchronous Digital Hierarchy
(SDH), in which groups of E1 circuits are
bundled onto higher-capacity E3 links be-
tween telephone exchanges or countries.
E-carrier standards are used just about ev-
erywhere in the world except North Amer-
ica and Japan, and are incompatible with the
T-carrier standards.

ECC
Error checking and correction. The process
of detecting errors during the transmission
or storage of digital data and correcting
them automatically. This usually involves
sending or storing extra bits of data accord-
ing to specified algorithms.

ECSA
Exchange Carriers Standards Association. A
standards organization created after the di-
vestiture of the Bell System to represent the
interests of interexchange carriers.

edge router
In Multiprotocol Label Switching (MPLS), a
router located at the beginning or end of a
label-switching tunnel. An edge router at the
beginning of a tunnel applies labels to new
packets entering the tunnel. An edge router
at the end of a tunnel removes labels from
packets exiting the tunnel.

See also MPLS.

editor macros (Emacs)
Shortcut keystrokes used within the router’s
command-line interface (CLI). These mac-
ros move the cursor and delete characters
based on the sequence you specify.

EGP
Exterior Gateway Protocol; an example is
the Border Gateway Protocol (BGP).

egress router
In Multiprotocol Label Switching (MPLS),
the last router in a label-switched path
(LSP).

egress router

Glossary | 653

See also ingress router.

EIA
Electronic Industries Association. A U.S.
trade group that represents manufacturers
of electronic devices and sets standards and
specifications.

EIA-530
Serial interface that employs the EIA-530
standard for the interconnection of data ter-
minating equipment (DTE) and data circuit-
terminating equipment (DCE).

EIR
Equipment identity register. A mobile net-
work database that contains information
about devices using the network.

embedded OS software
Software used by a Juniper Networks router
to operate the physical router components.

EMI
Electromagnetic interference. Any electro-
magnetic disturbance that interrupts, ob-
structs, or otherwise degrades or limits the
effective performance of electronics or elec-
trical equipment.

end system
In Intermediate System-to-Intermediate
System Level 1 (IS-IS), a network entity that
sends and receives packets.

EPD
Early packet discard. For ATM2 interfaces
only, a limit on the number of transmit
packets that can be queued. Packets that ex-
ceed the limit are dropped.

See also queue length.

ERO
Explicit Route Object. An extension to the
Resource Reservation Protocol (RSVP) that
allows an RSVP PATH message to traverse
an explicit sequence of routers that is inde-
pendent of conventional shortest-path IP
routing.

ESD
Electrostatic discharge. Stored static
electricity that can damage electronic

equipment and impair electrical circuitry
when released.

ES-IS
End System-to-Intermediate System. Proto-
col that resolves Layer 3 ISO network service
access points (NSAPs) to Layer 2 addresses.
ES-IS resolution is similar to the way the
Address Resolution Protocol (ARP) resolves
Layer 2 addresses for IPv4.

ESP
Encapsulating Security Payload. A protocol
for securing packet flows for IPSec using en-
cryption, data integrity checks, and sender
authentication, which are added as a header
to an IP packet. If an ESP packet is success-
fully decrypted, and no other party knows
the secret key the peers share, the packet was
not wiretapped in transit.

See also AH.

Established
Border Gateway Protocol (BGP) neighbor
state that represents a fully functional BGP
peering session.

Ethernet
Local area network (LAN) technology used
for transporting information from one loca-
tion to another, formalized in the IEEE
standard 802.3. Ethernet uses either coaxial
cable or twisted-pair cable. Transmission
speeds for data transfer range from the orig-
inal 10 Mbps, to Fast Ethernet at 100 Mbps,
to Gigabit Ethernet at 1000 Mbps.

ETSI
European Telecommunications Standardi-
zation Institute. A nonprofit organization
that produces voluntary telecommunica-
tions standards used throughout Europe.

eventd
Event policy process that performs config-
ured actions in response to events on a
routing platform that trigger system log
messages.

EIA

654 | Glossary

exact
JUNOS software routing policy match type
that represents only the route specified in a
route filter.

exception packet
IP packet that is not processed by the normal
packet flow through the Packet Forwarding
Engine. Exception packets include local de-
livery information, expired Time to Live
(TTL) packets, and packets with an IP
option specified.

Exchange
Open Shortest Path First (OSPF) adjacency
state in which two neighboring routers are
actively sending database description pack-
ets to each other to exchange their database
contents.

EXP bits
Experimental bits, also known as the class-
of-service (CoS) bits, located in each Multi-
protocol Label Switching (MPLS) label and
used to encode the CoS value of a packet as
it traverses a label-switched path (LSP).

export
Placing of routes from the routing table into
a routing protocol.

ExStart
Open Shortest Path First (OSPF) adjacency
state in which the neighboring routers ne-
gotiate to determine which router is in
charge of the synchronization process.

Extensible Markup Language
See XML.

external metric
Cost included in a route when Open Short-
est Path First (OSPF) exports route infor-
mation from external Autonomous Systems
(ASs). There are two types of external met-
rics: Type 1 and Type 2. Type 1 external
metrics are equivalent to the link-state met-
ric; that is, the cost of the route, used in the
internal AS. Type 2 external metrics are
greater than the cost of any path internal to
the AS.

FA
Forwarding adjacency. Resource Reserva-
tion Protocol (RSVP) label-switched path
(LSP) tunnel through which one or more
other RSVP LSPs can be tunneled.

fabric schedulers
Identify a packet as high or low priority
based on its forwarding class, and associate
schedulers with the fabric priorities.

failover
Process by which a standby or secondary
system component automatically takes over
the functions of an active or primary com-
ponent when the primary component fails
or is temporarily shut down or removed for
servicing. During failover, the system con-
tinues to perform normal operations with
little or no interruption in service.

See also GRES.

Fast Ethernet
Term encompassing a number of Ethernet
standards that carry traffic at the nominal
rate of 100 Mbps, instead of the original
Ethernet speed of 10 Mbps.

See also Ethernet, Gigabit Ethernet.

fast port
Fast Ethernet port on a J4300 services
router, and either a Fast Ethernet port or
DS3 port on a J6300 services router. Only
enabled ports are counted. A two-port Fast
Ethernet Physical Interface Module (PIM)
with one enabled port counts as one fast
port. The same PIM with both ports enabled
counts as two fast ports.

fast reroute
Mechanism for automatically rerouting traf-
fic on a label-switched path (LSP) if a node
or link in an LSP fails, thus reducing the loss
of packets traveling over the LSP.

FBF
Filter-based forwarding. A filter that classi-
fies packets to determine their forwarding
path within a router. FBF is used to redirect
traffic for analysis.

FBF

Glossary | 655

FCS
Frame check sequence. A calculation that is
added to a frame for error control. FCS is
used in High-level Data Link Control
(HDLC), Frame Relay, and other Data Link
layer protocols.

FDDI
Fiber Distributed Data Interface. A set of
ANSI protocols for sending digital data over
fiber-optic cable. FDDI networks are token-
passing networks, and support data rates of
up to 100 Mbps (100 million bits). FDDI
networks are typically used as backbones
for WANs.

FEAC
Far-end alarm and control. A T3 signal used
to send alarm or status information from the
far-end terminal back to the near-end ter-
minal, and to initiate T3 loopbacks at the
far-end terminal from the near-end
terminal.

FEB
Forwarding Engine Board. In M5 and M10
routers, provides route lookup, filtering,
and switching to the destination port.

FEC
Forwarding equivalence class. Criterion
used to forward a set of packets, with similar
or identical characteristics, using the same
Multiprotocol Label Switching (MPLS) la-
bel. Forwarding equivalence classes are de-
fined in the base Label Distribution Protocol
(LDP) specification and can be extended
through the use of additional parameters.
FECs are also represented in other LDPs.

FECN
Forward explicit congestion notification. In
a Frame Relay network, a header bit trans-
mitted by the source device requesting that
the destination device slow down its
requests for data. FECN and backward
explicit congestion notification (BECN)
minimize the possibility that packets will be
discarded when more packets arrive than
can be handled.

See also BECN.

FIFO
First in, first out. Scheduling method in
which the first data packet stored in the
queue is the first data packet removed from
the queue. All JUNOS software interface
queues operate in this mode by default.

filter
Process or device that screens packets based
on certain characteristics, such as source ad-
dress, destination address, or protocol, and
forwards or discards packets that match the
filter. Filters are used to control data packets
or local packets.

See also packet.

FIPS
Federal Information Processing Standards.
Defines, among other things, security levels
for computer and networking equipment.
FIPS is usually applied to military environ-
ments.

firewall
Security gateway positioned between two
networks, usually between a trusted net-
work and the Internet. A firewall ensures
that all traffic that crosses it conforms to the
organization’s security policy. Firewalls
track and control communications, decid-
ing whether to pass, reject, discard, encrypt,
or log them. Firewalls also can be used to
secure sensitive portions of a local network.

firewall filter
See stateful firewall filter.

firmware
Instructions and data programmed directly
into the circuitry of a hardware device for
the purpose of controlling the device. Firm-
ware is used for vital programs that must not
be lost when the device is powered off.

first in, first out
See FIFO.

flap damping
See damping.

flapping
See route flapping.

FCS

656 | Glossary

flash drive
Non-volatile memory card in Juniper Net-
works M Series and T Series routing plat-
forms used for storing a copy of the JUNOS
software and the current and most recent
router configurations. It also typically acts
as the primary boot device.

Flexible PIC Concentrator
See FPC.

floating static route
Route with an administrative distance
greater than the administrative distance of
the dynamically learned versions of the
same route. The static route is used only
when the dynamic routes are no longer
available. When a floating static route is
configured on an interface with a dialer fil-
ter, the interface can be used for backup.

flood and prune
Method of forwarding multicast data pack-
ets in a Dense-mode network. Flooding and
pruning occur every three minutes.

flow
Stream of routing information and packets
that are handled by the Routing Engine (RE)
and the Packet Forwarding Engine (PFE).
The RE handles the flow of routing infor-
mation between the routing protocols and
the routing tables and between the routing
tables and the forwarding tables, as well as
the flow of local packets from the router
physical interfaces to the RE. The PFE han-
dles the flow of data packets into and out of
the router’s physical interfaces.

flow collection interface
Interface that combines multiple cflowd re-
cords into a compressed ASCII data file and
exports the file to an FTP server for storage
and analysis, allowing users to manipulate
the output from traffic monitoring
operations.

flow control action
JUNOS software syntax used in a routing
policy or firewall filter. It alters the default
logical processing of the policy or filter when
a set of match conditions is met.

flow monitoring
Application that monitors the flow of traffic
and enables lawful interception of packets
transiting between two routers. Traffic
flows can be passively monitored by an off-
line router or actively monitored by a router
participating in the network.

flow-tap application
Application that uses Dynamic Tasking
Control Protocol (DTCP) requests to inter-
cept IPv4 packets in an active monitoring
router and send a copy of packets that match
filter criteria to one or more content desti-
nations. Flow-tap configurations can be
used in flexible trend analysis for detecting
new security threats and lawfully intercept-
ing data.

forwarding classes
Affect the forwarding, scheduling, and
marking policies applied to packets as
they transit a routing platform. The for-
warding class plus the loss priority define
the per-hop behavior. Also known as or-
dered aggregates in the IETF Differentiated
Services architecture.

forwarding table
JUNOS software forwarding information
base. The JUNOS routing protocol process
installs active routes from its routing tables
into the routing engine (RE) forwarding ta-
ble. The kernel copies this forwarding table
into the Packet Forwarding Engine (PFE),
which determines which interface transmits
the packets.

FPC
Flexible PIC Concentrator. An interface
concentrator on which Physical Interface
Cards (PICs) are mounted. An FPC is inser-
ted into a slot in a Juniper Networks router.

See also PIC.

fractional E1
Interface that contains one or more of the 32
DS0 time slots that can be reserved from an
E1 interface. (The first time slot is reserved
for framing.)

fractional E1

Glossary | 657

fractional interface
Interface that contains one or more DS0
time slots reserved from an E1 or T1 inter-
face. Fractional interfaces allow service pro-
viders to provision part of an E1 or T1
interface to one customer and the other part
to another customer. The individual frac-
tional interfaces connect to different desti-
nations, and customers pay for only the
bandwidth fraction used and not for the
entire E1 or T1 interface.

Fractional interfaces can be configured on
both channelized Physical Interface Cards
(PICs) and Physical Interface Modules
(PIMs) and unchannelized, regular E1 and
T1 PICs and PIMs.

fractional T1
Interface that contains one or more of the 24
DS0 time slots that can be reserved from a
T1 interface.

fragmentation
In the Transmission Control Protocol/Inter-
net Protocol (TCP/IP), the process of break-
ing packets into the smallest maximum size
packet data unit (PDU) supported by any of
the underlying networks. In the OSI refer-
ence model, this process is known as seg-
mentation. For JUNOS applications, split
Layer 3 packets can then be encapsulated in
Multilink Frame Relay (MLFR) or the Mul-
tilink Point-to-Point Protocol (MLPPP) for
transport.

Frame Relay
Efficient replacement for the older X.25 pro-
tocol that does not require explicit acknowl-
edgment of each frame of data. Frame Relay
allows private networks to reduce costs by
using shared facilities between the endpoint
switches of a network managed by a Frame
Relay service provider. Individual data-link
connection identifiers (DLCIs) are assigned
to ensure that each customer receives only
its own traffic.

frequency-division multiplexed channel
Signals carried at different frequencies and
transmitted over a single wire or wireless
medium.

FRF
Frame Relay Forum. A technical committee
that promotes Frame Relay by negotiating
agreements and developing standards.

FRF.15
End-to-end Frame Relay Implementation
Agreement. An implementation of Multi-
link Frame Relay (MLFR) using multiple
virtual connections to aggregate logical
bandwidth for end-to-end Frame Relay. Re-
leased by the Frame Relay Forum.

FRF.16
Multilink Frame Relay Implementation
Agreement. An implementation of Multi-
link Frame Relay (MLFR) in which a single
logical connection is provided by multiplex-
ing multiple physical interfaces for user-to-
network interface and network-to-network
interface (UNI/NNI) connections. Released
by the Frame Relay Forum.

FRU
Field Replaceable Unit. A router component
that customers can replace onsite.

FTP
File Transfer Protocol. Application protocol
that is part of the Transmission Control Pro-
tocol/Internet Protocol (TCP/IP) protocol
stack. Used for transferring files among net-
work nodes. FTP is defined in RFC 959.

Full
Open Shortest Path First (OSPF) adjacency
state that represents a fully functional neigh-
bor relationship.

fxp0
See management Ethernet interface.

fxp1
JUNOS software permanent interface used
for communications between the routing
engine (RE) and the Packet Forwarding

fractional interface

658 | Glossary

Engine (PFE). This interface is not present
in all routers.

fxp2
JUNOS software permanent interface used
for communications between the routing
engine (RE) and the Packet Forwarding En-
gine (PFE). This interface is not present in
all routers.

Garbage Collection Timer
Timer used in a distance-vector network
that represents the time remaining before a
route is removed from the routing table.

G-CDR
GGSN call detail record. Collection of
charges in ASN.1 format that is eventually
billed to a mobile station user.

generated route
Summary route that uses an IP address next
hop to forward packets in an IP network. A
generated route is functionally similar to an
aggregated route.

GGSN
Gateway GPRS support node. A router that
serves as a gateway between mobile net-
works and packet data networks.

Gigabit Ethernet
Term describing various technologies for
implementing Ethernet networking at a
nominal speed of one gigabit per second.
Gigabit Ethernet is supported over both op-
tical fiber and twisted-pair cable. Physical
layer standards include 1000Base-T, 1 Gbps
over CAT-5e copper cabling, and 1000Base-
SX for short to medium distances over fiber.

See also Ethernet, Fast Ethernet.

GMPLS
Generalized Multiprotocol Label Switching.
A protocol that extends the functionality of
Multiprotocol Label Switching (MPLS) to
include a wider range of label-switched path
(LSP) options for a variety of network
devices.

GPRS
General Packet Radio System. A packet-
switched service that allows full mobility
and wide-area coverage as information is
sent and received across a mobile network.

Graceful Restart
Process that allows a router whose control
plane is undergoing a restart to continue to
forward traffic while recovering its state
from neighboring routers. Without Grace-
ful Restart, a control plane restart disrupts
services provided by the router.

graceful switchover
JUNOS software feature that allows a
change from the primary device, such as a
routing engine (RE), to the backup device
without interruption of packet forwarding.

gratuitous
ARP broadcast request for a router’s own IP
address to check whether that address is be-
ing used by another node. Primarily used to
detect IP address duplication.

GRE
Generic Routing Encapsulation. A general
tunneling protocol that can encapsulate
many types of packets to enable data trans-
mission through a tunnel. GRE is used with
IP to create a virtual point-to-point link to
routers at remote points in a network.

See also tunneling protocol.

GRES
Graceful Routing Engine Switchover. In a
router that contains a master and a backup
routing engine (RE), allows the backup RE
to assume mastership automatically, with
no disruption of packet forwarding.

group
Collection of related Border Gateway Pro-
tocol (BGP) peers.

group address
IP address used as the destination address in
a multicast IP packet. The group address
functionally represents the senders and in-
terested receivers for a particular multicast
data stream.

group address

Glossary | 659

G.SHDSL
Symmetric high-speed digital subscriber
line (SHDSL). Standard published in 2001
by the ITU-T with recommendation ITU
G.991.2 G.SHDSL. G.SHDSL incorporates
features of other DSL technologies such as
asymmetrical DSL (ADSL).

See also SHDSL, ADSL.

GSM
Global System for Mobile Communica-
tions. A second-generation (2G) mobile
wireless networking standard defined by
ETSI that uses TDMA technology and
operates in the 900 MHz radio band.

See also TDMA.

GTP
GPRS tunneling protocol. A protocol that
transports IP packets between an SGSN and
a GGSN.

See also tunneling protocol.

GTP-C
GGSN tunneling protocol, control. A
protocol that allows an SGSN to establish
packet data network access for a mobile
station.

See also tunneling protocol.

GTP-U
GGSN tunneling protocol, user plane. A
protocol that carries mobile station user
data packets.

See also tunneling protocol.

hashing
Cryptographic technique applied over and
over (iteratively) to a message of arbitrary
length to produce a hash “message digest”
or “signature” of fixed length that is appen-
ded to the message when it is sent. In secur-
ity, used to validate that the contents of a
message have not been altered in transit.
The Secure Hash Algorithm (SHA-1) and
Message Digest 5 (MD5) are commonly
used hashes.

See also SHA-1, MD5.

HDLC
High-Level Data Link Control. An Interna-
tional Telecommunication Union (ITU)
standard for a bit-oriented Data Link layer
protocol on which most other bit-oriented
protocols are based.

health monitor
JUNOS software extension to the RMON
alarm system that provides predefined mon-
itoring for filesystem, CPU, and memory
usage. The health monitor also supports
unknown or dynamic object instances such
as JUNOS processes.

hello interval
Amount of time an Open Shortest Path First
(OSPF) router continues to send a hello
packet to each adjacent neighbor.

hello mechanism
Process used by a Resource Reservation Pro-
tocol (RSVP) router to enhance the detec-
tion of network outages in a Multiprotocol
Label Switching (MPLS) network.

HLR
Home Location Register. Database contain-
ing information about a subscriber and the
current location of a subscriber’s mobile
station.

HMAC
Hashed Message Authentication Code. A
mechanism for message authentication that
uses cryptographic hash functions. HMAC
can be used with any iterative cryptographic
hash function—for example, Message Di-
gest 5 (MD5) or Secure Hash Algorithm
(SHA-1)—in combination with a secret
shared key. The cryptographic strength of
HMAC depends on the properties of the un-
derlying hash function. Defined in RFC
2104, “HMAC: Keyed-Hashing for Message
Authentication.”

hold down
Timer used by distance-vector protocols to
prevent the propagation of incorrect routing
knowledge to other routers in the network.

G.SHDSL

660 | Glossary

hold time
Maximum number of seconds allowed to
elapse between successive keepalive or up-
date messages that a Border Gateway Pro-
tocol (BGP) system receives from a peer.

host membership query
Internet Group Management Protocol
(IGMP) packet sent by a router to determine
whether interested receivers exist on a
broadcast network for multicast traffic.

host membership report
Internet Group Management Protocol
(IGMP) packet sent by an interested receiver
for a particular multicast group address.
Hosts send report messages when they first
join a group or in response to a query packet
from the local router.

host module
On an M160 router, provides the routing
and system management functions of the
router. Consists of the routing engine (RE)
and Miscellaneous Control Subsystem
(MCS).

host subsystem
On a T640 routing node, provides the rout-
ing and system management functions of
the router. Consists of a routing engine (RE)
and an adjacent Control Board (CB).

hot standby
In JUNOS, method used with link services
intelligent queuing interfaces (LSQs) to en-
able rapid switchover between primary and
secondary (backup) Physical Interface
Cards (PICs).

See also warm standby.

HSCSD
High-Speed Circuit Switched Data. Circuit-
switched wireless data transmission for mo-
bile users, at data rates up to 38.4 Kbps.

HTTP
Hypertext Transfer Protocol. Method used
to publish and receive information on the
Web, such as text and graphics files.

HTTPS
Hypertext Transfer Protocol over Secure
Sockets Layer. Similar to HTTP, with an
added encryption layer that encrypts and
decrypts user page requests and pages that
are returned by a web server. Used for secure
communication, such as payment transac-
tions.

IANA
Internet Assigned Numbers Authority. A
regulatory group that maintains all assigned
and registered Internet numbers, such as IP
and multicast addresses.

IBGP
Internal BGP. A Border Gateway Protocol
(BGP) configuration in which sessions are
established between routers in the same Au-
tonomous System (AS).

ICMP
Internet Control Message Protocol. Used in
router discovery, ICMP allows router adver-
tisements that enable a host to discover ad-
dresses of operating routers on the subnet.

IDE
Integrated Drive Electronics. Type of hard
disk on a routing engine (RE).

IDEA
International Data Encryption Algorithm.
An algorithm that uses a 128-bit key and is
one of the methods at the heart of Pretty
Good Privacy (PGP). IDEA is patented by
Ascom Tech AG and is popular in Europe.

Idle
Initial Border Gateway Protocol (BGP)
neighbor state in which the local router re-
fuses all incoming session requests.

IDS
Intrusion detection service. A service that
inspects all inbound and outbound network
activity and identifies suspicious patterns
that may indicate a network or system attack
from someone attempting to break into or
compromise a system.

IDS

Glossary | 661

IEC
International Electrotechnical Commis-
sion.

See also ISO.

IEEE
Institute of Electrical and Electronics Engi-
neers. An international professional society
for electrical engineers.

IETF
Internet Engineering Task Force. An inter-
national community of network designers,
operators, vendors, and researchers con-
cerned with the evolution of Internet archi-
tecture and the smooth operation of the
Internet.

I-frame
Information frame used to transfer data in
sequentially numbered logical link control
Protocol Data Units (LPDUs) between link
stations.

IGMP
Internet Group Management Protocol.
Used with multicast protocols to determine
whether group members are present.

IGP
Interior Gateway Protocol, such as Inter-
mediate System to Intermediate System
Level 1 (IS-IS), Open Shortest Path First
(OSPF), and the Routing Information Pro-
tocol (RIP).

IKE
Internet Key Exchange. Part of IPSec that
provides ways to securely negotiate the
shared private keys that the authentication
header (AH) and Encapsulating Security
Payload (ESP) portions of IPSec need to
function properly. IKE employs Diffie-Hell-
man methods and is optional in IPSec (the
shared keys can be entered manually at the
endpoints).

ILMI
Integrated Local Management Interface. A
specification developed by the ATM Forum
that incorporates network management ca-
pabilities into the Asynchronous Transfer

Mode (ATM) user-to-network interface
(UNI) and provides bidirectional exchange
of management information between UNI
management entities (UMEs).

IMEI
International Mobile Station Equipment
Identity. A unique code used to identify an
individual mobile station to a GSM
network.

import
Installation of routes from the routing pro-
tocols into a routing table.

IMSI
International Mobile Subscriber Identity.
Information that identifies a particular sub-
scriber to a GSM network.

IMT-2000
International Mobile Telecommunications
2000. Global standard for third-generation
(3G) wireless communications, defined by a
set of interdependent ITU recommenda-
tions. IMT-2000 provides a framework for
worldwide wireless access by linking the di-
verse systems of terrestrial and satellite-
based networks.

inet.0
Default JUNOS software routing table for
IPv4 unicast routers.

inet.1
Default JUNOS software routing table for
storing the multicast cache for active data
streams in the network.

inet.2
Default JUNOS software routing table for
storing unicast IPv4 routes specifically used
to prevent forwarding loops in a multicast
network.

inet.3
Default JUNOS software routing table for
storing the egress IP address of a Multipro-
tocol Label Switching (MPLS) label-
switched path.

IEC

662 | Glossary

inet.4
Default JUNOS software routing table for
storing information generated by the Multi-
cast Source Discovery Protocol (MSDP).

inet6.0
Default JUNOS software routing table for
storing unicast IPv6 routes.

infinity metric
Metric value used in distance-vector proto-
cols to represent an unusable route. For the
Routing Information Protocol (RIP), the in-
finity metric is 16.

ingress router
In Multiprotocol Label Switching (MPLS),
the first router in a label-switched path
(LSP).

See also egress router.

Init
Open Shortest Path First (OSPF) adjacency
state in which the local router has received
a hello packet but bidirectional communi-
cation is not yet established.

insert
JUNOS software command that allows a
user to reorder terms in a routing policy or
a firewall filter, or to change the order of a
policy chain.

instance.inetflow.0
Routing table that shows route flows
through the Border Gateway Protocol
(BGP).

inter-AS routing
Routing of packets among different Auton-
omous Systems (ASs).

See also EBGP.

intercluster reflection
In a Border Gateway Protocol (BGP) route
reflection, the redistribution of routing in-
formation by a route reflector system to all
nonclient peers (BGP peers not in the
cluster).

See also route reflection.

interface cost
Value added to all received routes in a dis-
tance-vector network before they are placed
into the routing table. The JUNOS software
uses a cost of 1 for this value.

interface preservation
See link-state replication.

interface routes
Routes that are in the routing table because
an interface has been configured with an IP
address. Also called direct routes.

intermediate system
In Intermediate System-to-Intermediate
System Level 1 (IS-IS), the network entity
that sends and receives packets and can also
route packets.

Internet Processor ASIC
Juniper Networks ASIC responsible for
using the forwarding table to make routing
decisions within the Packet Forwarding En-
gine (PFE). The Internet Processor ASIC
also implements firewall filters.

interprovider VPN
Virtual private network (VPN) that provides
connectivity between separate Autonomous
Systems (ASs) with separate border edge
routers. It is used by VPN customers who
have connections to several different Inter-
net service providers (ISPs), or different
connections to the same ISP in different
geographic regions, each of which has a
different AS.

intra-AS routing
Routing of packets within a single Autono-
mous System (AS).

See also IBGP.

I/O Manager ASIC
Juniper Networks ASIC responsible for seg-
menting data packets into 64-byte J-cells
and for queuing resultant cells before
transmission.

I/O Manager ASIC

Glossary | 663

IP
Internet Protocol. The protocol used for
sending data from one point to another on
the Internet.

IPCP
IP Control Protocol. Protocol that estab-
lishes and configures IP over the Point-to-
Point Protocol (PPP).

IPSec
IP Security. A standard way to add security
to Internet communications. The secure as-
pects of IPSec are usually implemented in
three parts: the authentication header (AH),
the Encapsulating Security Payload (ESP),
and the Internet Key Exchange (IKE).

IQ
Intelligent queuing. M Series and T Series
routing platform interfaces that offer gran-
ular quality-of-service (QoS) capabilities;
extensive statistics on packets and bytes that
are transmitted, received, or dropped; and
embedded diagnostic tools.

IRDP
ICMP Router Discovery Protocol. A proto-
col that enables a host to determine the ad-
dress of a router that it can use as a default
gateway.

ISAKMP
Internet Security Association and Key Man-
agement Protocol. A protocol that allows
the receiver of a message to obtain a public
key and use digital certificates to authenti-
cate the sender’s identity. ISAKMP is key-
exchange-independent; that is, it supports
many different key exchanges.

See also IKE, Oakley.

ISDN
Integrated Services Digital Network. A set of
digital communications standards that ena-
ble the transmission of information over ex-
isting twisted-pair telephone lines at higher
speeds than standard analog telephone
service. An ISDN interface provides multi-
ple B-channels (bearer channels) for data

and one D-channel for control and signaling
information.

See also B-channel, D-channel.

IS-IS
Intermediate System-to-Intermediate Sys-
tem. A link-state, interior gateway routing
protocol for IP networks that also uses the
Shortest Path First (SPF) algorithm to deter-
mine routes.

ISO
International Organization for Standardiza-
tion. A worldwide federation of standards
bodies that promotes international stand-
ardization and publishes international
agreements as International Standards.

ISP
Internet service provider. Company that
provides access to the Internet and related
services.

ITU-T
International Telecommunication Union
Telecommunication Standardization (for-
merly known as the CCITT). Group sup-
ported by the United Nations that makes
recommendations and coordinates the de-
velopment of telecommunications stand-
ards for the entire world.

ITU-T Rec. G.992.1
International standard that defines the
asymmetrical digital subscriber line
(ADSL). Annex A defines how ADSL works
over twisted-pair copper (POTS) lines. An-
nex B defines how ADSL works over Inte-
grated Services Digital Network (ISDN)
lines.

jbase
JUNOS software package containing up-
dates to the kernel.

jbundle
JUNOS software package containing all
possible software package files.

J-cell
A 64-byte data unit used within the Packet
Forwarding Engine (PFE). All IP packets

IP

664 | Glossary

processed by a Juniper Networks router are
segmented into J-cells.

jdocs
JUNOS software package containing the
documentation set.

jitter
Small random variation introduced into the
value of a timer to prevent multiple timer
expirations from becoming synchronized.
In real-time applications such as Voice over
IP and video, variation in the rate at which
packets in a stream are received that can
cause quality degradation.

jkernel
JUNOS software package containing the
basic components of the software.

Join message
Physical Interface Module (PIM) message
sent hop by hop upstream toward a multi-
cast source or the rendezvous point (RP) of
the domain. It requests that multicast traffic
be sent downstream to the router originat-
ing the message.

jpfe
JUNOS software package containing the
embedded OS software for operating the
Packet Forwarding Engine (PFE).

jroute
JUNOS software package containing the
software used by the routing engine (RE).

J-Web
Graphical web browser interface to the JU-
NOS Internet software on routing plat-
forms. With the J-Web interface, you can
monitor, configure, diagnose, and manage
the routing platform from a PC or laptop
that has Hypertext Transfer Protocol
(HTTP) or HTTP over Secure Sockets Layer
(HTTPS) enabled.

keepalive message
Message sent between network devices to
inform each other that they are still active.

kernel
Basic software component of the JUNOS
software. The kernel operates the various
processes used to control the router’s
operations.

kernel forwarding table
See forwarding table.

kmd
Key management process that provides IP-
Sec authentication services for encryption of
Physical Interface Cards (PICs).

L2TP
Layer 2 Tunneling Protocol. A procedure for
secure communication of data across a
Layer 2 network that enables users to estab-
lish Point-to-Point Protocol (PPP) sessions
between tunnel endpoints. L2TP uses pro-
files for individual user and group access to
ensure secure communication that is as
transparent as possible to both end users
and applications.

See also tunneling protocol.

label
In Multiprotocol Label Switching (MPLS), a
20-bit unsigned integer from 0 through
1,048,575, used to identify a packet travel-
ing along a label-switched path (LSP).

Label Distribution Protocol
See LDP.

label object
Resource Reservation Protocol (RSVP) mes-
sage object that contains the label value
allocated to the next downstream router.

label pop operation
Function performed by a Multiprotocol La-
bel Switching (MPLS) router in which the
top label in a label stack is removed from the
data packet.

label push operation
Function performed by a Multiprotocol La-
bel Switching (MPLS) router in which a new
label is added to the top of the data packet.

label push operation

Glossary | 665

label request object
Resource Reservation Protocol (RSVP) mes-
sage object that requests each router along
the path of a label-switched path (LSP) to
allocate a label for forwarding.

label swap operation
Function performed by a Multiprotocol La-
bel Switching (MPLS) router in which the
top label in a label stack is replaced with a
new label before the data packet is forwar-
ded to the next hop router.

label values
A 20-bit field in a Multiprotocol Label
Switching (MPLS) header used by routers to
forward data traffic along an MPLS label-
switched path (LSP).

LAN PHY
Local Area Network Physical Layer Device.
A physical layer device that allows 10 Giga-
bit Ethernet wide area links to use existing
Ethernet applications.

See also PHY, WAN PHY.

Layer 2 circuits
Collection of transport modes that accept a
stream of Asynchronous Transfer Mode
(ATM) cells, convert them to an encapsula-
ted Layer 2 format, and then tunnel them
over a Multiprotocol Label Switching
(MPLS) or IP backbone, where a similarly
configured routing platform segments these
packets back into a stream of ATM cells, to
be forwarded to the virtual circuit config-
ured for the far-end routing platform. Layer
2 circuits are designed to transport Layer 2
frames between provider edge (PE) routing
platforms across a Label Distribution Pro-
tocol (LDP)-signaled MPLS backbone.

See also AAL5 mode, cell-relay mode, standard AAL5
mode, trunk mode.

Layer 2 VPN
Provides a private network service among a
set of customer sites using a service pro-
vider’s existing Multiprotocol Label Switch-
ing (MPLS) and IP network. A customer’s
data is separated from other data using

software rather than hardware. In a Layer 2
VPN, the Layer 3 routing of customer traffic
occurs within the customer’s network.

Layer 3 VPN
Provides a private network service among a
set of customer sites using a service pro-
vider’s existing Multiprotocol Label Switch-
ing (MPLS) and IP network. A customer’s
routes and data are separated from other
routes and data using software rather than
hardware. In a Layer 3 VPN, the Layer 3
routing of customer traffic occurs within the
service provider’s network.

LCC
Line Card Chassis. Term used by the
JUNOS command-line interface (CLI) to
refer to a T640 routing node in a routing
matrix.

LCP
Link Control Protocol. A traffic controller
used to establish, configure, and test data-
link connections for the Point-to-Point
Protocol (PPP).

LDAP
Lightweight Directory Access Protocol.
Software protocol used for locating resour-
ces on a public or private network.

LDP
Label Distribution Protocol. A protocol for
distributing labels in non-traffic-engineered
applications. LDP allows routers to estab-
lish label-switched paths (LSPs) through a
network by mapping network-layer routing
information directly to Data Link layer
switched paths.

leaf node
Terminating node of a multicast distribu-
tion tree. A router that is a leaf node only has
receivers and does not forward multicast
packets to other routers.

LFI
Link fragmentation and interleaving. A
method that reduces excessive delays by
fragmenting long packets into smaller pack-
ets and interleaving them with real-time

label request object

666 | Glossary

frames. For example, short delay-sensitive
packets, such as packetized voice, can race
ahead of larger delay-insensitive packets,
such as common data packets.

liblicense
Library that includes messages generated for
routines for software license management.

libpcap
Implementation of the pcap application
programming interface. libpcap is used by a
program to capture packets traveling over a
network.

See also pcap.

limited operational environment
Term used to describe the restrictions
placed on FIPS-certified equipment.

See also FIPS.

line loopback
Method of troubleshooting a problem with
physical transmission media in which a
transmission device in the network sends
the data signal back to the originating
router.

link
Communication path between two neigh-
bors. A link is up when communication is
possible between the two endpoints.

link protection
Method of establishing bypass label-
switched paths (LSPs) to ensure that traffic
going over a specific interface to a neighbor-
ing router can continue to reach the router
if that interface fails. The bypass LSP uses a
different interface and path to reach the
same destination.

link services intelligent queuing interfaces
See LSQ.

link-state acknowledgment
Open Shortest Path First (OSPF) data
packet used to inform a neighbor that a link-
state update packet has been successfully
received.

link-state database
All routing knowledge in a link-state net-
work is contained in this database. Each
router runs the Shortest Path First (SPF) al-
gorithm against this database to locate the
best network path to each destination in the
network.

link-state PDU
Packet that contains information about the
state of adjacencies to neighboring systems.

link-state replication
Addition to the SONET Automatic Protec-
tion Switching (APS) functionality that
helps promote redundancy of the link Phys-
ical Interface Cards (PICs) used in LSQ con-
figurations. If the active SONET PIC fails,
links from the standby PIC are used without
causing a link renegotiation. Also called
interface preservation.

link-state request list
List generated by an Open Shortest Path
First (OSPF) router during the exchange of
database information while forming an ad-
jacency. Advertised information by a neigh-
bor that the local router does not contain is
placed in this list.

link-state request packet
Open Shortest Path First (OSPF) data
packet used by a router to request database
information from a neighboring router.

link-state update
Open Shortest Path First (OSPF) data
packet that contains one of multiple link
state advertisements (LSAs). It is used to ad-
vertise routing knowledge into the network.

LLC
Logical Link Control. Data Link layer
protocol used on a LAN. LLC1 provides
connectionless data transfer, and LLC2 pro-
vides connection-oriented data transfer.

LLC frame
Unit of data that contains specific informa-
tion about the LLC layer and identifies line
protocols associated with the layer.

LLC frame

Glossary | 667

See also LLC.

LMI
Local management interface. Enhance-
ments to the basic Frame Relay specifica-
tions, providing support for the following:

• A keepalive mechanism that verifies the
flow of data

• A multicast mechanism that provides a
network server with a local data-link
connection identifier (DLCI) and mul-
ticast DLCI

• In Frame Relay networks, global
addressing that gives DLCIs global
instead of local significance

• A status mechanism that provides a
switch with ongoing status reports on
known DLCIs

LMP
Link Management Protocol. Part of
GMPLS, a protocol used to define a for-
warding adjacency between peers and to
maintain and allocate resources on the traf-
fic engineering links.

load balancing
Process that installs all next hop destina-
tions for an active route in the forwarding
table. You can use load balancing across
multiple paths between routers. The behav-
ior of load balancing depends on the version
of the Internet Processor ASIC in the router.
Also called per-packet load balancing.

loading
Open Shortest Path First (OSPF) adjacency
state in which the local router sends link-
state request packets to its neighbor and
waits for the appropriate link-state updates
from that neighbor.

local packet
Chunk of data destined for or sent by the
routing engine (RE).

local preference
Optional Border Gateway Protocol (BGP)
path attribute carried in internal BGP

update packets that indicate the degree of
preference for an external route.

local RIB
Logical software table that contains Border
Gateway Protocol (BGP) routes used by the
local router to forward data packets.

local significance
Concept used in a Multiprotocol Label
Switching (MPLS) network where the label
values are unique only between two neigh-
bor routers.

logical interface
On a physical interface, the configuration of
one or more units that include all address-
ing, protocol information, and other logical
interface properties that enable the physical
interface to function.

logical operator
Characters used in a firewall filter to repre-
sent a Boolean AND or OR operation.

logical router
Logical routing device that is partitioned
from an M Series or T Series routing plat-
form. Each logical router independently
performs a subset of the tasks performed by
the main router and has a unique routing
table, interfaces, policies, and routing
instances.

longer
JUNOS software routing policy match type
that represents all routes more specific than
the given subnet, but not the given subnet
itself. It is similar to a mathematical greater-
than operation.

loopback interface (lo0)
Interface that is always available because it
is independent of any physical interfaces.
When configured with an address, the loop-
back interface is the default address for the
routing platform and any unnumbered
interfaces.

See also unnumbered interface.

LMI

668 | Glossary

loose hop
In the context of traffic engineering, a path
that can use any router or any number of
other intermediate (transit) points to reach
the next address in the path. (Definition
from RFC 791, modified to fit LSPs.)

loss-priority map
Maps the loss priority of incoming packets
based on code point values.

lower-speed IQ interfaces
E1, NxDS0, and T1 interfaces configured on
an intelligent queuing (IQ) Physical Inter-
face Card (PIC).

LPDU
LLC protocol Data Unit. LLC frame on a
data link switching (DLSw) network.

See also LLC frame.

LSA
Link state advertisement. Open Shortest
Path First (OSPF) data structure that is ad-
vertised in a link-state update packet. Each
LSA uniquely describes a portion of the
OSPF network.

LSI
Label-switched interface. A logical interface
supported by the JUNOS software that pro-
vides virtual private network (VPN) services
(such as VPLS and Layer 3 VPNs) normally
provided by a Tunnel Services PIC.

LSP
1. Label-switched path. Sequence of routers
that cooperatively perform Multiprotocol
Label Switching (MPLS) operations for a
packet stream. The first router in an LSP is
called the ingress router, and the last router
in the path is called the egress router. An LSP
is a point-to-point, half-duplex connection
from the ingress router to the egress router.
(The ingress and egress routers cannot be
the same router.) 2. See link-state PDU.

LSQ
Link services intelligent queuing interfaces.
Interfaces configured on the Adaptive
Services PIC (ASP) or Adaptive Services
Module (ASM) that support Multilink

Point-to-Point Protocol (MLPPP) and Mul-
tilink Frame Relay (MLFR) traffic and also
fully support JUNOS class-of-service (CoS)
components.

LSR
Label-switching router. A router on which
Multiprotocol Label Switching (MPLS) is
enabled and that can process label-switched
packets.

MAC
Media Access Control. In the OSI seven-
layer networking model defined by the
IEEE, MAC is the lower sublayer of the Data
Link layer. The MAC sublayer governs pro-
tocol access to the physical network me-
dium. By using the MAC addresses that are
assigned to all ports on a router, multiple
devices on the same physical link can
uniquely identify one another at the Data
Link layer.

See also MAC address.

MAC address
Serial number permanently stored in a de-
vice adapter to uniquely identify the device.

See also MAC.

MAM
Maximum allocation bandwidth con-
straints model. In Differentiated Services-
aware traffic engineering, a constraint
model that divides the available bandwidth
among the different classes. Sharing of
bandwidth among the class types is not
allowed.

management Ethernet interface
Permanent interface that provides an Out-
of-Band method, such as Secure Shell (SSH)
and Telnet, to connect to the routing plat-
form. The Simple Network Management
Protocol (SNMP) can use the management
interface to gather statistics from the routing
platform. Called fxp0 on some routing
platforms.

See also permanent interface.

management Ethernet interface

Glossary | 669

mapping agent
Router used in an auto-RP multicast net-
work to select the rendezvous point (RP) for
all multicast group addresses. The RP is then
advertised to all other routers in the domain.

martian address
Network address about which all informa-
tion is ignored.

martian route
Network routes about which all informa-
tion is ignored. The JUNOS software does
not allow martian routes in the inet.0 rout-
ing table.

MAS
Mobile network access subsystem. A GSN
application subsystem that contains the
access server.

master
Router in control of the Open Shortest Path
First (OSPF) database exchange during an
adjacency formation.

match
Logical concept used in a routing policy or
firewall filter. A match denotes the criteria
used to find a route or IP packet before an
action is performed.

match type
JUNOS software syntax used in a route filter
to better describe the routes that should
match the policy term.

MBGP
Multiprotocol Border Gateway Protocol. An
extension to the Border Gateway Protocol
(BGP) that allows you to connect multicast
topologies within and between BGP Auton-
omous Systems (ASs).

MBone
Multicast Backbone. An interconnected set
of subnetworks and routers that support the
delivery of IP multicast traffic. The MBone
is a virtual network that is layered on top of
sections of the physical Internet.

MCS
Miscellaneous Control Subsystem. On the
M40e and M160 routers, provides control
and monitoring functions for router com-
ponents and SONET clocking for the router.

MD5
Message Digest 5. A one-way hashing algo-
rithm that produces a 128-bit hash used for
generating message authentication signa-
tures. MD5 is used in authentication header
(AH) and Encapsulating Security Payload
(ESP).

See also hashing, SHA-1.

MDRR
Modified deficit round robin. A method for
selecting queues to be serviced.

See also queue.

MDT
Multicast distribution tree. The path be-
tween the sender (host) and the multicast
group (receiver or listener).

mean time between failures
See MTBF.

MED
Multiple exit discriminator. An optional
Border Gateway Protocol (BGP) path attrib-
ute consisting of a metric value that is used
to determine the exit point to a destination
when all other factors determining the exit
point are equal.

mesh
Network topology in which devices are or-
ganized in a manageable, segmented man-
ner with many, often redundant, intercon-
nections between network nodes.

message aggregation
Extension to the Resource Reservation Pro-
tocol (RSVP) specification that allows
neighboring routers to bundle up to 30
RSVP messages into a single protocol
packet.

mapping agent

670 | Glossary

mgd
Management daemon. JUNOS software
process responsible for managing all user
access to the router.

MIB
Management Information Base. Definition
of an object that can be managed by the
Simple Network Management Protocol
(SNMP).

midplane
Physically separates front and rear cavities
inside the chassis, distributes power from
the power supplies, and transfers packets
and signals between router components,
which plug into it.

MLD
Multicast listener discovery. A protocol that
manages the membership of hosts and rout-
ers in multicast groups. IPv6 multicast rout-
ers use MLD to learn, for each of their at-
tached physical networks, which groups
have interested listeners.

MLFR
Multilink Frame Relay. Logically ties to-
gether individual circuits, creating a bundle.
The logical equivalent of the Multilink
Point-to-Point Protocol (MLPPP), MLFR is
used for Frame Relay traffic instead of Point-
to-Point Protocol (PPP) traffic. FRF.15 and
FRF.16 are two implementations of MLFR.

MLPPP
Multilink Point-to-Point Protocol. Enables
you to bundle multiple Point-to-Point Pro-
tocol (PPP) links into a single logical link
between two network devices to provide an
aggregate amount of bandwidth. The tech-
nique is often called bonding or link aggre-
gation. Defined in RFC 1990.

See also PPP.

MMF
Multimode fiber. Optical fiber supporting
the propagation of multiple frequencies of
light. MMF is used for relatively short
distances because the modes tend to dis-
perse over longer lengths (called modal

dispersion). For longer distances, single-
mode fiber (sometimes called monomode) is
used.

See also single-mode fiber.

mobile station
Mobile device, such as a cellular phone or a
mobile personal digital assistant (PDA).

mobile transport subsystem
See MTS.

MPLS
Multiprotocol Label Switching. Mechanism
for engineering network traffic patterns that
functions by assigning to network packets
short labels that describe how to forward
them through the network. Also called label
switching.

See also traffic engineering.

MPLS EXP classifier
Class-of-service (CoS) behavior classifier for
classifying packets based on the Multipro-
tocol Label Switching (MPLS) experimental
bit.

See also EXP bits.

MPS
Mobile point-to-point control subsystem. A
GGSN application subsystem that controls
all functionality associated with a particular
connection.

MRRU
Maximum received reconstructed unit.
Similar to the maximum transmission unit
(MTU), but is specific to link services
interfaces.

See also MTU.

MSA
Multisource Agreement. The definition of a
fiber-optic transceiver module that con-
forms to the 10 Gigabit Ethernet standard.

See also XENPAK module.

MSC
Mobile Switching Center. Provides origina-
tion and termination functions to calls from
a mobile station user.

MSC

Glossary | 671

MSDP
Multicast Source Discovery Protocol. A pro-
tocol used to connect multicast routing
domains to allow the domains to discover
multicast sources from other domains. It
typically runs on the same router as the
Physical Interface Module (PIM) Sparse
mode rendezvous point (RP).

MSISDN
Mobile Station Integrated Services Digital
Network number. A number that callers use
to reach a mobile services subscriber.

MTBF
Mean time between failures. Measure of
hardware component reliability.

MTS
Mobile transport subsystem. A GSN appli-
cation subsystem that implements all the
protocols used by the GSN.

MTU
Maximum transmission unit. Limit on the
data size for a network.

multicast
Operation of sending network traffic from
one network node to multiple network
nodes.

multicast-scope number
Number used for configuring the multicast
scope. Configuring a scope number con-
strains the scope of a multicast session. The
number value can be any hexadecimal num-
ber from 0 through F. The multicast-scope
value is a number from 0 through 15, or a
specified keyword with an associated prefix
range. For example, link-local (value = 2),
corresponding prefix 224.0.0.0/24.

multiclass LSP
In Differentiated Services-aware traffic en-
gineering, a multiclass label-switched path
(LSP) functions like a standard LSP, but also
allows you to reserve bandwidth for multi-
ple class types. The experimental (EXP) bits
of the Multiprotocol Label Switching
(MPLS) header are used to distinguish be-
tween class types.

multiclass MLPPP
Enables multiple classes of service while us-
ing the Multilink Point-to-Point Protocol
(MLPPP). Defined in RFC 2686, “The
Multi-Class Extension to Multi-Link PPP.”

multifield classifier
Method for classifying traffic flows. Unlike
a behavior aggregate (BA) classifier, a mul-
tifield classifier examines multiple fields in
the packet to apply class-of-service (CoS)
settings. Examples of fields that a multifield
classifier examines include the source and
destination addresses of the packet, as well
as the source and destination port numbers
of the packet.

See also BA classifier, classification.

multihoming
Network topology that uses multiple con-
nections between customer and provider
devices to provide redundancy.

MVS
Mobile visitor register subsystem.

named path
JUNOS software syntax that specifies a por-
tion of or the entire network path that
should be used as a constraint in signaling a
Multiprotocol Label Switching (MPLS)
label-switched path (LSP).

NAPT
Network Address Port Translation. A
method that translates the addresses and
transport identifiers of many private hosts
into a few external addresses and transport
identifiers to make efficient use of globally
registered IP addresses. NAPT extends the
level of translation beyond that of basic Net-
work Address Translation (NAT).

See also NAT.

NAT
Network Address Translation. A method of
concealing a set of host addresses on a pri-
vate network behind a pool of public ad-
dresses. It can be used as a security measure
to protect the host addresses from direct tar-
geting in network attacks.

MSDP

672 | Glossary

NCP
Network Control Protocol. A traffic con-
troller used to establish and configure dif-
ferent network layer protocols for the Point-
to-Point Protocol (PPP).

NDP
Neighbor Discovery Protocol. Protocol used
by IPv6 nodes on the same link to discover
each other’s presence, determine each
other’s Link layer addresses, find routers,
and maintain reachability information
about the paths to active neighbors. NDP is
defined in RFC 2461 and is equivalent to the
Address Resolution Protocol (ARP) used
with IPv4.

See also ARP.

neighbor
Adjacent system reachable by traversing a
single subnetwork. An immediately adja-
cent router. Also called a peer.

NET
Network entity title. Network address de-
fined by the ISO network architecture and
used in CLNS-based networks.

NetBIOS
Network basic input/output system. An ap-
plication programming interface used by
programs on a LAN. NetBIOS provides a
uniform set of commands for requesting the
lower-level services required to manage
names, conduct sessions, and send data-
grams between nodes on a network.

network interface
Interface, such as an Ethernet or SONET/
SDH interface, that primarily provides traf-
fic connectivity.

See also PIC, services interface.

network link advertisement
Open Shortest Path First (OSPF) link state
advertisement (LSA) flooded throughout a
single area by designated routers to describe
all routers attached to the network.

network LSA
Open Shortest Path First (OSPF) link state
advertisement (LSA) sent by the designated
router on a broadcast or NBMA segment. It
advertises the subnet associated with the
designated router’s segment.

network summary LSA
Open Shortest Path First (OSPF) link state
advertisement (LSA) sent by an area border
router (ABR) to advertise internal OSPF
routing knowledge across an area boundary.

See also ABR.

NIC
Network Information Center. Internet au-
thority responsible for assigning Internet-
related numbers, such as IP addresses and
Autonomous System (AS) numbers.

See also IANA.

NIST
National Institute of Standards and Tech-
nology. A nonregulatory U.S. federal agency
whose mission is to develop and promote
measurement, standards, and technology.

NLRI
Network layer reachability information.
Information carried in Border Gateway Pro-
tocol (BGP) packets and used by the Multi-
protocol Border Gateway Protocol (MBGP).

nonclient peer
In a Border Gateway Protocol (BGP) route
reflection, a BGP peer that is not a member
of a cluster.

See also client peer.

notification cell
JUNOS software data structure generated
by the Distribution Buffer Manager ASIC
that represents the header contents of an IP
packet. The Internet Processor ASIC uses
the notification cell to perform a forwarding
table lookup.

Notification message
A Border Gateway Protocol (BGP) message
that informs a neighbor about an error

Notification message

Glossary | 673

condition, and then in some cases termi-
nates the BGP peering session.

not-so-stubby area
See NSSA.

NSAP
Network service access point. Connection
to a network that is identified by a network
address.

n-selector
Last byte of a nonclient peer address.

NSR
Nonstop routing. A high-availability feature
that allows a routing platform with redun-
dant routing engines (REs) to preserve rout-
ing information on the backup RE and
switch over from the primary RE to the
backup RE without alerting peer nodes that
a change has occurred. NSR uses the Grace-
ful RE Switchover (GRES) infrastructure to
preserve interface, kernel, and routing
information.

NSSA
Not-so-stubby area. In Open Shortest Path
First (OSPF), a type of stub area in which
external routes can be flooded.

NTP
Network Time Protocol. A protocol used to
synchronize computer clock times on a
network.

Null Register message
Physical Interface Module (PIM) message
sent by the first hop router to the rendezvous
point (RP). The message informs the RP that
the local source is still actively sending mul-
ticast packets into the network.

See also RP.

numeric range match conditions
Use of numeric values (protocol and port
numbers) in the header of an IP packet to
match criteria in a firewall filter.

Oakley
Key determination protocol based on the
Diffie-Hellman algorithm that provides
added security, including authentication.

Oakley was the key-exchange algorithm
mandated for use with the initial version of
ISAKMP, although other algorithms can be
used. Oakley describes a series of key ex-
changes called modes and details the services
provided by each; for example, Perfect For-
ward Secrecy for keys, identity protection,
and authentication.

See also ISAKMP.

OAM
Operation, Administration, and Mainte-
nance. An ATM Forum specification for
monitoring Asynchronous Transfer Mode
(ATM) virtual connections. OAM performs
standard loopback, fault detection and no-
tification, and remote defect identification
for each connection, verifying that the con-
nection is up and the router is operational.

OC
Optical carrier. In SONET, the OC level
indicates the transmission rate of digital
signals on optical fiber.

OC3
SONET line with a transmission speed of
155.52 Mbps (payload of 150.336 Mbps)
using fiber-optic cables. For SDH interfaces,
OC3 is also known as STM1.

OC12
SONET line with a transmission speed of
622 Mbps using fiber-optic cables.

Open message
Border Gateway Protocol (BGP) message
that allows two neighbors to negotiate the
parameters of the peering session.

OpenConfirm
Border Gateway Protocol (BGP) neighbor
state that shows that a valid Open message
was received from the remote peer.

OpenSent
Border Gateway Protocol (BGP) neighbor
state that shows that an Open message was
sent to the remote peer and the local router
is waiting for an Open message to be
returned.

not-so-stubby area

674 | Glossary

operational mode
JUNOS software mode that allows a user to
view statistics and information about the
router’s current operating status.

op script
Operational script. Extensible Stylesheet
Language for Transformations (XSLT)
script written to automate network trouble-
shooting and network management. Op
scripts can perform any function available
through JUNOScript remote procedure
calls (RPCs).

origin
In the Border Gateway Protocol (BGP), an
attribute that describes the source of the
route.

orlonger
JUNOS software routing policy match type
that represents all routes more specific than
the given subnet, including the given subnet
itself. It is similar to a mathematical greater-
than-or-equal-to operation.

OSI
Open Systems Interconnection. Standard
reference model for how messages are trans-
mitted between two points on a network.

OSPF
Open Shortest Path First. A link-state Inte-
rior Gateway Protocol (IGP) that makes
routing decisions based on the Shortest Path
First (SPF) algorithm (also referred to as the
Dijkstra algorithm).

OSPF hello packet
Message sent by each Open Shortest Path
First (OSPF) router to each adjacent router.
It is used to establish and maintain the
router’s neighbor relationships.

overlay network
Network design in which a logical Layer 3
topology (IP subnets) is operating over a
logical Layer 2 topology (Asynchronous
Transfer Mode permanent virtual circuits
[ATM PVCs]). Layers in the network do not
have knowledge of each other, and each

layer requires separate management and
operation.

oversubscription
Method that allows provisioning of more
bandwidth than the line rate of the physical
interface.

P2MP LSP
See point-to-multipoint LSP.

package
Collection of files that make up a JUNOS
software component.

packet
Fundamental unit of information (message
or fragment of a message) carried in a
packet-switched network; for example, the
Internet.

See also PSN.

packet aging
Occurs when packets in the output buffer
are overwritten by newly arriving packets.
This happens because the available buffer
size is greater than the available transmis-
sion bandwidth.

packet capture
1. Packet sampling method in which entire
IPv4 packets flowing through a router are
captured for analysis. Packets are captured
in the routing engine (RE) and stored as
libpcap-formatted files on the router. Packet
capture files can be opened and analyzed
offline with packet analyzers such as
tcpdump and Ethereal. 2. J-Web packet
sampling method for quickly analyzing
router control traffic destined for or origi-
nating from the RE. You can either decode
and view the captured packets in the J-Web
interface as they are captured, or save the
packets to a file and analyze them offline
with packet analyzers such as Ethereal. J-
Web packet capture does not capture tran-
sient traffic.

See also traffic sampling.

packet capture

Glossary | 675

Packet Forwarding Engine
Portion of the router that processes packets
by forwarding them between input and out-
put interfaces.

packet or cell switching
Transmission of packets from many sources
over a switched network.

PADI
PPPoE Active Discovery Initiation packet. A
Point-to-Point Protocol over Ethernet
(PPPoE) initiation packet that is broadcast
by the client to start the discovery process.

PADO
PPPoE Active Discovery Offer packet. A
Point-to-Point Protocol over Ethernet
(PPPoE) offer packet that is sent to the client
by one or more access concentrators in reply
to a PPPoE Active Discovery Initiation
(PADI) packet.

PADR
PPPoE Active Discovery Request packet. A
Point-to-Point Protocol over Ethernet
(PPPoE) packet sent by the client to one se-
lected access concentrator to request a
session.

PADS
PPPoE Active Discovery Session Confirma-
tion packet. A Point-to-Point Protocol over
Ethernet (PPPoE) packet sent by the selected
access concentrator to confirm the session.

PADT
PPPoE Active Discovery Termination
packet. A Point-to-Point Protocol over
Ethernet (PPPoE) packet sent by either the
client or the access concentrator to termi-
nate a session.

passive flow monitoring
Technique to intercept and observe speci-
fied data network traffic by using a routing
platform such as a monitoring station that
is not participating in the network.

path attribute
Information about a Border Gateway Pro-
tocol (BGP) route, such as the route origin,

Autonomous System (AS) path, and next
hop router.

PathErr message
Resource Reservation Protocol (RSVP) mes-
sage indicating that an error has occurred
along an established label-switched path
(LSP). The message is advertised upstream
toward the ingress router and does not re-
move any RSVP soft state from the network.

PathTear message
Resource Reservation Protocol (RSVP) mes-
sage indicating that the established label-
switched path (LSP) and its associated soft
state should be removed by the network.
The message is advertised downstream hop
by hop toward the egress router.

pcap
Software library for packet capturing.

See also libpcap.

PC Card
(Previously known as a PCMCIA Card.) The
removable storage media that ships with
each router that contains a copy of the
JUNOS software. The PC Card is based on
standards published by the Personal Com-
puter Memory Card International Associa-
tion (PCMCIA).

PCI
Peripheral Component Interconnect. Stand-
ard, high-speed bus for connecting com-
puter peripherals. Used on the routing
engine (RE).

PCI Express
Peripheral Component Interconnect Ex-
press. Next-generation, higher-bandwidth
bus for connecting computer peripherals. A
PCI Express bus uses point-to-point bus
topology with a shared switch rather than
the shared bus topology of a standard PCI
bus. The shared switch on a PCI Express bus
provides centralized traffic routing and
management and can prioritize traffic. On
some J Series services routers, PCI Express
slots are backward compatible with PCI and
can accept Physical Interface Modules

Packet Forwarding Engine

676 | Glossary

(PIMs) intended for either PCI Express or
PCI slots.

PCMCIA
Personal Computer Memory Card Interna-
tional Association. Industry group that
promotes standards for credit-card-size
memory and I/O devices.

PDH
Plesiochronous Digital Hierarchy. Devel-
oped to carry digitized voice more effi-
ciently. Evolved into the North American,
European, and Japanese Digital Hierar-
chies, in which only a discrete set of fixed
rates is available; namely, NxDS0 (DS0 is a
64 kbps rate).

PDP
Packet data protocol. Network protocol,
such as IP, used by packet data networks
connected to a GPRS network.

PDU
Protocol Data Unit. A packet of data passed
across a network. The term refers to a spe-
cific layer of the OSI seven-layer model and
a specific protocol.

PEC
Policing equivalence classes. In traffic polic-
ing, a set of packets that are treated the same
way by the packet classifier.

peer
Immediately adjacent router with which a
protocol relationship has been established.
Also called a neighbor.

peering
Practice of exchanging Internet traffic with
directly connected peers according to com-
mercial and contractual agreements.

PEM
1. Privacy Enhanced Mail. A technique for
securely exchanging electronic mail over a
public medium. 2. Power Entry Module.
Distributes DC power within the router
chassis. Supported on M40e, M160, M320,
and T Series routing platforms.

penultimate router
Last transit router before the egress router
in a Multiprotocol Label Switching (MPLS)
label-switched path (LSP).

permanent interface
Interface that is always present in the rout-
ing platform.

See also management Ethernet interface, transient in-
terface.

persistent change
Commit-script-generated configuration
change that is copied to the candidate con-
figuration. Persistent changes remain in the
candidate configuration unless you explic-
itly delete them.

See also transient change.

PE router
Provider edge router. A router in the service
provider’s network that is connected to a
customer edge (CE) device and participates
in a virtual private network (VPN).

PFC
Protocol Field Compression. Normally,
Point-to-Point Protocol (PPP)-encapsulated
packets are transmitted with a 2-byte pro-
tocol field. For example, IPv4 packets are
transmitted with the protocol field set to
0x0021, and Multiprotocol Label Switching
(MPLS) packets are transmitted with the
protocol field set to 0x0281. For all proto-
cols with identifiers from 0x0000 through
0x00ff, PFC enables routers to compress the
protocol field to one byte, as defined in RFC
1661, “The Point-to-Point Protocol (PPP).”
PFC allows you to conserve bandwidth by
transmitting less data.

See also ACFC.

PFS
Perfect Forward Secrecy protocol. A proto-
col derived from an encryption system that
changes encryption keys often and ensures
that no two sets of keys have any relation-
ship to each other. If one set of keys is
compromised, only communications using

PFS

Glossary | 677

those keys are at risk. An example of a sys-
tem that uses PFS is Diffie-Hellman.

PGM
Pragmatic General Multicast. A protocol
layer that can be used between the IP layer
and the multicast application on sources,
receivers, and routers to add reliability, scal-
ability, and efficiency to multicast networks.

PGP
Pretty Good Privacy. A strong cryptographic
technique invented by Philip Zimmerman in
1991.

PHP
Penultimate hop popping. A mechanism
used in a Multiprotocol Label Switching
(MPLS) network that allows the transit
router before the egress router to perform a
label pop operation and forward the remain-
ing data (often an IPv4 packet) to the egress
router.

PHY
1. Special electronic integrated circuit or
functional block of a circuit that performs
encoding and decoding between a pure dig-
ital domain (on-off) and a modulation in the
analog domain. 2. Open Systems Intercon-
nection (OSI) physical layer. Layer 1 of the
OSI model that defines the physical link be-
tween devices.

See also LAN PHY, WAN PHY.

physical interface
Port on a Physical Interface Card (PIC) or
Physical Interface Module (PIM).

Physical Interface Module
A network interface card installed in a J Ser-
ies services router to provide physical con-
nections to a LAN or WAN. PIMs can be
fixed or removable and interchangeable.
The PIM receives incoming packets from the
network and transmits outgoing packets to
the network. Each PIM is equipped with a
dedicated network processor that forwards
incoming data packets to and receives out-
going data packets from the routing engine
(RE). During this process, the PIM performs

framing and line-speed signaling for its me-
dium type—for example, E1, serial, Fast
Ethernet, or Integrated Services Digital
Network (ISDN).

PIC
Physical Interface Card. A network
interface-specific card that can be installed
on a Flexible PIC Concentrator (FPC) in the
router.

PIC I/O Manager
Juniper Networks ASIC responsible for re-
ceiving and transmitting information on the
physical media. It performs media-specific
tasks within the Packet Forwarding Engine
(PFE).

PIR
Peak information rate. The PIR must be
equal to or greater than the committed
information rate (CIR), and both must be
configured to be greater than 0. Packets that
exceed the PIR are marked red, which cor-
responds to high loss priority.

See also CIR, trTCM.

PKI
Public key infrastructure. A hierarchy of
trust that enables users of a public network
to securely and privately exchange data
through the use of public and private cryp-
tographic key pairs that are obtained and
shared with peers through a trusted
authority.

PLMN
Public Land Mobile Network. A telecom-
munications network for mobile stations.

PLP
Packet loss priority. Used to determine the
random early detection (RED) drop profile
when a packet is queued. You can set it by
configuring a classifier or policer. The sys-
tem supports two PLP designations: low and
high.

PLP bit
Packet loss priority bit. Used to identify
packets that have experienced congestion or
are from a transmission that exceeded a

PGM

678 | Glossary

service provider’s customer service license
agreement. This bit can be used as part of a
router’s congestion control mechanism and
can be set by the interface or by a filter.

PLR
Point of local repair. The ingress router of a
backup tunnel or a detour label-switched
path (LSP).

point-to-multipoint connection
Unidirectional connection in which a single
source system transmits data to multiple
destination end systems. Point-to-multi-
point is one of two fundamental connection
types.

See also point-to-point connection.

point-to-multipoint LSP
Resource Reservation Protocol (RSVP)-
signaled label-switched path (LSP) with a
single source and multiple destinations.

point-to-point connection
Unidirectional or bidirectional connection
between two end systems. Point-to-point is
one of two fundamental connection types.

See also point-to-multipoint connection.

poison reverse
Method used in distance-vector networks to
avoid routing loops. Each router advertises
routes back to the neighbor it received them
from with an infinity metric assigned.

policer
Filter that limits traffic of a certain class to a
specified bandwidth or burst size. Packets
exceeding the policer limits are discarded,
or assigned to a different forwarding class, a
different loss priority, or both.

policing
Method of applying rate limits on band-
width and burst size for traffic on a particu-
lar interface.

policy chain
Application of multiple routing policies in a
single location. The policies are evaluated in
a predefined manner and are always

followed by the default policy for the spe-
cific application location.

pop
Removal of the last label, by a router, from
a packet as it exits a Multiprotocol Label
Switching (MPLS) domain.

port mirroring
Method in which a copy of an IPv4 packet
is sent from the routing platform to an ex-
ternal host address or a packet analyzer for
analysis.

PPP
Point-to-Point Protocol. A Link layer proto-
col that provides multiprotocol encapsula-
tion. PPP is used for Link layer and Network
layer configuration. Provides a standard
method for transporting multiprotocol da-
tagrams over point-to-point links. Defined
in RFC 1661.

pppd
Point-to-Point Protocol daemon that pro-
cesses packets that use the Point-to-Point
Protocol (PPP).

PPPoE
Point-to-Point Protocol over Ethernet. Net-
work protocol that encapsulates Point-to-
Point Protocol (PPP) frames in Ethernet
frames and connects multiple hosts over a
simple bridging access device to a remote
access concentrator.

PPPoE over ATM
Point-to-Point Protocol over Ethernet
frames in Asynchronous Transfer Mode.
Network protocol that encapsulates Point-
to-Point Protocol over Ethernet (PPPoE)
frames in Asynchronous Transfer Mode
(ATM) frames for digital subscriber line
(DSL) transmission, and connects multiple
hosts over a simple bridging access device to
a remote access concentrator.

precedence bits
First three bits in the type-of-service (ToS)
byte. On a Juniper Networks router, these
bits are used to sort or classify individual
packets as they arrive at an interface. The

precedence bits

Glossary | 679

classification determines the queue to which
the packet is directed upon transmission.

preference
Desirability of a route to become the active
route. A route with a lower preference value
is more likely to become the active route.
The preference is an arbitrary value from 0
through 255 that the routing protocol proc-
ess uses to rank routes received from differ-
ent protocols, interfaces, or remote systems.

preferred address
On an interface, the default local address
used for packets sourced by the local router
to destinations on the subnet.

prefix-length-range
JUNOS software routing policy match type
representing all routes that share the same
most-significant bits. The prefix length of
the route must also lie between the two sup-
plied lengths in the route filter.

primary address
On an interface, the address used by default
as the local address for broadcast and mul-
ticast packets sourced locally and sent out
the interface.

primary contributing route
Contributing route with the numerically
smallest prefix and smallest JUNOS soft-
ware preference value. This route is the de-
fault next hop used for a generated route.

primary interface
Router interface that packets go out on
when no interface name is specified and
when the destination address does not spec-
ify a particular outgoing interface.

promiscuous mode
Used with Asynchronous Transfer Mode
(ATM) CCC Cell Relay encapsulation, ena-
bles mapping of all incoming cells from an
interface port or from a virtual path (VP) to
a single label-switched path (LSP) without
restricting the VCI number.

protocol address
Logical Layer 3 address assigned to an in-
terface within the JUNOS software.

protocol families
Grouping of logical properties within an in-
terface configuration; for example, the inet,
inet4, and Multiprotocol Label Switching
(MPLS) families.

Protocol Independent Multicast (PIM)
A protocol-independent multicast routing
protocol. PIM Dense mode is a flood-and-
prune protocol. PIM Sparse mode routes to
multicast groups that use join messages to
receive traffic. PIM Sparse-Dense mode al-
lows some multicast groups to be dense
groups (flood and prune) and some groups
to be sparse groups (join and leave).

protocol preference
A 32-bit value assigned to all routes placed
into the routing table. The protocol prefer-
ence is used as a tiebreaker when multiple
exact routes are placed into the table by dif-
ferent protocols.

provider router
Router in the service provider’s network
that is not connected to a customer edge
(CE) device.

Prune message
Physical Interface Module (PIM) message
sent upstream to a multicast source or the
rendezvous point (RP) of the domain. The
message requests that multicast traffic stop
being transmitted to the router originating
the message.

PSN
Packet-switched network. Network in
which messages or fragments of messages
(packets) are sent to their destinations
through the most expedient route, as deter-
mined by a routing algorithm. Packet
switching optimizes bandwidth in a net-
work and minimizes latency.

PSNP
Partial sequence number PDU. A packet
that contains only a partial list of the

preference

680 | Glossary

label-switched paths (LSPs) in the Inter-
mediate System-to-Intermediate System
Level 1 (IS-IS) link-state database.

public key infrastructure
See PKI.

push
Addition of a label or stack of labels, by a
router, to a packet as it enters a Multipro-
tocol Label Switching (MPLS) domain.

PVC
Permanent virtual circuit. A software-
defined logical connection in a network.

See also SVC.

QoS
Quality of service. Performance, such as
transmission rates and error rates, of a com-
munications channel or system.

quad-wide
Type of Physical Interface Card (PIC) that
combines the PIC and Flexible PIC Concen-
trator (FPC) within a single FPC slot.

qualified next hop
Next hop for a static route that allows a sec-
ond next hop for the same static route to
have different metric and preference prop-
erties from the original next hop.

querier router
Physical Interface Module (PIM) router on
a broadcast subnet responsible for generat-
ing Internet Group Management Protocol
(IGMP) query messages for the segment.

queue
First-in, first-out (FIFO) number of packets
waiting to be forwarded over a router inter-
face. You can configure the minimum and
maximum sizes of the packet queue, queue
admission policies, and other parameters to
manage the flow of packets through the
router.

queue fullness
For random early detection (RED), the
memory used to store packets expressed as
a percentage of the total memory allocated
for that specific queue.

See also drop profile.

queue length
For ATM1 interfaces only, a limit on the
number of transmit packets that can be
queued. Packets that exceed the limit are
dropped.

See also EPD.

queuing
In routing, the arrangement of packets wait-
ing to be forwarded. Packets are organized
into queues according to their priority, time
of arrival, or other characteristics, and are
processed one at a time. After a packet is
sent to the outgoing interface on a router, it
is queued for transmission on the physical
media. The amount of time a packet is
queued on the router is determined by the
availability of the outgoing physical media,
bandwidth, and amount of traffic using the
interface.

RA
Registration authority. A trusted third-party
organization that acts on behalf of a certifi-
cate authority (CA) to verify the identity of
a digital certificate user.

radio frequency interference
See RFI.

RADIUS
Remote Authentication Dial-In User Serv-
ice. An authentication method for validating
users who attempt to access the router using
Telnet.

RBOC
(Pronounced “are-bock.”) Regional Bell op-
erating company. Regional telephone com-
panies formed as a result of the divestiture
of the Bell System.

RC2, RC4, RC5
RSA codes. A family of proprietary (RSA
Data Security, Inc.) encryption schemes of-
ten used in web browsers and servers. These
codes use variable-length keys up to 2,048
bits.

RC2, RC4, RC5

Glossary | 681

RDBMS
Relational database management system. A
system that presents data in a tabular form
with a means of manipulating the tabular
data with relational operators.

RDM
Russian-dolls bandwidth allocation model.
An allocation model that makes efficient use
of bandwidth by allowing the class types to
share bandwidth. RDM is defined in the
Internet draft draft-ietf-tewg-diff-te-
russian-03.txt, “Russian Dolls Bandwidth
Constraints Model for Diff-Serv-aware
MPLS Traffic Engineering.”

receive
Next hop for a static route that allows all
matching packets to be sent to the routing
engine (RE) for processing.

recursive lookup
Method of consulting the routing table to
locate the actual physical next hop for a
route when the supplied next hop is not di-
rectly connected.

RED
Random early detection. Gradual drop pro-
file for a given class that is used for conges-
tion avoidance. RED tries to anticipate
incipient congestion by dropping a small
percentage of packets from the head of the
queue to ensure that a queue never actually
becomes congested.

refresh reduction
In the Resource Reservation Protocol
(RSVP), an extension that addresses the
problems of scaling, reliability, and latency
when Refresh messages are used to cover
message loss.

Register message
Physical Interface Module (PIM) message
unicast by the first hop router to the ren-
dezvous point (RP) that contains the multi-
cast packets from the source encapsulated
within its data field.

Register Stop message
Physical Interface Module (PIM) message
sent by the rendezvous point (RP) to the first
hop router to halt the sending of encapsu-
lated multicast packets.

registration authority
See RA.

reject
Next hop for a configured route that drops
all matching packets from the network and
returns an Internet Control Message Proto-
col (ICMP) message to the source IP ad-
dress. Also used as an action in a routing
policy or firewall filter.

rename
JUNOS software command that allows a
user to change the name of a routing policy,
firewall filter, or any other variable character
string defined in the router configuration.

Request message
Routing Information Protocol (RIP) mes-
sage used by a router to ask for all or part of
the routing table from a neighbor.

resolve
Next hop for a static route that allows the
router to perform a recursive lookup to lo-
cate the physical next hop for the route.

Response message
Routing Information Protocol (RIP) mes-
sage used to advertise routing information
into a network.

result cell
JUNOS software data structure generated
by the Internet Processor ASIC after per-
forming a forwarding table lookup.

ResvConf message
Resource Reservation Protocol (RSVP) mes-
sage that allows the egress router to receive
an explicit confirmation message from a
neighbor that its Resv message was received.

ResvErr message
Resource Reservation Protocol (RSVP) mes-
sage indicating that an error has occurred
along an established label-switched path

RDBMS

682 | Glossary

(LSP). The message is advertised down-
stream toward the egress router and it does
not remove any RSVP soft state from the
network.

ResvTear message
Resource Reservation Protocol (RSVP) mes-
sage indicating that the established label-
switched path (LSP) and its associated soft
state should be removed by the network.
The message is advertised upstream toward
the ingress router.

revert timer
For SONET Automatic Protection Switch-
ing (APS), a timer that specifies the amount
of time (in seconds) to wait after the working
circuit has become functional before mak-
ing the working circuit active again.

rewrite rules
Set the appropriate class-of-service (CoS)
bits in an outgoing packet. This allows the
next downstream router to classify the
packet into the appropriate service group.

RFC
Request for Comments. Internet standard
specifications published by the Internet
Engineering Task Force (IETF).

RFI
Radio frequency interface. Interference
from high-frequency electromagnetic waves
emanating from electronic devices.

RIB
Routing information base. A logical data
structure used by the Border Gateway Pro-
tocol (BGP) to store routing information.

See also routing table.

RID
Router ID. An IP address used by a router to
uniquely identify itself to a routing protocol.
This address may not be equal to a config-
ured interface address.

RIP
Routing Information Protocol. Used in
IPv4 networks, a distance-vector interior

gateway protocol that makes routing
decisions based on hop count.

RIPng
Routing Information Protocol next genera-
tion. Used in IPv6 networks, a distance-
vector interior gateway protocol that makes
routing decisions based on hop count.

RMON
Remote monitoring. A standard Manage-
ment Information Base (MIB) that defines
current and historical Media Access Control
(MAC)-layer statistics and control objects,
allowing you to capture real-time informa-
tion across the entire network. This allows
you to detect, isolate, diagnose, and report
potential and actual network problems.

RNC
Radio network controller. Manages the
radio part of the network in UMTS.

route distinguisher
A 6-byte value identifying a virtual private
network (VPN) that is prefixed to an IPv4
address to create a unique IPv4 address. The
new address is part of the VPN IPv4 address
family, which is a Border Gateway Protocol
(BGP) address family added as an extension
to BGP. It allows you to configure private
addresses within the VPN by preventing
overlap with the private addresses in other
VPNs.

route filter
JUNOS software syntax used in a routing
policy to match an individual route or a
group of routes.

route flapping
Condition of network instability whereby a
route is announced and withdrawn repeat-
edly, often as a result of an intermittently
failing link.

route identifier
IP address of the router from which a Border
Gateway Protocol (BGP), Interior Gateway
Protocol (IGP), or Open Shortest Path First
(OSPF) packet originated.

route identifier

Glossary | 683

route redistribution
Method of placing learned routes from one
protocol into another protocol operating on
the same router. The JUNOS software ac-
complishes this with a routing policy.

route reflection
In the Border Gateway Protocol (BGP), the
configuration of a group of routers into a
cluster in which one system acts as a route
reflector, redistributing routes from outside
the cluster to all routers in the cluster. Rout-
ers in a cluster do not need to be fully
meshed.

router ID
See RID.

router-link advertisement
Open Shortest Path First (OSPF) link state
advertisement (LSA) flooded throughout a
single area by all routers to describe the state
and cost of the router’s links to the area.

router LSA
Open Shortest Path First (OSPF) link state
advertisement (LSA) sent by each router in
the network. It describes the local router’s
connected subnets and their metric values.

router priority
Numerical value assigned to an Open Short-
est Path First (OPSF) or Intermediate
System-to-Intermediate System Level 1 (IS-
IS) interface that is used as the first criterion
in electing the designated router or designa-
ted intermediate system, respectively.

routing engine
Portion of the router that handles all routing
protocol processes, as well as other software
processes that control the router’s interfa-
ces, some of the chassis components, system
management, and user access to the router.

routing instance
Collection of routing tables, interfaces, and
routing protocol parameters. The set of in-
terfaces is contained in the routing tables,
and the routing protocol parameters control
the information in the routing tables.

routing matrix
Terabit routing system interconnecting up
to four T640 routing nodes and a TX Matrix
platform to deliver up to 2.56 terabits per
second (Tbps) of subscriber switching
capacity.

routing table
Common database of routes learned from
one or more routing protocols. All routes are
maintained by the JUNOS routing protocol
process.

RP
Rendezvous point. For Physical Interface
Module (PIM) Sparse mode, a core router
acting as the root of the distribution tree in
a shared tree.

RPC
Remote procedure call. A type of protocol
that allows a computer program running on
one computer to cause a function on
another computer to be executed without
explicitly coding the details for this
interaction.

rpd
JUNOS software routing protocol process
(daemon). A user-level background process
responsible for starting, managing, and
stopping the routing protocols on a Juniper
Networks router.

RPF
Reverse path forwarding. An algorithm that
checks the unicast routing table to deter-
mine whether there is a shortest path back
to the source address of the incoming mul-
ticast packet. Unicast RPF helps to deter-
mine the source of denial-of-service (DoS)
attacks and rejects packets from unexpected
source addresses.

RPM
1. Reverse-path multicasting. Routing algo-
rithm used by the Distance Vector Multicast
Routing Protocol (DVMRP) to forward mul-
ticast traffic. 2. Real-time Performance
Monitoring. A tool for creating active
probes to track and monitor traffic.

route redistribution

684 | Glossary

RRO
Record route object. A Resource Reserva-
tion Protocol (RSVP) message object that
notes the IP address of each router along the
path of a label-switched path (LSP).

RSVP
Resource Reservation Protocol. A signaling
protocol that establishes a session between
two routers to transport a specific traffic
flow.

RSVP Path message
Resource Reservation Protocol (RSVP) mes-
sage sent by the ingress router downstream
toward the egress router. It begins the es-
tablishment of a soft state database for a
particular label-switched path (LSP).

RSVP Resv message
Resource Reservation Protocol (RSVP) mes-
sage sent by the egress router upstream to-
ward the ingress router. It completes the
establishment of the soft state database for
a particular label-switched path (LSP).

RSVP signaled LSP
Label-switched path (LSP) that is dynami-
cally established using Resource Reserva-
tion Protocol (RSVP) Path and Resv
messages.

RSVP-TE
RSVP traffic engineering; Resource Reser-
vation Protocol (RSVP) with traffic engi-
neering extensions as defined by RFC 3209.
These extensions allow RSVP to establish
label-switched paths (LSPs) in Multiproto-
col Label Switching (MPLS) networks.

See also MPLS, RSVP.

RTP
Real-time Transport Protocol. An Internet
protocol that provides mechanisms for the
transmission of real-time data, such as au-
dio, video, or voice, over IP networks. Com-
pressed RTP is used for Voice over IP traffic.

RTVBR
Real-time variable bit rate. For ATM2 intel-
ligent queuing (IQ) interfaces, data that is
serviced at a higher priority rate than other

VBR data. RTVBR is suitable for carrying
packetized video and audio. RTVBR pro-
vides better congestion control and latency
guarantees than non-real-time VBR.

SA
Security association. An IPSec term that de-
scribes an agreement between two parties
about what rules to use for authentication
and encryption algorithms, key exchange
mechanisms, and secure communications.

sampling
Method whereby the sampling key based on
the IPv4 header is sent to the routing engine
(RE). There, the key is placed in a file, or
cflowd packets based on the key are sent to
a cflowd server.

SAP
1. Session Announcement Protocol. Used
with multicast protocols to handle session
conference announcements. 2. Service ac-
cess point. Device that identifies routing
protocols and provides the connection be-
tween the network interface card and the
rest of the network.

SAR
Segmentation and reassembly. Buffering
used with Asynchronous Transfer Mode
(ATM).

SCB
System Control Board. On an M40 router,
the part of the Packet Forwarding Engine
(PFE) that performs route lookups, moni-
tors system components, and controls Flex-
ible PIC Concentrator (FPC) resets.

SCC
Switch-card chassis. Term used by the
JUNOS command-line interface (CLI) to re-
fer to the TX Matrix platform in a routing
matrix.

SCEP
Simple Certificate Enrollment Protocol. A
protocol for digital certificates that supports
certificate authority (CA) and registration
authority (RA) public key distribution, cer-
tificate enrollment, certificate revocation,

SCEP

Glossary | 685

certificate queries, and certificate revocation
list (CRL) queries.

SCG
SONET Clock Generator. On a T640 rout-
ing node, provides the Stratum 3 clock sig-
nal for the SONET/SDH interfaces. Also
provides external clock inputs.

scheduler maps
In class of service (CoS), associate schedu-
lers with forwarding classes.

See also schedulers, forwarding classes.

schedulers
Define the priority, bandwidth, delay buffer
size, rate control status, and random early
detection (RED) drop profiles to be applied
to a particular forwarding class for packet
transmission.

See also scheduler maps.

scheduling
Method of determining which type of
packet or queue is transmitted before an-
other. An individual router interface can
have multiple queues assigned to store pack-
ets. The router then determines which
queue to service based on a particular
method of scheduling. This process often
involves a determination of which type of
packet should be transmitted before an-
other. For example, first in, first out (FIFO).

See also FIFO.

SCP
Secure copy. Means of securely transferring
computer files between a local and remote
host or between two remote hosts, using the
Secure Shell (SSH) protocol.

SCU
Source class usage. A means of tracking traf-
fic originating from specific prefixes on the
provider core router and destined for spe-
cific prefixes on the customer edge router,
based on the IP source and destination
addresses.

SDH
Synchronous Digital Hierarchy. A CCITT
variation of the SONET standard.

SDP
Session Description Protocol. Used with
multicast protocols to handle session con-
ference announcements.

SDRAM
Synchronous dynamic random access mem-
ory. An electronic standard in which the in-
puts and outputs of SDRAM data are
synchronized to an externally supplied
clock, allowing for extremely fast consecu-
tive read and write capacity.

SDX software
Service Deployment System software. A cus-
tomizable Juniper Networks product with
which service providers can rapidly deploy
IP services—such as video on demand
(VoD), IP television, stateful firewalls, Layer
3 virtual private networks (VPNs), and
bandwidth on demand (BoD)—to hun-
dreds of thousands of subscribers over a va-
riety of broadband access technologies.

services interface
Interface that provides specific capabilities
for manipulating traffic before it is delivered
to its destination; for example, the adaptive
services interface and the tunnel services
interface.

See also network interface.

session attribute object
Resource Reservation Protocol (RSVP) mes-
sage object used to control the priority, pre-
emption, affinity class, and local rerouting
of the label-switched path (LSP).

SFM
Switching and Forwarding Module. On an
M160 router, a component of the Packet
Forwarding Engine (PFE) that provides
route lookup, filtering, and switching to
Flexible PIC Concentrators (FPCs).

SFP
Small Form-factor Pluggable transceiver. A
transceiver that provides support for optical

SCG

686 | Glossary

or copper cables. SFPs are hot-insertable
and hot-removable.

See also XFP.

SGSN
Serving GPRS Support Node. Device in the
mobile network that requests PDP contexts
with a GGSN.

SHA-1
Secure Hash Algorithm 1. A secure hash al-
gorithm standard defined in FIPS PUB 180-1
(SHA-1). Developed by the National Insti-
tute of Standards and Technology (NIST),
SHA-1 (which effectively replaces SHA-0)
produces a 160-bit hash for message
authentication. Longer-hash variants in-
clude SHA-224, SHA-256, SHA-384, and
SHA-512 (sometimes grouped under the
name “SHA-2”). SHA-1 is more secure than
Message Digest 5 (MD5).

See also hashing, MD5.

sham link
Unnumbered point-to-point intra-area link
advertised by a type 1 link state advertise-
ment (LSA).

shaping rate
In class of service (CoS), controls the
maximum rate of traffic transmitted on an
interface.

See also traffic shaping.

shared scheduling and shaping
Allocation of separate pools of shared re-
sources to subsets of logical interfaces be-
longing to the same physical port.

shared tree
Multicast forwarding tree established from
the rendezvous point (RP) to the last hop
router for a particular group address.

SHDSL
Symmetric high-speed digital subscriber
line. A standardized multirate symmetric
DSL that transports rate-adaptive symmet-
rical data across a single copper pair at data
rates from 192 Kbps to 2.3 Mbps, or from
384 Kbps to 4.6 Mbps over two pairs,

covering applications served by HDSL,
SDSL, T1, E1, and services beyond E1.
SHDSL conforms to the following
recommendations: ITU G.991.2 G.SHDSL,
ETSI TS 101-524 SDSL, and the ANSI
T1E1.4/2001-174 G.SHDSL.

See also G.SHDSL.

shim header
Location of the Multiprotocol Label Switch-
ing (MPLS) header in a data packet. The
JUNOS software always places (shims) the
header between the existing Layer 2 and
Layer 3 headers.

Shortest Path First
See SPF.

shortest-path tree
See SPT.

SIB
Switch Interface Board. On a T640 routing
node, provides the switching function to the
destination Packet Forwarding Engine
(PFE).

signaled path
In traffic engineering, an explicit path; that
is, a path determined using Resource Reser-
vation Protocol (RSVP) signaling. The ERO
carried in the packets contains the explicit
path information.

Simple Network Management Protocol
See SNMP.

simplex interface
Interface that treats packets it receives from
itself as the result of a software loopback
process. The interface does not consider
these packets when determining whether
the interface is functional.

single-mode fiber
Optical fiber designed for transmission of a
single ray or mode of light as a carrier and
used for long-distance signal transmission.
For short distances, multimode fiber is used.

See also MMF.

single-mode fiber

Glossary | 687

SIP
Session Initiation Protocol. An Adaptive
Services application protocol option used
for setting up sessions between endpoints
on the Internet. Examples include
telephony, fax, videoconferencing, file ex-
change, and person-to-person sessions.

SNA
System Network Architecture. IBM propri-
etary networking architecture consisting of
a protocol stack that is used primarily in
banks and other financial transaction
networks.

SNMP
Simple Network Management Protocol. A
protocol governing network management
and the monitoring of network devices and
their functions.

soft state
In Resource Reservation Protocol (RSVP),
controls state in hosts and routers that ex-
pires if not refreshed within a specified
amount of time.

SONET
Synchronous Optical Network. A high-
speed (up to 2.5 Gbps) synchronous net-
work specification developed by Bellcore
and designed to run on optical fiber. STS1
is the basic building block of SONET. Ap-
proved as an international standard in 1988.

See also SDH.

source-based tree
Multicast forwarding tree established from
the source of traffic to all interested receivers
for a particular group address. It is often
used in a Dense-mode forwarding environ-
ment.

Sparse mode
Method of operating a multicast domain
where sources of traffic and interested re-
ceivers meet at a central rendezvous point
(RP). A Sparse-mode network assumes that
there are very few receivers for each group
address.

SPF
Shortest Path First. An algorithm used by
Intermediate System-to-Intermediate Sys-
tem Level 1 (IS-IS) and Open Shortest Path
First (OSPF) to make routing decisions
based on the state of network links. Also
called the Dijkstra algorithm.

SPI
Security Parameter Index. In IPSec, a nu-
meric identifier used with the destination
address and security protocol to identify a
security association (SA). When Internet
Key Exchange (IKE) is used to establish an
SA, the SPI is randomly derived. When man-
ual configuration is used for an SA, the SPI
must be entered as a parameter.

SPID
Service Profile Identifier. Used only in Basic
Rate Interface (BRI) implementations of the
Integrated Services Digital Network
(ISDN). The SPID specifies the services
available on the service provider switch and
defines the feature set ordered when the
ISDN service is provisioned.

split horizon
Method used in distance-vector networks to
avoid routing loops. Each router does not
advertise routes back to the neighbor from
which it received them.

SPQ
Strict-priority queuing. A dequeuing
method that provides a special queue that is
serviced until it is empty. The traffic sent to
this queue tends to maintain a lower latency
and more consistent latency numbers than
traffic sent to other queues.

See also APQ.

SPT
Shortest-path tree. An algorithm that builds
a network topology that attempts to mini-
mize the path from one router (the root) to
other routers in a routing area.

SIP

688 | Glossary

SQL
Structured Query Language. International
standard language used to create, modify,
and select data from relational databases.

src port
Transmission Control Protocol (TCP) or
User Datagram Protocol (UDP) port for the
source IP address in a packet.

SS7
Signaling System 7. A protocol used in tele-
communications for delivering calls and
services.

SSAP
Source service access point. Device that
identifies the origin of an LPDU on a data
link switching (DLSw) network.

SSB
System and Switch Board. On an M20
router, a Packet Forwarding Engine (PFE)
component that performs route lookups
and component monitoring and monitors
Flexible PIC Concentrator (FPC) operation.

SSH
Secure Shell. A protocol that uses strong
authentication and encryption for remote
access across a nonsecure network. SSH
provides remote login, remote program ex-
ecution, file copy, and other functions. In a
Unix environment, SSH is intended as a
secure replacement for rlogin, rsh, and rcp.

SSH/TLS
Secure Shell with Transport Layer Security.
A combination of two standard methods
used to secure communications over the In-
ternet. TLS is the name of a standard proto-
col based on SSL 3.0 and is defined in RFC
2246. In combination, SSH/TLS is also
known as SSHv2 and uses FIPS-restricted
cipher sets in a FIPS environment.

SSL
Secure Sockets Layer. A protocol that en-
crypts security information using public-
private key technology, which requires a
paired private key and authentication

certificate, before transmitting data across a
network.

SSM
Source-specific multicast. A service that al-
lows a client to receive multicast traffic di-
rectly from the source. Typically, SSM uses
a subset of the Physical Interface Module
(PIM) Sparse-mode functionality along with
a subset of IGMPv3 to create a shortest-path
tree (SPT) between the client and the source,
but it builds the SPT without the help of a
rendezvous point (RP).

SSP
Switch-to-Switch Protocol. Protocol imple-
mented between two data link switching
(DLSw) routers that establishes connec-
tions, locates resources, forwards data, and
handles error recovery and flow control.

SSRAM
Synchronous static random access memory.
Used for storing routing tables, packet
pointers, and other data such as route look-
ups, policer counters, and other statistics to
which the microprocessor needs quick
access.

standard AAL5 mode
Transport mode that allows multiple appli-
cations to tunnel the Protocol Data Units of
their Layer 2 protocols over an Asynchro-
nous Transfer Mode (ATM) virtual circuit.
You use this transport mode to tunnel IP
packets over an ATM backbone.

See also AAL5 mode, cell-relay mode, Layer 2 circuits,
trunk mode.

starvation
Problem that occurs when lower-priority
traffic, such as data and protocol packets, is
locked out (starved) because a higher-
priority queue uses all of the available trans-
mission bandwidth.

stateful firewall filter
Type of firewall filter that evaluates the con-
text of connections, permits or denies traffic
based on the context, and updates this in-
formation dynamically. Context includes IP

stateful firewall filter

Glossary | 689

source and destination addresses, port num-
bers, Transmission Control Protocol (TCP)
sequencing information, and TCP connec-
tion flags. The context established in the
first packet of a TCP session must match the
context contained in all subsequent packets
if a session is to remain active.

See also stateless firewall filter.

stateful firewall recovery
Recovery strategy that preserves parameters
concerning the history of connections, ses-
sions, or application status before failure.

See also stateless firewall recovery.

stateless firewall filter
Type of firewall filter that statically evalu-
ates the contents of packets transiting the
router and packets originating from or des-
tined for the routing engine (RE). Packets
are accepted, rejected, forwarded, or discar-
ded and collected, logged, sampled, or sub-
jected to classification according to a wide
variety of packet characteristics. Sometimes
called access control lists (ACLs) or simply
firewall filters, stateless firewall filters pro-
tect the processes and resources owned by
the RE. A stateless firewall filter can evaluate
every packet, including fragmented packets.
In contrast to a stateful firewall filter, a state-
less firewall filter does not maintain infor-
mation about connection states.

See also stateful firewall filter.

stateless firewall recovery
Recovery strategy that does not attempt to
preserve the history of connections, ses-
sions, or application status before failure.

See also stateful firewall recovery.

static LSP
See static path.

static path
In the context of traffic engineering, a static
route that requires hop-by-hop manual con-
figuration. No signaling is used to create or
maintain the path. Also called a static LSP.

static route
Explicitly configured route that is entered
into the routing table. Static routes have
precedence over routes chosen by dynamic
routing protocols.

static RP
One of three methods of learning the ren-
dezvous point (RP) to group address map-
ping in a multicast network. Each router in
the domain must be configured with the
required RP information.

S/T interface
System reference point/terminal reference
point interface. A four-pair connection
between the Integrated Services Digital Net-
work (ISDN) provider service and the
customer terminal equipment.

STM
Synchronous transport module. CCITT
specification for SONET at 155.52 Mbps.

strict
In the context of traffic engineering, a route
that must go directly to the next address in
the path. (Definition from RFC 791, modi-
fied to fit LSPs.)

strict hop
Routers in a Multiprotocol Label Switching
(MPLS) named path that must be directly
connected to the previous router in the con-
figured path.

STS
Synchronous transport signal. Synchronous
transport signal level 1 is the basic building
block signal of SONET, operating at 51.84
Mbps. Faster SONET rates are defined as
STS-n, where n is an integer by which the
basic rate of 51.84 Mbps is multiplied.

See also SONET.

stub area
In Open Shortest Path First (OSPF), an area
through which, or into which, Autonomous
System (AS) external advertisements are not
flooded.

stateful firewall recovery

690 | Glossary

STU-C
Symmetric high-speed digital subscriber
line (SHDSL) transceiver unit—central of-
fice. Equipment at the telephone company
central office that provides SHDSL connec-
tions to remote user terminals.

STU-R
Symmetric high-speed digital subscriber
line (SHDSL) transceiver unit—remote.
Equipment at the customer premises that
provides SHDSL connections to remote user
terminals.

sub-LSP
Part of a point-to-multipoint label-switched
path (LSP). A sub-LSP carries traffic from
the main LSP to one of the egress Provider
Edge (PE) routers. Each point-to-multipoint
LSP has multiple sub-LSPs.

See also point-to-multipoint LSP.

subnet mask
Number of bits of the network address used
for the host portion of a Class A, Class B, or
Class C IP address.

subrate value
Value that reduces the maximum allowable
peak rate by limiting the High-level Data
Link Control (HDLC)-encapsulated pay-
load. The subrate value must exactly match
that of the remote channel service unit
(CSU).

summary link advertisement
Open Shortest Path First (OSPF) link-state
advertisement (LSA) flooded throughout
the advertisement’s associated areas by area
border routers (ABRs) to describe the routes
that they know about in other areas.

SVC
Switched virtual connection. A dynamically
established, software-defined logical con-
nection that stays up as long as data is being
transmitted. When transmission is com-
plete, the software tears down the SVC.

See also PVC.

sysid
System identifier. Portion of the ISO non-
client peer. The system ID can be any six
bytes that are unique throughout a domain.

syslog
System log. A method for storing messages
to a file for troubleshooting or record-
keeping. It can also be used as an action
within a firewall filter to store information
to the messages file.

T1
Basic physical layer protocol used by the
Digital Signal level 1 (DS1) multiplexing
method in North America. A T1 interface
operates at a bit rate of 1.544 Mbps and can
support 24 DS0 channels.

T3
Physical layer protocol used by the Digital
Signal level 3 (DS3) multiplexing method in
North America. A T3 interface operates at a
bit rate of 44.736 Mbps.

TACACS+
Terminal Access Controller Access Control
System Plus. Authentication method for val-
idating users who attempt to access the
router using Telnet.

tail drop
Queue management algorithm for dropping
packets from the input end (tail) of the
queue when the length of the queue exceeds
a configured threshold.

See also RED.

T-carrier
Generic designator for any of several digi-
tally multiplexed telecommunications car-
rier systems originally developed by Bell
Labs and used in North America and Japan.

TCM
Tricolor marking. Traffic policing mecha-
nism that extends the functionality of class-
of-service (CoS) traffic policing by providing
three levels of drop precedence (loss priority
or PLP) instead of two. There are two types
of TCM: single-rate and two-rate. The

TCM

Glossary | 691

JUNOS software currently supports two-
rate TCM only.

See also trTCM.

TCP
Transmission Control Protocol. Works in
conjunction with IP to send data over the
Internet. Divides a message into packets and
tracks the packets from point of origin to
destination.

tcpdump
Unix packet monitoring utility used by the
JUNOS software to view information about
packets sent or received by the routing
engine (RE).

TCP port 179
Well-known port number used by the Bor-
der Gateway Protocol (BGP) to establish a
peering session with a neighbor.

TDMA
Time-Division Multiplex Access. A type of
multiplexing in which two or more channels
of information are transmitted over the
same link, where the channels take turns to
use the link. Each link is allocated a different
time interval (“slot” or “slice”) for the trans-
mission of each channel. For the receiver to
distinguish one channel from the other,
some kind of periodic synchronizing signal
or distinguishing identifier is required.

See also GSM.

TEI
Terminal Endpoint Identifier. A terminal
endpoint can be any Integrated Services Dig-
ital Network (ISDN)-capable device at-
tached to an ISDN network. The TEI is a
number between 0 and 127, where 0
through 63 are used for static TEI assign-
ment, 64 through 126 are used for dynamic
assignment, and 127 is used for group
assignment.

terminating action
Action in a routing policy or firewall filter
that halts the logical software processing of
a policy or filter.

terms
Used in a routing policy or firewall filter to
segment the policy or filter into small match
and action pairs.

through
JUNOS software routing policy match type
representing all routes that fall between the
two supplied prefixes in the route filter.

Time-Division Multiplex Access
See TDMA.

time-division multiplexed channel
Channel derived from a given frequency and
transmitted over a single wire or wireless
medium. The channel is preassigned a time
slot whether or not there is data to transmit.

timeout timer
Used in a distance-vector protocol to ensure
that the current route is still usable for for-
warding traffic.

TNP
Trivial Network Protocol. A Juniper Net-
works proprietary protocol automatically
configured on an internal interface by the
JUNOS software. TNP is used to commu-
nicate between the routing engine (RE) and
components of the Packet Forwarding En-
gine (PFE), and is critical to the operation of
the router.

token-bucket algorithm
Used in a rate-policing application to en-
force an average bandwidth while allowing
bursts of traffic up to a configured maxi-
mum value.

ToS
Type of service. The method of handling
traffic using information extracted from the
fields in the ToS byte to differentiate packet
flows.

totally stubby area
Open Shortest Path First (OSPF) area type
that prevents Type 3, 4, and 5 link state ad-
vertisements (LSAs) from entering the non-
backbone area.

TCP

692 | Glossary

traffic engineering
Process of selecting the paths chosen by data
traffic to balance the traffic load on the var-
ious links, routers, and switches in the net-
work. (Definition from http://www.ietf.org/
internet-drafts/draft-ietf-mpls-framework
-04.txt.)

See also MPLS.

traffic engineering class
In Differentiated Services-aware traffic en-
gineering, a paired class type and priority.

traffic engineering class map
In Differentiated Services-aware traffic en-
gineering, a map among the class types, pri-
orities, and traffic engineering classes. The
traffic engineering class mapping must be
consistent across the Differentiated Services
domain.

traffic policing
Examines traffic flows and discards or
marks packets that exceed service-level
agreements (SLAs).

traffic sampling
Method used to capture individual packet
information of traffic flow at a specified time
period. The sampled traffic information is
placed in a file and stored on a server for
various types of analysis.

See also packet capture.

traffic shaping
Reduces the potential for network conges-
tion by placing packets in a queue with a
shaper at the head of the queue. Traffic
shaping tools regulate the rate and volume
of traffic admitted to the network.

See also shaping rate.

transient change
Commit-script-generated configuration
change that is loaded into the checkout con-
figuration, but not into the candidate con-
figuration. Transient changes are not saved
in the configuration if the associated com-
mit script is deleted or deactivated.

See also persistent change.

transient interface
Interface that can be configured on a routing
platform depending on your network needs.
Unlike a permanent interface that is re-
quired for router operation, a transient in-
terface can be disabled or removed without
affecting the basic operation of the router.

See also FPC, PIC, permanent interface.

transit area
In Open Shortest Path First (OSPF), an area
used to pass traffic from one adjacent area
to the backbone or to another area if the
backbone is more than two hops away from
an area.

transit router
In Multiprotocol Label Switching (MPLS),
any intermediate router in the label-
switched path (LSP) between the ingress
router and the egress router.

transport mode
IPSec mode of operation in which the data
payload is encrypted, but the original IP
header is left untouched. The IP addresses
of the source or destination can be modified
if the packet is intercepted. Because of its
construction, transport mode can be used
only when the communication endpoint
and cryptographic endpoint are the same.
Virtual private network (VPN) gateways
that provide encryption and decryption
services for protected hosts cannot use
transport mode for protected VPN commu-
nications.

See also tunnel mode.

transport plane
See data plane.

trap
Reports significant events occurring on a
network device, most often errors or fail-
ures. Simple Network Management Proto-
col (SNMP) traps are defined in either stand-
ard or enterprise-specific Management
Information Bases (MIBs).

trap

Glossary | 693

http://www.ietf.org/internet-drafts/draft-ietf-mpls-framework-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mpls-framework-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-mpls-framework-04.txt

triggered updates
Used in a distance-vector protocol to reduce
the time for the network to converge. When
a router has a topology change, it immedi-
ately sends the information to its neighbors
instead of waiting for a timer to expire.

trTCM
Two-rate TCM polices traffic according to
the color classification (loss priority) of each
packet. Traffic policing is based on two
rates: the committed information rate (CIR)
and the peak information rate (PIR). Two-
rate TCM is defined in RFC 2698, “A Two
Rate Three Color Marker.”

See also CIR, PIR.

trunk mode
Layer 2 circuit cell-relay transport mode that
allows you to send Asynchronous Transfer
Mode (ATM) cells between ATM2 intelli-
gent queuing (IQ) interfaces over a Multi-
protocol Label Switching (MPLS) core net-
work. You use Layer 2 circuit trunk mode
(as opposed to standard Layer 2 circuit cell-
relay mode) to transport ATM cells over an
MPLS core network that is implemented be-
tween other vendors’ switches or routers.
The multiple connections associated with a
trunk increase bandwidth and provide fail-
over redundancy.

See also AAL5 mode, cell-relay mode, Layer 2 circuits,
standard AAL5 mode.

Tspec object
Resource Reservation Protocol (RSVP) mes-
sage object that contains information such
as the bandwidth request of the label-
switched path (LSP) as well as the minimum
and maximum packets supported.

tunnel
Private, secure path through an otherwise
public network.

tunnel endpoint
Last node of a tunnel where the tunnel-
related headers are removed from the
packet, which is then passed on to the des-
tination network.

tunneling protocol
Network protocol that encapsulates one
protocol or session inside another. When
protocol A is encapsulated within protocol
B, A treats B as though it were a Data Link
layer. Tunneling can be used to transport a
network protocol through a network that
would not otherwise support it. Tunneling
can also be used to provide various types of
virtual private network (VPN) functionality
such as private addressing.

tunnel mode
IPSec mode of operation in which the entire
IP packet, including the header, is encrypted
and authenticated and a new virtual private
network (VPN) header is added, protecting
the entire original packet. This mode can be
used by both VPN clients and VPN gate-
ways, and protects communications that
come from or go to non-IPSec systems.

See also transport mode.

tunnel services interface
Provides the capability of a Tunnel Services
PIC on an Adaptive Services PIC (ASP).

See also Tunnel Services PIC.

Tunnel Services PIC
Physical Interface Card (PIC) that allows the
router to perform the encapsulation and de-
encapsulation of IP datagrams. The Tunnel
Services PIC supports IP-IP, Generic Rout-
ing Encapsulation (GRE), and Physical In-
terface Module (PIM) register encapsulation
and de-encapsulation. When the Tunnel
Services PIC is installed, the router can be a
PIM rendezvous point (RP) or a PIM first
hop router for a source that is directly con-
nected to the router.

TX Matrix platform
Routing platform that provides the central-
ized switching fabric of the routing matrix.

UDP
User Datagram Protocol. In Transmission
Control Protocol/Internet Protocol (TCP/
IP), a connectionless transport layer proto-
col that exchanges datagrams without

triggered updates

694 | Glossary

acknowledgments or guaranteed delivery,
requiring that error processing and retrans-
mission be handled by other protocols.

U interface
User reference point interface. A single-pair
connection between the local Integrated
Services Digital Network (ISDN) provider
and the customer premises equipment.

UME
UNI management entity. The code residing
in the Asynchronous Transfer Mode (ATM)
devices at each end of a UNI (user-to-net-
work interface) circuit that functions as a
Simple Network Management Protocol
(SNMP) agent, maintaining network and
connection information specified in a Man-
agement Information Base (MIB).

UMTS
Universal mobile telecommunications
system. Provides third-generation (3G),
packet-based transmission of text, digitized
voice, video, and multimedia, at data rates
up to 2 Mbps.

UNI
User-to-network interface. ATM Forum
specification that defines an interoperability
standard for the interface between a router
or an Asynchronous Transfer Mode (ATM)
switch located in a private network and the
ATM switches located within the public car-
rier networks. Also used to describe similar
connections in Frame Relay networks.

unicast
Operation of sending network traffic from
one network node to another individual net-
work node.

unit
JUNOS software syntax that represents the
logical properties of an interface.

unnumbered interface
Logical interface that is configured without
an IP address.

Update message
Border Gateway Protocol (BGP) message
that advertises path attributes and routing
knowledge to an established neighbor.

update timer
Used in a distance-vector protocol to adver-
tise routes to a neighbor on a regular basis.

UPS
Uninterruptible power supply. A device that
sits between a power supply and a router or
other device and prevents power-source
events, such as outages and surges, from
affecting or damaging the device.

upto
JUNOS software routing policy match type
representing all routes that share the same
most-significant bits and whose prefix
length is smaller than the supplied subnet in
the route filter.

UTC
Coordinated Universal Time. Historically
referred to as Greenwich Mean Time
(GMT), a high-precision atomic time stand-
ard that tracks Universal Time (UT) and is
the basis for legal civil time all over the
world. Time zones around the world are ex-
pressed as positive and negative offsets from
UTC.

UTRAN
UMTS Terrestrial Radio Access Network.
The WCDMA radio network in UMTS.

VBR
Variable bit rate. For ATM1 and ATM2 in-
telligent queuing (IQ) interfaces, data that is
serviced at a varied rate within defined lim-
its. VBR traffic adds the ability to statisti-
cally oversubscribe user traffic.

VC
Virtual circuit. A software-defined logical
connection between two network devices
that is not a dedicated connection but acts
as though it is. It can be either permanent
(PVC) or switched (SVC). VCs are used in
Asynchronous Transfer Mode (ATM),
Frame Relay, and X.25. In EX-specific con-

VC

Glossary | 695

text, VC stands for “Virtual Chassis,” which
refers to the interconnection of up to 10 ERX
4200s to form a single logical entity.

See also VPI, VCI, PVC, SVC.

VCI
1. Vapor corrosion inhibitor. Small cylinder
packed with the router that prevents corro-
sion of the chassis and components during
shipment. 2. Virtual circuit identifier. A 16-
bit field in the header of an Asynchronous
Transfer Mode (ATM) cell that indicates the
particular virtual circuit the cell takes
through a virtual path. Also called a logical
interface.

See also VPI.

virtual channel
Enables queuing, packet scheduling, and ac-
counting rules to be applied to one or more
logical interfaces.

See also virtual channel group.

virtual channel group
Combines virtual channels into a group and
then applies the group to one or more logical
interfaces.

See also virtual channel.

virtual circuit
Represents a logical connection between
two Layer 2 devices in a network.

virtual link
In Open Shortest Path First (OSPF), a link
created between two routers that are part
of the backbone but are not physically
contiguous.

virtual loopback tunnel interface
See VT.

virtual path
Combination of multiple virtual circuits be-
tween two devices in an Asynchronous
Transfer Mode (ATM) network.

VLAN
Virtual LAN. A logical group of network de-
vices that appear to be on the same LAN,
regardless of their physical location. VLANs

are configured with management software,
and are extremely flexible because they are
based on logical, rather than physical,
connections.

VLAN-tagged frame
Tagged frame whose tag header carries both
virtual LAN (VLAN) identification and pri-
ority information.

VPI
Virtual path identifier. An 8-bit field in the
header of an Asynchronous Transfer Mode
(ATM) cell that indicates the virtual path the
cell takes.

See also VCI.

VPLS
Virtual private LAN service. An Ethernet-
based multipoint-to-multipoint Layer 2 vir-
tual private network (VPN) service used for
interconnecting multiple Ethernet LANs
across a Multiprotocol Label Switching
(MPLS) backbone. VPLS is specified in the
IETF draft “Virtual Private LAN Service.”

VPN
Virtual private network. A private data net-
work that uses a public Transmission Con-
trol Protocol/Internet Protocol (TCP/IP)
network, typically the Internet, while main-
taining privacy with a tunneling protocol,
encryption, and security procedures.

See also tunneling protocol.

VRF instance
Virtual private network (VPN) routing and
forwarding instance. A Virtual Route and
Forwarding (VRF) instance for a Layer 3
VPN implementation consists of one or
more routing tables, a derived forwarding
table, a set of interfaces that use the for-
warding table, and a set of policies and rout-
ing protocols that determine what goes into
the forwarding table.

VRF table
Routing instance table that stores Virtual
Route and Forwarding (VRF) routing infor-
mation.

See also VRF instance.

VCI

696 | Glossary

VRRP
Virtual Router Redundancy Protocol. On
Fast Ethernet and Gigabit Ethernet
interfaces, allows you to configure virtual
default routers.

VT
Virtual loopback tunnel interface. VT inter-
face that loops packets back to the Packet
Forwarding Engine (PFE) for further pro-
cessing, such as looking up a route in a Vir-
tual Route and Forwarding (VRF) routing
table or looking up an Ethernet Media Ac-
cess Control (MAC) address. A virtual loop-
back tunnel interface can be associated with
a variety of Multiprotocol Label Switching
(MPLS) and virtual private network (VPN)-
related applications, including VRF routing
instances, VPLS routing instances, and
point-to-multipoint label-switched paths
(LSPs).

warm standby
Method that enables one backup Adaptive
Services PIC (ASP) to support multiple
active ASPs, without providing guaranteed
recovery times.

WAN PHY
Wide Area Network Physical Layer Device.
A physical layer device that allows 10 Giga-
bit Ethernet wide-area links to use fiber-
optic cables and other devices intended for
SONET/SDH.

See also LAN PHY, PHY.

WAP
Wireless Application Protocol. A standard
protocol that enables mobile users to access
the Internet in a limited fashion if WAP is
supported and enabled on the mobile de-
vice, server, and wireless network. WAP
users can send and receive email and access
websites in text format only (WAP does not
support graphics).

WCDMA
Wideband Code Division Multiple Access.
Radio interface technology used in most
third-generation (3G) systems.

WDM
Wavelength-division multiplexing. Techni-
que for transmitting a mix of voice, data,
and video over various wavelengths (colors)
of light.

WINS
Windows Internet Name Service. A Win-
dows name resolution service for network
basic input/output system (NetBIOS)
names. WINS is used by hosts running Net-
BIOS over TCP/IP (NetBT) to register Net-
BIOS names and resolve NetBIOS names to
IP addresses.

WRR
Weighted round-robin. Scheme used to de-
cide the queue from which the next packet
should be transmitted.

XENPAK
Standard that defines a type of pluggable
fiber-optic transceiver module that is com-
patible with the 10 Gigabit Ethernet (10 GE)
standard.

XENPAK module
10 Gigabit Ethernet fiber-optic transceiver.
XENPAK modules are hot-insertable and
hot-removable.

See also MSA.

XENPAK Multisource Agreement
See MSA.

XENPAK-SR 10Base-SR XENPAK
Media type that supports a link length of 26
meters on standard Fiber Distributed Data
Interface (FDDI)-grade multimode fiber
(MMF). Up to 300-meter link lengths are
possible with 2000 MHz/km MMF (OM3).

XENPAK-ZR 10GBase-ZR XENPAK
Media type used for long-reach, single-
mode (80–120 km) 10 Gigabit Ethernet
metro applications.

XFP
10 Gigabit Small Form-factor Pluggable
transceiver. A transceiver that provides sup-
port for fiber-optic cables. XFPs are hot-
insertable and hot-removable.

XFP

Glossary | 697

See also SFP.

XML
Extensible Markup Language. Language
used for defining a set of markers, called
tags, which define the function and hier-
archical relationships of the parts of a docu-
ment or data set.

XML schema
Definition of the elements and structure of
one or more Extensible Markup Language
(XML) documents. Similar to a document
type definition (DTD), but with additional
information and written in XML.

XOR
Exclusive or. A logical operator (exclusive
disjunction) in which the operation yields
the result of true when one, and only one,
of its operands is true.

XPath
Standard used in Extensible Stylesheet
Language for Transformations (XSLT) to
specify and locate elements in the input
document’s Extensible Markup Language
(XML) hierarchy. XPath is fully described in
the World Wide Web Consortium (W3C)
specification at http://w3c.org/TR/xpath.

XSLT
Extensible Stylesheet Language for Trans-
formations. A standard for processing
Extensible Markup Language (XML) data
developed by the World Wide Web Con-
sortium (W3C). XSLT performs XML-to-
XML transformations, turning an input
XML hierarchy into an output XML hierar-
chy. The XSLT specification is on the W3C
website at http://www.w3c.org/TR/xslt.

zeroize
Process of removing all sensitive informa-
tion, such as cryptographic keys and user
passwords, from a router running JUNOS-
FIPS.

XML

698 | Glossary

http://w3c.org/TR/xpath
http://www.w3c.org/TR/xslt

Index

Symbols
" (quotation marks), 85
(hash) symbol, 85
$ (dollar sign), 129
* (asterisk), 129
. (period), 129
? (question mark), 99, 129
^ (caret), 129
| (pipe) function (see pipe (|) function)

A
accept (filter action), 480
Acceptable Use Policy (AUP), 536
access control lists (see ACLs)
access mode, 268
ACLs (access control lists)

EX hardware support, 55
firewall filters and, 70
Layer 3 routing, 72

actors, 616
Address Resolution Protocol (see ARP)
administrative distance, 389
aggregated Ethernet

confirming operational status, 512
firewall filters and, 478
functionality, 615
LACP considerations, 192, 615–629
load balancing and, 629
VLAN and, 621

allow command, 129
ALOHAnet, 10
alternate ports, 339, 341
analyzer (filter action), 483
angle brackets, 88, 99

antivirus control, 508
Application layer (OSI model)

defined, 6
IP applications and, 33

application-specific integrated circuit (see
ASIC)

ARP (Address Resolution Protocol)
forwarding next hop and, 412
functionality, 23
loopback considerations, 164
routing considerations, 42
scaling guidelines, 389
security considerations, 508, 523

ARP cache poisoning, 509, 528
ARPANET, 3, 21
arpsoof utility, 527
AS (Autonomous System), 412
ASIC (application-specific integrated circuit)

EX-PFE support, 64
Layer 2 switching, 70

ASM (Authentication State Machine), 545
asterisk (*), 129
Asynchronous Transfer Mode (see ATM)
ATM (Asynchronous Transfer Mode)

multipoint support, 8
VPI support, 271

AUP (Acceptable Use Policy), 536
authentication

case study, 126–132
IEEE 802.1X, 530–555
MAC-based, 536, 537, 550–555
RADIUS support, 532, 550–555
RIPv2 support, 427
SNMP traps, 177
user accounts, 124–132

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

699

authentication server, 532
Authentication State Machine (ASM), 545
authenticator port access entity, 531
authorization, user accounts, 124–132
auto-negotiation, 18, 148
Autonomous System (AS), 412
Autonomous System Number (ASN), 393

B
backup designated routers, 228
backup ports

RSTP support, 339
transitioning states, 341

backup RE role
default election algorithm, 198
defined, 196
master RE and, 597
mastership priority, 197
VC configuration options, 216

bandwidth, 561
behavior aggregate classification, 563
Bellman-Ford algorithm, 422
Berners-Lee, Timothy, 22
BFD (Bidirectional Forwarding Detection),

151, 419, 629–632
BGP (Border Gateway Protocol)

BFD support, 630
EX hardware support, 50
global routing preferences, 390
GR support, 610
GRES support, 608
Layer 3 support, 387
protocol support, 33
routing policy and, 453, 466
routing support, 387
scaling guidelines, 389

BIA (burned-in address), 15, 147
Bidirectional Forwarding Detection (BFD),

151, 419, 629–632
binary format (IP address), 29
binary trees, 460
blocking state, 331, 340
bme0- interface, 144
Border Gateway Protocol (see BGP)
BPDU (Bridge Protocol Data Unit)

defined, 324, 328
original fields, 328–330
port states, 330–332
PVST+ support, 347

RSTP support, 338
switch processing, 327

BPDU protection, 368
bridge identifier, 324, 327, 328, 329
bridge priority, 324
Bridge Protocol Data Unit (see BPDU)
bridges, 322

(see also switches)
blocking support, 40
designated, 322, 324, 326, 327, 328, 336
filtering support, 40
forwarding support, 40
functionality, 38–41
Layer 2 interface example, 150–152
learning support, 40
link failures, 344
listening support, 40
root, 322, 326, 327, 328, 329, 336, 341,

344
router comparison, 386
STP support, 39
topology changes, 343–344

bridging
defined, 267
provider, 271–272
routing comparison, 386
translational, 271

broadcast networks, 8
broadcast storms, 39
BUM traffic, 267, 297, 386
burned-in address (BIA), 15, 147
burst size, 497–499
bus in a box, 37

C
C-VLANs (Customer VLANs), 272
camel’s back syndrome, 57
candidate configuration

comparing against active, 94
functionality, 91
setting initial configuration, 123

Canonical Format Identifier (CFI), 271
caret (^), 129
Carrier Sense Multiple Access with Collision

Detection (CSMA/CD), 13–15
Catalyst 3550 switch

default VLAN/trunking behavior, 280–287
defining VLANs, 287–305

cd command, 89

700 | Index

CDP (Cisco Discovery Protocol)
adding native VLAN support, 305–308
default/native VLANs, 276
functionality, 75
LLDP and, 568
trunking through VLANs, 309

CFI (Canonical Format Identifier), 271
chassis ID, 568
CIDR (Classless Inter-Domain Routing)

functionality, 30
Layer 3 interface example, 154
RIPv2 support, 427

Cisco Discovery Protocol (see CDP)
Cisco IOS devices

administrative distance, 389
configuring and confirming, 288–292
configuring RIP, 429
default/native VLANs, 277
GVRP support, 278

Cisco Systems
HSRP, 404
Juniper interoperability, 347–350

Class A address, 28, 29
Class B address, 28
Class C address, 28, 30
class of service (see CoS)
Classless Inter-Domain Routing (CIDR)

functionality, 30
Layer 3 interface example, 154
RIPv2 support, 427

clear command, 79, 102
clear ethernet-switching bpdu-error command,

368
clear ethernet-switching table interface

command, 522
CLI (command-line interface)

command completion feature, 79
command history, 82
context-sensitive help function, 80
copying configurations, 103
Emacs keys, 81
EZSetup feature, 77
fault isolation wizard, 160
insert feature, 455
inserting strings, 103
J-Web interface, 76
JUNOS support, 73
listing route attributes and flags, 413
modes supported, 78

monitoring environment, 60
pipe function, 82–85
question mark support, 99
regular expressions and, 102
renaming values, 103
setting initial configuration, 122
wildcard support, 102

CLNS (Connectionless Network Service), 3, 5
clock strata, 179
clock synchronization, 179, 181
command-line interface (see CLI)
commands

diagnostic, 160
hidden, 134
VC support, 224–227

commit and-quit command, 92
commit check command, 91, 92
commit command

recovery mechanism, 92
scheduling, 102

commit confirmed command, 89, 92–95, 497
commit synchronize command, 196, 223, 239,

247, 256
Common Spanning Tree (CST), 371
configuration

candidate, 91, 94, 123
CLI copy support, 103
DHCP relay option, 141
DHCP servers, 139–141
factory-default, 77, 110–115
initial, 122
interface, 146–155
Layer 2 interface example, 150–152
Layer 3 interface example, 152–155
LLDP, 570
loading and saving, 95–98
MAC-based authentication, 550–555
modifying default, 287–305
MSTP, 372–377
navigating hierarchy, 89–91
object-oriented hierarchy, 87
policers, 500
RADIUS servers, 538, 540
rescue, 182
RIP, 429–437
RSTP, 361–368
RTG, 378–381
RVI, 398–403
secondary, 123–143

Index | 701

SECRET-DATA tag, 125
SNMP, 177
STP, 326–328, 350–361
VC modes, 216–223
VCE ports, 259–263

configuration mode
command history, 82
defined, 78
functionality, 85–98
pipe function considerations, 82

configure command, 92
configure exclusive command, 86
configure private command, 86
Connectionless Network Service (CLNS), 3, 5
control plane

backup RE support, 196
routing policy and, 451
separation from forwarding, 55–57

convergence
RIP routing, 424
RSTP, 341–345

CoS (class of service)
additional information, 560
defined, 561
EX hardware overview, 55
Layer 2 switching, 71
PCP support, 270
processing stages, 562–564
QoS comparison, 560–564
voice VLAN and, 577, 584

count (filter action), 483
count function, 83, 520
CSMA/CD (Carrier Sense Multiple Access with

Collision Detection), 13–15
CST (Common Spanning Tree), 371
Ctrl-a keystroke, 81
Ctrl-b keystroke, 81
Ctrl-e keystroke, 81
Ctrl-f keystroke, 81
Ctrl-k keystroke, 81
Ctrl-l keystroke, 81
Ctrl-n keystroke, 81
Ctrl-p keystroke, 81
Ctrl-r keystroke, 81
Ctrl-u keystroke, 82
Ctrl-w keystroke, 81, 89
Ctrl-x keystroke, 81
Customer VLANs (C-VLANs), 272

D
DAI (dynamic ARP inspection)

defined, 509, 524
deploying, 525–526
functionality, 62
security support, 509–515, 522–529
verifying, 526–529

Darwin, Charles, xiii
Data Link layer (see Link layer (OSI model))
data plane, 451
data terminal equipment (DTE), 7
datagrams, 25
DDoS (distributed denial of service) attack

discard next hop and, 411
pseudointerfaces and, 144

debug command, 57
default gateways, 138
default VLANs, 275
delay, 561
delay variation (jitter), 562
delete command, 87
delete interfaces command, 151
delete protocols command, 88
denial of service (DoS) attacks, 277, 509
deny command, 129
designated bridges

defined, 322
determining, 326
ports supported, 324
spanning tree example, 336
switch processing, 327, 328

Designated Intermediate System (DIS), 227
designated ports

designated bridges and, 324
determining, 326
RSTP support, 339
switch processing, 327
transitioning states, 341

designated routers
backup, 228
OSPF support, 228

Destination MAC address (see DMAC address)
Destination Service Access Point (DSAP), 330
device management interface (DMI), 63
Device Under Test (DUT), 510
dhclient program, 526
DHCP (Dynamic Host Configuration Protocol)

ARP support, 43
configuration parameters, 139–141

702 | Index

DAI support, 62
inter-VLAN routing, 402
IP telephony and, 579
relay configuration, 141
router support, 386
security support, 509, 523
setting secondary configuration, 138–143

DHCP snooping
defined, 509, 524
deploying, 525–526
security support, 509–515, 522–529
verifying, 526–529

DHCPACK message, 523, 527
DHCPDISCOVER message, 523
DHCPOFFER message, 523
DHCPREQUEST message, 523, 527
diagnostic commands, 160
dictionary juniper file, 539
DiffServ Code Points (see DSCPs)
DIS (Designated Intermediate System), 227
disable statement, 535
disabled state, 331, 340
discard (filter action), 480
discard next hop, 411
discarding state, 340, 341
display function, 82, 83
display set function, 414
Distance Vector Multicast Routing Protocol

(DVMRP), 390
distance vector protocols

BGP support, 453
RIP support, 422, 423, 453

distributed denial of service (DDoS) attack
discard next hop and, 411
pseudointerfaces and, 144

DMAC (Destination MAC) address
aggregated Ethernet and, 629
bridge processing, 40
filtering traffic, 267
intersystem packet flows, 212, 215
Layer 2 switching, 71
MTU support, 147
switch support, 320

DMI (device management interface), 63
DNS (Domain Name System)

DHCP support, 138
loopback filters, 495
setting initial configuration, 123

dollar sign ($), 129

Domain Name System (see DNS)
DoS (denial of service) attacks, 277, 509
dotted decimal format (IP address), 29
drop (limiting action), 517
DSAP (Destination Service Access Point), 330
dsc- interface, 144
DSCPs (DiffServ Code Points)

CoS processing, 563
defined, 270
IP telephony case study, 583, 589
TLV support, 578

DTE (data terminal equipment), 7
DTP (Dynamic Trunking Protocol), 278, 290
DUT (Device Under Test), 510
DVMRP (Distance Vector Multicast Routing

Protocol), 390
dynamic ARP inspection (see DAI)
dynamic firewall filters, 536
Dynamic Host Configuration Protocol (see

DHCP)
Dynamic Trunking Protocol (DTP), 278, 290
dynamic VLAN, 536

E
EAP (Extensible Authentication Protocol)

functionality, 534
IEEE 802.1X authentication, 509, 531–534,

544
supported methods, 534

EAP-MD5, 534, 538, 540
EAP-PEAP, 534
EAP-TLS, 534
EAP-TTLS, 534
edge ports

RSTP support, 339
transitioning states, 341

edit command, 89
EDP (Extreme Discovery Protocol), 568
election protocol, 613
Emacs keys, 81
Enhanced Multilayer Software, 396
enterprise networks, 48
eswd daemon, 75
EtherChannel, 615
Ethernet

aggregated, 192, 478, 512, 615–629
auto-negotiation, 18, 148
background, 10
dominance of, 9

Index | 703

IEEE 802.3 comparison, 11–13
logical unit support, 146
MAC layer, 11–13–16
standards summarized, 16

EtherType
filter match conditions, 481
identifying protocol, 12
SNAP support, 12

EX platform
architectural overview, 64–73
capabilities and scaling limits, 61
CLI support, 76–104
hardware overview, 49–64
JUNOS software overview, 73–76
Layer 2 features, 62
Layer 2 switching, 68–71
product line overview, 47–49
routing capabilities, 387–389
separate control and forwarding, 55–57
table of general capabilities, 57–61

EX-PFE (Packet Forwarding Engine)
ASIC support, 64
functionality, 56–57, 207
intersystem packet flows, 212–215
MAC address support, 70
processing overview, 68–72
routing engine failover and, 598
SPF calculation, 208
VLAN tagging and, 62

EX3200 platform
architectural overview, 65–66
capabilities and scaling limits, 61
design purpose, 48
EX-PFE ASIC, 64
hardware overview, 49–52
interface support, 143
redundancy considerations, 60, 596
table of general capabilities, 57

EX4200 platform
architectural overview, 66–68
basic switch maintenance, 167–187
capabilities and scaling limits, 61
customized user accounts, 124–132
design purpose, 48
DHCP support, 138–143
EX-PFE ASIC, 64
EZSetup feature, 115–122
factory-default configuration, 110–115
front-panel LEDs, 68

hardware overview, 49–52
initial configuration, 122
interface considerations, 143–167
Out of Band network, 132–134
redundancy considerations, 60, 596
remote access, 134–138
secondary configuration, 123–143
table of general capabilities, 57

EX8200 platform
capabilities and scaling limits, 61
design purpose, 48
hardware overview, 52–55
redundancy considerations, 60, 596
table of general capabilities, 59

exact route filter match type, 462
except function, 83
exception traffic, 214
exit command, 90
Extensible Authentication Protocol (see EAP)
Extensible Markup Language (XML), 135
Extreme Discovery Protocol (EDP), 568
EZSetup feature

EX4200 support, 115–122
overview, 77

F
factory-default configuration

EX4200 switches, 110–115
EZSetup considerations, 77

failover
Layer 2 considerations, 599–600
Layer 3 considerations, 600–603
routing engine, 597–599
RTG support, 377

fault isolation tools
diagnostic commands, 160
Ethernet OAM, 158–160
hard loops, 163–167
loopbacks, 161
monitor interface command, 157
monitor traffic command, 157
operational mode show commands, 157
syslog, 156

Fault-Tolerant Overlay Protocol (FTOP), 6
FCS (frame check sequence)

MTU and, 147
VLAN tagging, 270

FD mode (see full duplex mode)
FEC (Forward Error Correction), 5

704 | Index

Field Replaceable Unit (FRU), 59
file copy command, 96, 137
File Transfer Protocol (FTP), 134
filtering, 70

(see also firewall filters)
bridge processing, 40
BUM traffic, 386
LSAs, 453
route, 460–465
RVI and, 408–410
traffic, 267

find function, 84
Finger protocol, 134
firewall filters

ACLs and, 70
applying at Layer 3 level, 484, 485–493
applying at port level, 484
applying at VLAN level, 484, 493–495
case studies, 484–497
defined, 477
dynamic, 536
Layer 2 switching, 70
loopbacks and, 484, 495–497
packets in data plane, 451
possible match conditions, 480–482
processing actions, 480, 483, 497–502
rate limiting, 502
router support, 386
routing policy comparison, 477
RVI support, 408–410
storm control, 502
types supported, 478
typical syntax, 477

Flexible PIC Concentrator (FPC), 143
floating static routes, 414
Forward Error Correction (FEC), 5
forwarding

bridge processing, 40
loops, 309
packet, 210
separation from control plane, 55–57
traffic, 267

forwarding classes
prioritizing voice traffic, 584
setting, 563

forwarding delay, 331, 334
forwarding next hop, 412
forwarding state, 331, 340, 341
forwarding tables

IGP support, 387
RE support, 196, 597
RIB groups and, 390

forwarding-class (filter action), 483
FPC (Flexible PIC Concentrator), 143
frame check sequence (see FCS)
Frame Relay, 8
frames

bridge support, 386
jumbo, 12, 270
Link layer support, 5
pausing, 148
processing overview, 68–72
TTL restrictions, 213, 386

FreeBSD, 73, 144
FRU (Field Replaceable Unit), 59
FTOP (Fault-Tolerant Overlay Protocol), 6
FTP (File Transfer Protocol), 134
full duplex (FD) mode

broadcast networks, 9
defined, 8
hardcoding, 148
loopback requirements, 163
NBMA networks, 9
point-to-point connections, 8
VC support, 191
VCP support, 199

G
GARP (Generic Attribute Registration

Protocol), 277, 329
GARP VLAN Registration Protocol (see GVRP)
GBIC (GE Interface Converter), 17
GE Interface Converter (GBIC), 17
Generic Attribute Registration Protocol (see

GARP)
Generic Routing Encapsulation (see GRE)
GET command, 176, 177
global route preference, 389–390
GOSIP (Government Open Systems

Interconnection Profile), 3
GR (Graceful Restart)

functionality, 63, 610
hardware redundancy, 610
VC support, 50, 192

Graceful Routing Engine Switchover (see
GRES)

Gratuitous ARP
defined, 25, 147

Index | 705

example, 528
VRRP support, 613

GRE (Generic Routing Encapsulation)
pseudointerfaces and, 144
routing considerations, 388

gre- interface, 144
GRES (Graceful Routing Engine Switchover)

backup RE support, 196
hardware redundancy and, 603–610
ISSU support, 614
VC support, 50, 192

guest VLAN feature, 536
GVRP (GARP VLAN Registration Protocol),

62, 277

H
HA (High Availability)

aggregated Ethernet and, 615–629
BFD support, 629–632
EX hardware support, 50, 55
hardware redundancy and, 596–612
ISSU support, 614
VRRP support, 613

half-duplex (HD) mode
broadcast network support, 9
hardcoding, 148
NBMA networks, 9

hardware redundancy (see redundancy)
hash (#) symbol, 85
HD mode (see half-duplex mode)
hello time, 334
help apropos forward-delay command, 99
help command, 99
help reference command, 100, 101
help syslog command, 174
help topic command, 100
hexadecimal format (IP address), 29
hidden commands, 134
High Availability (see HA)
hold downs, 426
hop count

defined, 424
RIP support, 427

Hot Standby Routing Protocol (HSRP), 404
HSRP (Hot Standby Routing Protocol), 404
HTTP (Hypertext Transfer Protocol)

IP support, 33
J-Web support, 76
remote access support, 135

HTTPS protocol
J-Web support, 76
remote access support, 135

hub-and-spoke topology
defined, 8
shift toward, 14

Hypertext Transfer Protocol (see HTTP)

I
ICMP (Internet Control Message Protocol)

filter match conditions, 480
functionality, 32
global routing preferences, 390
interface logical properties, 149
reject next hop and, 412

IDP (intrusion detection and prevention), 508
IEEE 802.1AD standard, 568
IEEE 802.1ad-2005 standard, 272
IEEE 802.1AX standard, 615
IEEE 802.1D standard, 269, 277, 322
IEEE 802.1D-2004 specification, 338
IEEE 802.1p standard, 270, 563
IEEE 802.1Q standard

filter match conditions, 481
Layer 2 support, 62
MSTP support, 324, 369
native VLANs and, 274
RSTP support, 268
VLAN tagging, 268

IEEE 802.1w standard, 338
IEEE 802.1X authentication

authentication components, 531–534
configuring properties, 542
deploying, 538–555
guest VLAN feature, 536
JUNOS administrative modes, 535
JUNOS supplicant modes, 535
security considerations, 508, 509, 530
supplicant support, 532
verifying, 543–550

IEEE 802.3 standard
background, 10
Ethernet comparison, 11–13
LLDP-MED support, 573
SNAP support, 269

IEEE 802.3ad standard, 62, 615
IEEE 802.5 standard, 271
IETF (Internet Engineering Task Force), 3
ifconfig command, 239, 240, 527

706 | Index

ifd (interface device), 395
ifl (interface logical), 395
IGMP (Internet Group Management Protocol)

factory-default configuration, 110
functionality, 62
Layer 3 support, 388

IGP (Interior Gateway Protocol)
IS-IS support, 227
Layer 3 support, 387
overview, 386
RIP routing and, 422

In-Service Software Upgrades (see ISSU)
inactive ports, 324
inet.0 routing table, 391
insert function, 457
Integrated Route Bridge (IRB), 271
Integrated Security Gateway (ISG), 508
Integrated Services Digital Network (ISDN), 6
Inter Switch Link (ISL) protocol, 268, 290
inter-VLAN routing

deploying RVIs, 397–403
Layer 3 support, 396
overview, 393–395
restricting RVI communications, 407–410
router-on-a-stick concept, 395–396
RVI support, 396
using VRRP with RVIs, 404–407

interconnection (see LAN interconnection)
interface device (ifd), 395
interface logical (ifl), 395
interfaces

configuring, 146–155
Layer 2 configuration example, 150–152
Layer 3 configuration example, 152–155
logical properties, 146, 149
logical units and, 145
naming convention, 145
network, 145
non-transit, 143
permanent, 143
physical properties, 146–148
RSTP support, 339–340
transient, 143
troubleshooting, 156–167, 567

Interior Gateway Protocol (see IGP)
Intermediate System-to-Intermediate System

(see IS-IS)
International Organization for Standardization

(ISO), 3

Internet Control Message Protocol (see ICMP)
Internet Engineering Task Force (IETF), 3
Internet Group Management Protocol (see

IGMP)
Internet Protocol (see IP)
internetworks

IP support, 27
OSI model example, 6

intrusion detection and prevention (IDP), 508
inventory management, 574
IP (Internet Protocol)

application support, 33
background, 21
dominance of, 9, 12
encapsulation support, 34
filter match conditions, 480
functions supported, 25–27
ICMP support, 32
internetworking support, 27
routing considerations, 35
security considerations, 508
stack overview, 22–35
TCP and, 33
UDP support, 32

IP addresses
binary format, 29
classless, 28–31
defined, 27
DHCP support, 138
dotted decimal format, 29
forwarding next hop and, 412
global routing preferences, 390
hexadecimal format, 29
hierarchical nature, 28
Layer 3 routing, 72
router support, 386
VC support, 193
virtual management, 218

ip classless command, 30
IP routing, 397, 422, 508
IP Source Guard feature, 524
IP telephony

case studies, 578–590
defined, 559
deployment scenarios, 559–564
LLDP support, 568
LLDP-MED and, 573–577
PoE support, 564–567
voice VLAN support, 577, 582

Index | 707

ipip- interface, 144
IPSec (IP Security)

IP support, 36
routing considerations, 388

IRB (Integrated Route Bridge), 271
IS-IS (Intermediate System-to-Intermediate

System)
BFD support, 630
discontiguous subnets, 32
EX hardware support, 50
functionality, 12
global routing preferences, 390
GR support, 610
interface logical properties, 149
Layer 3 support, 387
routing policy and, 453, 465
routing support, 387
VCCP support, 207, 227

ISDN (Integrated Services Digital Network), 6
ISG (Integrated Security Gateway), 508
ISL (Inter Switch Link) protocol, 268, 290
ISO (International Organization for

Standardization), 3
ISSU (In-Service Software Upgrades)

functionality, 63
high availability and, 614
VC support, 50

J
J Series routers, 47, 75, 508
J-Tree, 460, 462
J-Web interface

fault isolation wizard, 160
overview, 76
remote access support, 135

jitter (delay variation), 562
JNTCP website, xix
JTAC (Juniper Technical Assistance Center),

305
jumbo frames, 12, 270
Juniper Networks, 347–350
Juniper Technical Assistance Center (JTAC),

305
JUNOS software

additional resources, 74, 99, 224
overview, 73–76
predefined user classes, 127
routing concepts, 389
spanning tree configuration, 350–369

JUNOScript server, 135
jweb config-management command, 182

K
keepalive function

examining, 588
GRES and, 603
OAM support, 151, 158
switch processing, 328

kernel preference values, 390
keystrokes, Emacs, 81
kill commands, 79

L
L2CP (Layer 2 Control Protocol), 606
L2TP (Layer 2 Tunneling Protocol), 309
Label Distribution Protocol (see LDP)
LACP (Link Aggregation Control Protocol),

192, 615–629
LAG (Link Aggregated Group), 620
LAN (local area network)

defined, 8
Ethernet support, 9, 19
IEEE 802 standard, 10
MAC layer, 11–13
OSI model on, 11

LAN interconnection
bridges, 38–41
OSI model and, 36
repeaters, 37
routers, 41–43

LAN switching (see Ethernet)
LAPB (Link Access Procedure, Balanced), 12
Layer 2, 62

(see also Link Layer (OSI model))
bridge support, 38
default failover considerations, 599–600
default VLAN behavior, 280–287
EX platform support, 62
firewall filters, 478, 479, 481
GRES support, 606
interface configuration example, 150–152
interface logical properties, 149
LLDP support, 568
security support, 507–509
switching overview, 68–71
VLAN tagging and, 146

Layer 2 Control Protocol (L2CP), 606

708 | Index

Layer 2 Tunneling Protocol (L2TP), 309
Layer 3, 63

(see also Network layer (OSI model))
default failover considerations, 600–603
EX platform support, 63
firewall filters, 478, 479, 480, 484, 485–493,

497
GRES support, 608–610
interface configuration example, 152–155
interface logical properties, 149
loop considerations, 309–314
loopback considerations, 163
router support, 41
routing overview, 71, 387
RVI support, 396, 408–410
scaling limits, 389
security support, 507
VLAN support, 268
VLAN tagging and, 146

LC (Line Card)
EX hardware overview, 50, 52
me0 address, 239
PoE considerations, 565
redundancy considerations, 597
VC configuration options, 216, 221

LCC (Line Card Chassis)
default election algorithm, 198
defined, 196
mastership priority, 197

LDP (Label Distribution Protocol)
global routing preferences, 390
GR support, 610
routing considerations, 388

learning state, 331, 340
Least Significant Bit (LSB), 271
Line Card (see LC)
Line Card Chassis (see LCC)
line loss, 565
linear rings, 201
Link Access Procedure, Balanced (LAPB), 12
Link Aggregated Group (LAG), 620
Link Aggregation Control Protocol (LACP),

192, 615–629
link bundling, 615
Link layer (OSI model), 5

(see also Layer 2)
defined, 5
IP stack and, 23
LAN networks, 11

Link Layer Discovery Protocol (see LLDP)
link state advertisements (see LSAs)
link state database (LSDB), 208, 227, 612
link state packets (LSPs), 207
LIS (logical IP subnet), 393, 398, 513
listening state, 331, 340
LLC (Logical Link Control)

as LAN network component, 11
BPDU support, 330
defined, 12
IEEE 802.3 standard, 269

LLDP (Link Layer Discovery Protocol), 275
CDP support, 75
configuring, 570
factory-default configuration, 110
functionality, 62
IP telephony and, 568

LLDP Protocol Data Unit (PDU), 568
LLDP-MED

benefits, 573
case studies, 587–590
enabling, 574
IP telephony support, 573–577
TLV support, 573, 578
vendor support, 573
verifying, 575
VoIP support, 537

lo0- interface, 144
load ? command, 96
load balancing

aggregated Ethernet and, 629
router support, 386
VC considerations, 209

load factory-default command, 77, 115
load merge command, 97
load merge terminal command, 97
load merge terminal relative command, 98,

255
load override command, 97
local area network (see LAN)
log (limiting action), 517
log files, custom, 174
logical AND operator, 85, 457, 482
logical IP subnet (LIS), 398, 513
Logical Link Control (see LLC)
logical OR operator, 85, 457, 482
logical units, 145
longer route filter match type, 463
loopbacks

Index | 709

bridge considerations, 386
firewall filters and, 484, 495–497
forwarding loops, 309
forwarding next hops and, 412
hard loops, 163–167
switch considerations, 161, 319–321
troubleshooting support, 158, 161

loss, 562
loss pattern, 562
LSAs (link state advertisements)

applying routing policy, 453
GR support, 611
PFE support, 208
VC support, 211

LSB (Least Significant Bit), 271
LSDB (link state database), 208, 227, 612
LSPs (link state packets), 207, 209

M
M Series routers, 47, 75, 508
MAC (Media Access Control)

as LAN network component, 11
authentication support, 536, 537, 550–555
CSMA/CD, 13–15
Ethernet and 802.3 comparison, 11–13
Ethernet support, 13–16
MAC addressing, 15
opportunistic versus deterministic, 14
VLAN considerations, 268

MAC address
age-out timer, 330
backup RE support, 196
BIA support, 15, 147
bridge identifier, 324
bridge support, 386
filter match conditions, 481
Layer 2 switching, 70
loopback considerations, 164
PFE support, 56
security support, 508
structure of, 15
switch support, 319
VRRP support, 613

MAC limiting
defined, 508
deploying, 517–522
security support, 509–515–522
verifying, 517–522

macof utility, 519

maintenance window, 102
MAN (metropolitan area network), 9
man-in-the-middle attacks, 509, 523
Management Information Base (see MIB)
Marschke, Doug, 47, 126, 385, 430, 453, 508,

560
master RE role

backup RE and, 597
default election algorithm, 198
defined, 196
mastership priority, 197
member ID, 197, 237

mastership priority, 197
match function, 84, 520
match types, route filters and, 461–465
maximum transmission unit (MTU), 147
maximum-power command, 566
MBGP (Multiprotocol Border Gateway

Protocol), 388
MD5 algorithm, 125
me0- interface, 143, 218, 239
Media Access Control (see MAC)
member ID

functionality, 197
master RE role, 197, 237
VC configuration options, 217, 220

message age timer, 334
Metcalf, Bob, 10
metropolitan area network (MAN), 9
MIB (Management Information Base)

defined, 176
LLDP support, 568, 572
SNMP support, 179

monitor interface command, 157
monitor start command, 544
monitor start policy-trace command, 470
monitor start rip command, 441
monitor traffic command, 157, 576, 588, 618
monitoring

routing policy, 466–470
VCCP, 227–233

Most Significant Bit (see MSB)
MPLS (Multiprotocol Label Switching)

Ethernet support, 9
global routing preferences, 390
routing considerations, 388

MPR (Multiprotocol Routing), 41, 42
MSB (Most Significant Bit)

binary trees, 461

710 | Index

IP addressing, 29
MAC addresses, 15
Token Ring support, 271

MSTI (Multiple Spanning Tree Instance), 369,
371

MSTP (Multiple Spanning Tree Protocol)
configuring, 372–377
functionality, 369–371
GRES support, 606
IEEE 802.1D standard, 269
IEEE 802.1Q standard, 324, 369
Juniper and Cisco interoperability, 347
tagging user traffic, 268

MTU (maximum transmission unit), 147
multifield classification, 563
Multiple Spanning Tree Instance (MSTI), 369,

371
Multiple Spanning Tree Protocol (see MSTP)
multipoint connections, 8
Multiprotocol Border Gateway Protocol

(MBGP), 388
Multiprotocol Label Switching (see MPLS)
Multiprotocol Routing (MPR), 41, 42
MX platform, 48, 75, 271, 508

N
naming convention

interfaces, 145
switches, 145

NAS (Network Access Server), 538
NAT (Network Address Translation)

EX hardware support, 55
SNMP traps, 178

NAT/PAT (Network Address Translation/Port
Address Translation), 36, 507

native VLANs, 274, 305–308
NBMA (non-broadcast multiple access)

networks, 9
NDP (Nortel Discovery Protocol), 568
Near End Cross Talk (NEXT) circuitry, 163
NET (Network Entity Title), 227
NetBIOS (network basic input

output system), 523
Network Access Server (NAS), 538
Network Address Translation (see NAT)
Network Address Translation/Port Address

Translation (NAT/PAT), 36, 507
Network Configuration protocol, 135
Network Entity Title (NET), 227

network interface card (NIC), 15, 149
network interfaces, 145
Network layer (OSI model), 6

(see also Layer 3)
defined, 5, 7
IP stack and, 23

Network Time Protocol (NTP)
functionality, 179–182
loopback filters, 495

networks
classifications of, 8
communication modes, 8
defined, 2
enterprise, 48
key trends, 9
OSI model, 3–8

NEXT (Near End Cross Talk) circuitry, 163
next hop

discard, 411
forwarding, 412
reject, 412

NIC (network interface card), 15, 149
NIC teaming, 615
no switchport command, 291
no-more function, 84
no-reauthentication statement, 537
no-root-port command, 368
non-broadcast multiple access (NBMA)

networks, 9
non-provisioned mode, 216, 221
non-root users, authenticating, 124, 125–126
Non-Stop Forwarding (NSF), 196
Non-Stop Routing (see NSR)
non-transit interfaces, 143
none (limiting action), 517
Nortel Discovery Protocol (NDP), 568
NSF (Non-Stop Forwarding), 196
NSR (Non-Stop Routing)

functionality, 63
hardware redundancy, 612
ISSU support, 614
VC support, 50, 192

NTP (Network Time Protocol)
functionality, 179–182
loopback filters, 495

O
OAM (Operation, Administration, and

Maintenance)

Index | 711

Ethernet support, 9
keepalive support, 151
troubleshooting support, 158–160

Object Identifier (OID), 176
OID (Object Identifier), 176
OoB (Out of Band)

connecting backup RE, 598
EX3200 support, 65
EX4200 support, 115
security considerations, 510
setting initial configuration, 122
setting secondary configuration, 132–134
VLAN tagging, 271

Open Shortest Path First (see OSPF)
Open Systems Interconnection model (see OSI

model)
Open1X.org, 532
Operation, Administration, and Maintenance

(OAM)
Ethernet support, 9
keepalive support, 151
troubleshooting support, 158–160

operational mode
command history, 82
defined, 78
functionality, 78–85
pipe function considerations, 82
show commands, 157
VC support, 224–225

operator class, 127
operators

logical, 85, 457, 482
regular expressions, 129

orlonger route filter match type, 463
OSI (Open Systems Interconnection) model

background, 3
internetwork example, 6
key points, 4
LAN networks, 11, 36
layer functions, 5–8
reasons for failure, 3
seven layers depicted, 4
TCP/IP and, 20

OSPF (Open Shortest Path First)
backup RE support, 196
BFD support, 630
discontiguous subnets, 32
EX hardware support, 50
global routing preferences, 390

GR support, 610, 611
GRES support, 608
IGP support, 422
Layer 3 support, 387
loopback filters, 495
policy case study, 470–476
routing engine failover and, 599
routing policy and, 453, 465
typical users, 386

Out of Band (see OoB)

P
P-to-P connection (see point-to-point

connection)
Packet Forwarding Engine (see EX-PFE)
packet loss priority (PLP), 500, 563
packets

exception traffic, 214
firewall filters and, 451
forwarding, 210, 386
intersystem flows, 212–215
link state, 207, 209
processing overview, 68–72
router support, 386
VC flow process, 206–215

partners, 616
passwords

recovering, 183–187
setting initial configuration, 122
setting secondary configuration, 124

PCP (Priority Code Point), 270
PDs (powered devices), 564
PDUs (Protocol Data Units)

BPDUs, 324, 327, 328–332, 338, 347
LLDP support, 568
Physical layer support, 5

period (.), 129
Perlman, Radia, xiii
permanent interfaces

EX4200 support, 143
router support, 143

PFE (see EX-PFE)
Physical Interface Card (PIC), 143
Physical layer (OSI model)

defined, 5
IP stack and, 23
repeater support, 37

PIC (Physical Interface Card), 143
PIM (Protocol Independent Multicast)

712 | Index

BFD support, 630
global routing preferences, 390
in Dense mode, 63, 388
in Sparse mode, 63, 387
pseudointerfaces and, 144

pimd- interface, 144
pime- interface, 144
ping command, 403, 431, 606
pipe (|) function

candidate configurations and, 94
functionality, 82–85

PLP (packet loss priority), 500, 563
plug-and-play, 581
PoE (Power over Ethernet)

classes supported, 564
defined, 564
EX hardware overview, 51, 53, 58
factory-default configuration, 110
IP telephony and, 564–567
JUNOS support, 565–567
LLDP-MED support, 573
troubleshooting interfaces, 567
VC support, 191

point-to-point connection
defined, 8
forwarding next hop and, 412
port-fast feature, 364
RSTP support, 339, 341

Point-to-Point Protocol (PPP), 27
poisoned reverse, 426, 474
policers

CoS processing and, 563
functionality, 483, 497–502

port channels, 615
port firewall filters, 478, 484, 497
port identifier, 329, 569
port modes, 268
port numbers in STP, 326
port states

BPDU support, 330–332
RSTP support, 339–340
STP support, 330–332, 340

port teaming, 615
port trunking, 615
port-fast feature, 364
ports

administrative states, 535
alternate, 339, 341
backup, 339, 341

configuring for VCE, 259–263
designated, 324, 326, 327, 339, 341
designated bridges and, 324
edge, 339, 341
firewall filters and, 478, 484, 497
inactive, 324
root, 324, 336, 339, 341
supplicant modes, 535
transitioning via feedback mechanism, 341
UDP support, 32

power budget, 565
power management, 565
Power over Ethernet (see PoE)
power sourcing equipment (PSE), 564
power supply unit (see PSU)
powered devices (PDs), 564
PPP (Point-to-Point Protocol), 27
prefix-length-range route filter match type,

463
preprovisioned mode, 216, 221
Presentation layer (OSI model)

defined, 6
IP applications and, 33

Priority Code Point (PCP), 270
priority tags, 271
Protocol Data Units (see PDUs)
Protocol Independent Multicast (see PIM)
protocol timers, 332
protocols

associated RFCs, 610
defined, 2
election, 613
routed versus routing, 43

provider bridging, 271–272
PSE (power sourcing equipment), 564
PSTN (Public Switched Telephone Network),

6
PSU (power supply unit)

EX hardware overview, 49, 60
VC support, 191

Public Switched Telephone Network (PSTN),
6

PVST+ protocol, 347–350

Q
QinQ, 270, 271–272
QoS (quality of service)

CoS comparison, 560–564
defined, 561

Index | 713

primary network parameters, 561
question mark (?), 99, 129
queuing, 563
quotation marks ("), 85

R
RADIUS (Remote Authentication Dial-In User

Service)
accounting information, 537
authentication support, 532–534, 550–555
security considerations, 509
server configuration, 538, 540
setting secondary configuration, 125
user authentication case study, 128–130

random early detection (RED), 563
Rapid Spanning Tree Protocol (see RSTP)
read-only class, 127
readvertisement, 426, 465
Real-time Transport Protocol (RTP), 585
recovering passwords, 183–187
recursion, 417
RED (random early detection), 563
redistribute command, 392
redundancy

default failover Layer 2, 599–600
default failover Layer 3, 600–603
EX hardware overview, 50, 59, 596
GR support, 610
GRES support, 603–610
NSR support, 612
routing engine failover, 597–599
VC configuration options, 216
VRRP support, 404

Redundant Trunk Group (see RTG)
regular expressions

CLI support, 102
common operators, 129

reject (filter action), 480
reject next hop, 412
remote access

setting initial configuration, 122
setting secondary configuration, 134–138

Remote Authentication Dial-In User Service
(see RADIUS)

remote bridging, 38
Remote login protocol, 134
remote power supply (RPS), 49
rename function, 104
rendezvous point (RP), 144

repeaters
5 4 3 rule, 37
bus in a box, 37
functionality, 37

request chassis routing-engine command, 256
request chassis routing-engine master switch

command, 606
request command, 79
request session member command, 238
request system command, 224
request system configuration rescue delete

command, 182
request system software command, 236
request system storage cleanup command, 169
request virtual-chassis command, 222
request virtual-chassis recycle command, 237
request virtual-chassis renumber command,

237, 238
request virtual-chassis vc-port command, 204
REs (routing engines)

control plane considerations, 56
EX hardware overview, 50, 53
failover considerations, 597–599
intersystem packet flows, 214
permanent interfaces, 143
PFE support, 57
VC configuration options, 221

rescue configuration, 182
Resource Reservation Protocol (see RSVP)
restart command, 73, 79, 234
restart ethernet-switching command, 305
rewriting markers, 563
Reynolds, Harry, 47, 126, 385, 430, 453, 508,

560
RFC 1058, 422
RFC 1388, 422
RFC 1812, 569
RFC 2011, 569
RFC 2108, 569
RFC 2131, 522
RFC 2453, 422
RFC 2464, 269
RFC 2669, 569
RFC 2670, 569
RFC 2674, 569
RFC 2866, 537
RFC 3164, 170
RFC 3478, 610
RFC 3576, 536

714 | Index

RFC 3623, 610
RFC 4558, 610
RFC 4724, 610
RFC 4741, 135
RFC 5187, 610
RFC 5306, 610
RFC 894, 269
RIB (Routing Information Base), 390
RID (router ID), 392
RIP (Routing Information Protocol)

BFD support, 630
configuring, 429–437
deploying, 427–437
discontiguous subnets, 32
global routing preferences, 390
GRES support, 608
Layer 3 support, 387
overview, 423–427
policy case study, 470–476
RIPv2 comparison, 426
routing policy and, 453, 454–455, 466
routing support, 422
typical users, 386
verifying, 438–446

RIPng (Routing Information Protocol next
generation)

global routing preferences, 390
IPv6 support, 422

RIPv2, 426
Rlogin (Remote login) protocol, 134
rollback 0 command, 89, 92, 94
rollback 1 command, 89, 92, 93
rollback 2 command, 93
rollback n command, 92
root bridges

determining, 326
link failures, 344
root identifiers, 328, 329
RSTP convergence, 341
spanning tree example, 336
STP support, 322
switch processing, 327, 328

root passwords
password recovery process, 186
setting initial configuration, 122
setting secondary configuration, 124

root ports
defined, 324
determining costs, 336

RSTP support, 339
transitioning states, 341

root users, authenticating, 124–125
route filters

binary trees, 460
match types and, 461–465

route preference, global, 389–390
route redistribution, 387
route reflection, 466
route summarization, 28
Routed VLAN Interface (see RVI)
router firewall filters, 478, 484
router ID (RID), 392
router-on-a-stick concept, 395–396
routers

backup designated, 228
bridge comparison, 386
designated, 228
firewall filters and, 478, 484
functionality, 41–43
global route preference, 389–390
J Series, 47, 75
loopback support, 158
M Series, 47, 75
member ID and, 197
MX Series, 48, 75
permanent interfaces and, 143
T Series, 48
transient interfaces and, 143
TX platform, 75
virtual, 388
VLAN support, 268

routing
additional resources, 385
bridging comparison, 386
direct versus indirect delivery, 35
EX capabilities, 387–389
general overview, 386, 389
global route preference, 389–390
inter-VLAN, 393–411
IP, 397, 422, 508
Layer 3 support, 71
optimal solutions, 385
RIP, 422–447
SNMP traps, 178
static, 387, 390, 411–422, 630

routing domain
defined, 386
route redistribution, 387

Index | 715

routing engines (see REs)
Routing Information Base (RIB), 390
Routing Information Protocol (see RIP)
routing policy

applying, 452–455
case study, 470–476
control plane and, 451
default policies, 465–466
firewall filter comparison, 477
match criteria, 458
monitoring, 466–470
overview, 392, 452
policy actions, 459
policy components, 456–458
route filters, 460–465
testing, 466–470
troubleshooting, 469

Routing Protocol Daemon (RPD), 608
routing tables

IGP support, 386
inet.0 table, 391
RIB groups and, 390
routing policies and, 452, 453

RP (rendezvous point), 144
RPD (Routing Protocol Daemon), 608
RPS (remote power supply), 49
RSTP (Rapid Spanning Tree Protocol)

BPDU support, 338
configuring, 361–368
convergence, 341–345
design considerations, 365–368
factory-default configuration, 110
GRES support, 606
IEEE 802.1D standard, 269
IEEE 802.1w standard, 338
interface types, 339–340
Juniper and Cisco interoperability, 347–

350
link costs, 346
port states, 339–340
routing engine failover and, 599
STP compatibility, 347
topology changes, 343–344
transition considerations, 365

RSVP (Resource Reservation Protocol)
global routing preferences, 390
GR support, 610
routing considerations, 388

RTG (Redundant Trunk Group)

configuring, 378–381
functionality, 62, 377
VC support, 193

RTP (Real-time Transport Protocol), 585
run show bfd session extensive command, 631
run show route advertising-protocol rip

command, 474
run show route command, 78
RVI (Routed VLAN Interface)

configuring, 398–403
deploying, 397–403
functionality, 393, 396
Layer 3 routing, 71, 268, 388, 408–410
pseudointerfaces and, 144
restricting communications, 407–410
security considerations, 513–515
testing, 398–403
using with VRRP, 404–407

S
S-VLANs (Service VLANs), 271–272
SABME (Set Asynchronous Balanced Mode

Extended), 12
Santayana, George, 10
SAP (Service Access Point), 12
save command, 88, 96
save function, 85
SCCP (Skinny Call Control Protocol), 585
scheduling

commit process, 102
CoS processing, 563

SCP (secure copy), 134
SDLC (Synchronous Data Link Control), 8
SDU (Service Data Unit), 6
SECRET-DATA tag, 125
secure copy (SCP), 134
Secure Sockets Layer (see SSL)
security

ARP support, 508
DHCP snooping, 509–515, 522–529
dynamic ARP inspection, 509–515, 522–

529
IEEE 802.1X authentication, 508, 530–555
IEEE 802.1x authentication, 509
IP support, 508
Layer 2 support, 507–509
Layer 3 support, 507
MAC limiting, 508, 509–515–522

Service Access Point (SAP), 12

716 | Index

Service Data Unit (SDU), 6
Service VLANs (S-VLANs), 271–272
Session layer (OSI model), 6
set ? command, 87, 219, 413, 432
Set Asynchronous Balanced Mode Extended

(SABME), 12
set cli command, 80
set command, 87, 122
set date command, 179
set date ntp command, 182
set ethernet-switching-options bpdu-block

interface command, 368
set interfaces command, 151, 535
set no-management-vlan command, 239–240
set protocols export command, 452
set protocols import command, 452
set root-authentication command, 124
set routing-options graceful-restart command,

611
set system commit synchronize command,

223
set system time-zone command, 181
set unit command, 296
SFP (Small Form-factor Pluggable) optics, 17,

168
Shortest Path First (SPF), 194, 199, 208
show arp inspection statistics command, 527
show bgp summary command, 82
show chassis alarm command, 157
show chassis hardware command, 168, 565
show chassis lcd command, 225
show chassis mac-addresses command, 254,

286
show cli authorization command, 131
show command

functionality, 79
general syntax, 82
operational mode, 157
troubleshooting support, 157

show configuration chassis command, 603
show configuration command, 95
show configuration firewall command, 80
show dhcp snooping binding command, 527
show diagnostics tdr command, 161
show dot1x interface command, 543
show ethernet-switching command, 157
show ethernet-switching interface command,

521

show ethernet-switching interfaces command,
285, 368

show ethernet-switching statistics mac-learning
command, 312

show ethernet-switching table detail command,
298

show firewall command, 493
show gvrp command, 303
show interfaces command, 151, 157, 501, 545
show interfaces trunk command, 282, 290
show ip route command, 402
show ip-source-guard command, 528
show lldp detail command, 571, 575
show lldp local-information command, 571
show lldp neighbors command, 570
show lldp neighbors interface command, 587
show lldp neighbors-mib command, 572
show lldp statistics command, 572
show log messages command, 157, 172–174
show log policy-trace command, 470
show ntp associations command, 180, 181
show oam ethernet link-fault-management

command, 160, 162
show pfe statistics command, 214
show poe controller command, 566
show policer command, 501
show protocols lldp-med command, 574
show rip neighbor command, 438
show rip statistics command, 438
show route advertising protocol rip command,

440
show route advertising-protocol command,

453
show route command, 78, 157, 391, 414, 453
show route protocol rip command, 439
show route receive protocol rip command, 440,

441
show route receiving-protocol command, 453
show route table command, 391
show snmp mib command, 179
show system command, 224
show system processes command, 73
show system services command, 141
show system statistics command, 214
show system storage command, 168
show system switchover command, 604
show version and haiku command, 134
show version command, 224

Index | 717

show virtual-chassis active-topology
command, 227

show virtual-chassis command, 225, 226, 249,
261

show virtual-chassis protocol command, 227
show virtual-chassis status command, 226
show vlan brief command, 282
show vlan command, 288, 525
show vlans command, 284, 297, 302
show vlans extensive command, 401
show vrrp command, 406
shutdown (limiting action), 517, 521
Simple Network Management Protocol (see

SNMP)
simplex mode

broadcast networks, 9
NBMA networks, 9

Single-Source Multicast (SSM), 387
Skinny Call Control Protocol (SCCP), 585
SMAC (Source MAC) address

aggregated Ethernet and, 628, 629
bridge processing, 40
filtering traffic, 267
forwarding traffic, 267
intersystem packet flows, 212, 214
MTU support, 147
security support, 509
switch support, 319

Small Form-factor Pluggable (SFP) optics, 17,
168

SNA (Systems Network Architecture) protocol,
12

SNAP (Subnetwork Access layer Protocol)
EtherType support, 12
IEEE 802.3 standard, 269

SNMP (Simple Network Management
Protocol)

functionality, 176–179
global routing preferences, 390
LLDP and, 568
loopback filters, 495
process example, 74
setting initial configuration, 123
trap generation, 148, 177

SONET (Synchronous Optical Network), 178
Source MAC address (see SMAC address)
Source Route Bridging (SRB), 271
Source Service Access Point (SSAP), 330
space bar, 80

Spanning Tree Protocol (see STP)
spanning-tree pathcost method long command,

349, 357
SPF (Shortest Path First), 194, 199, 208
split horizon, 426
SRB (Source Route Bridging), 271
SSAP (Source Service Access Point), 330
SSH (Secure Shell) protocol

functionality, 135–138
loopback filters, 495
root user constraints, 124

SSL (Secure Sockets Layer)
HTTPS support, 135
VPN support, 508

SSM (Single-Source Multicast), 387
star topology

defined, 8
shift toward, 14

stateful firewall filters, 386
static routing

BFD support, 630
EX scenario, 414–421
floating static routes, 414
global routing preferences, 390
Layer 3 support, 387
limitations, 411
next hop types, 411, 412
route attributes and flags, 412

STP (Spanning Tree Protocol)
backup RE support, 196
BPDU support, 328–332
bridge priority, 324
bridge support, 386
building spanning trees, 334–336
configuring, 326–328, 350–361
disabling, 279
EX platform support, 62
functionality, 39, 322–326
GR support, 610
GRES support, 606
Layer 2 switching, 70
limitations, 336
link costs, 325
port numbers, 326
port states, 330–332, 340
protocol timers, 332
RSTP compatibility, 347
RTG considerations, 378
topology changes, 332, 343–344

718 | Index

troubleshooting example, 157
VC support, 193
VLAN support, 268

stratum 0 clock, 179
su command, 124
subnet masks, 138
subnetting

defined, 30
discontiguous, 31

Subnetwork Access layer Protocol (see SNAP)
super-user class, 127
supernetting, 28, 30
supplicant, 531, 535
SVI (Switched Virtual Interface)

defined, 133
RVI and, 396
VLAN support, 268

Switched Virtual Interface (see SVI)
switches, 322

(see also bridges)
basic maintenance, 167–187
behaviors in different states, 331
chassis health check, 168–170
configuring SNMP, 177
defined, 322
IEEE 802.1X feature support, 535–538
initiating traps, 177
link failures, 344
loopback considerations, 161, 319–321
mastership priority, 197
member ID and, 197
naming convention, 145
NTP support, 179
password recovery, 183–187
rescue configuration, 182
scaling guidelines, 389
STP support, 319, 326

switching
Layer 2 interface example, 150–152
Layer 2 support, 68–71
loop considerations, 309–314

switchport mode trunk command, 269
switchport nonegotiate command, 278, 291
switchport trunk allowed command, 289, 291
switchport trunk encapsulation dotlq

command, 269
switchport trunk native vlan command, 274
sync operation, 341
synchronization, clock, 179, 181

Synchronous Data Link Control (SDLC), 8
Synchronous Optical Network (SONET), 178
sysid (system ID), 617
syslog (system log)

case study, 175
facilities supported, 171
functionality, 170–175
header support, 174
loopback filters and, 497
MAC limit actions, 517
severity levels, 170
troubleshooting support, 156

Systems Network Architecture (SNA) protocol,
12

T
T Series routers, 48
Tab key, 80
table aging timer, 333
TACACS (Terminal Access Controller Access

Control System), 125
Tag Protocol Identifier (TPID), 270, 272
tap- interface, 144
TCN messages, 343
TCP (Transmission Control Protocol)

filter match conditions, 480
functionality, 33
NSR support, 612

TCP/IP
background, 20, 21
interface logical properties, 149
IP stack, 22–35
OSI model and, 20

Telnet protocol
functionality, 135
root user constraints, 124

templates, user, 128
Terminal Access Controller Access Control

System (TACACS), 125
test command, 79
test policy command, 467
testing

proof of concept, 404
routing policy, 466–470
RVIs, 398–403

through route filter match type, 463
Time to Live (see TTL)
timers

protocol, 332

Index | 719

viewing, 571
TLS (Transparent LAN Service), 272
TLV (type length value)

DSCP support, 578
IS-IS support, 228
LACP support, 617
LLDP support, 568
LLDP-MED support, 573, 578

Token Ring
MAU support, 9
MSB support, 271

top command, 90
ToS (Type of Service)

Layer 2 switching, 71
Network layer support, 5

TPID (Tag Protocol Identifier), 270, 272
traceoptions command, 57, 570, 619
traceroute command, 285, 403
tracing

routing policy, 469
VC support, 233–236

traffic engineering, 387
transient interfaces, 143
translational bridging, 271
Transmission Control Protocol (see TCP)
transparent bridging, 40
Transparent LAN Service (TLS), 272
Transport layer (OSI model)

defined, 6
IP applications and, 33

triggered updates, 426
troubleshooting

interfaces, 156–167, 567
PoE, 567
routing policy, 469
traceoptions command support, 570
VLAN problems, 301–305

trunk mode, 268
trunking

CDP through VLANs, 309
default behavior, 280–287
defining VLANs, 287–305
GARP support, 277
port, 615
port modes and, 268
VLAN tagging and, 268

TTL (Time to Live)
frame restrictions, 213, 386
LLDP support, 569

loopback considerations, 166
router support, 386

TX routing platform, 75
type length value (see TLV)
Type of Service (ToS)

Layer 2 switching, 71
Network layer support, 5

U
UDP (User Datagram Protocol)

filter match conditions, 480
functionality, 32
interface logical properties, 149
loopback filters, 496
RIP support, 424
syslog messages, 170

unauthorized class, 127
up command, 90
upto route filter match type, 463
user accounts

authenticating, 124–132
authorizing, 124–132

User Datagrame Protocol (see UDP)
user templates, 128

V
Variable Length Subnet Masking (VLSM)

functionality, 31
RIPv2 support, 427

VC (Virtual Chassis)
adds, moves, changes, 237–238
aggregated Ethernet and, 616
bifurcated, 210
case study, 241–263
configuration modes, 216–223
design and deployment options, 198–205
expanding, 217
extending, 205
factory-default configuration, 110
features supported, 50
hardware overview, 50
hardware redundancy, 597
maintaining, 236
member parameters, 219–221
member roles, 196
monitoring commands, 225
monitoring control protocol, 227–233
non-provisioned mode, 216, 221

720 | Index

operating, 223–241
operational mode commands, 224–225
overview, 191–198
packet flow, 206–215
PoE considerations, 565
preprovisioned mode, 216, 221
tracing support, 233–236
virtual management address, 218

VC Extension (see VCE)
VCCP (Virtual Chassis Control Protocol)

functionality, 194
IS-IS support, 207, 227
LSP support, 209
monitoring, 227–233
packet flow process, 207
path metric, 199

VCE (VC Extension)
configuring ports, 259–263
forming, 191
functionality, 221
topologies supported, 204

VCI (virtual circuit ID), 149
VCID (Virtual Chassis Identifier), 198
VCP (Virtual Chassis Port)

cable considerations, 192
EX hardware support, 51
multiple rack rings, 202
packet flow process, 208, 212
pseudointerfaces and, 144
serial chain, 203
single rack rings, 201
topologies supported, 199–201

vcp- interface, 144, 222
vendor-specific attributes (VSAs), 537, 539
verifying

DHCP snooping, 526–529
dynamic ARP inspection, 526–529
IEEE 802.1X authentication, 543–550
LLDP-MED, 575
MAC limiting, 517–522
RIP, 438–446
voice VLAN, 578

VIP (Virtual IP), 404, 613
Virtual Chassis (see VC)
Virtual Chassis Control Protocol (see VCCP)
Virtual Chassis Identifier (VCID), 198
Virtual Chassis Port (see VCP)
virtual circuit ID (VCI), 149
Virtual IP (VIP), 404, 613

virtual LAN (see VLAN)
virtual management address, 218
Virtual Path Indicator (VPI), 271
Virtual Private LAN Service (VPLS), 272, 388
virtual private network (see VPN)
Virtual Router Redundancy Protocol (see

VRRP)
virtual routers, 388
VLAN (virtual LAN)

aggregated Ethernet and, 621
case studies, 579–590
default behavior, 280–287
default VLAN, 275
defined, 267
dynamic, 536
firewall filters and, 478, 484, 493–495, 497
inter-VLAN routing, 393–411
Layer 2 switching, 70
MAC limiting, 515–522
modifying default configuration, 287–305
MSTP support, 369–370
native VLAN, 274, 305–308
packet flow process, 213
RADIUS support, 533
security considerations, 511–515
setting initial configuration, 122
setting secondary configuration, 133
troubleshooting problems, 301–305
trunking CDPs, 309

VLAN firewall filters, 478, 484, 493–495, 497
VLAN tagging

filter match conditions, 481
GARP support, 277
Layer 2 support, 62
Layer 3 interface example, 152
logical unit support, 146
port modes, 268
tagging user traffic, 268–272
trunking and, 268
VC restrictions, 218

VLAN Trunking Protocol (VTP), 278
vlan- interface, 144
VLSM (Variable Length Subnet Masking)

functionality, 31
RIPv2 support, 427

vme0- interface, 144, 218
voice VLAN

CoS considerations, 577, 584
defined, 560

Index | 721

IP telephony and, 577, 582
verifying, 578

VoIP (Voice over IP), 537, 559
VPI (Virtual Path Indicator), 271
VPLS (Virtual Private LAN Service), 272, 388
VPN (virtual private network)

Ethernet support, 9
SSL support, 508

VRRP (Virtual Router Redundancy Protocol)
high availability and, 613
loopback filters, 495
proof of concept test, 404
router-on-a-stick concept, 396
SNMP traps, 178
using with RVI, 404–407

VSAs (vendor-specific attributes), 537, 539
VTP (VLAN Trunking Protocol), 278

W
WAN (wide area network)

defined, 8
Ethernet support, 9
multipoint support, 8

WAP (Wireless Access Point), 530, 564
wide area network (see WAN)
wildcards, 102
Wireless Access Point (WAP), 530, 564

X
X.25 protocol, 6
Xerox Networking Services, 422
XFP transceiver, 17
XML (Extensible Markup Language), 135
Xsupplicant package, 532

722 | Index

About the Authors
Harry Reynolds has more than 29 years of experience in the networking industry, with
the last 19 years focused on LANs and LAN interconnection. He is CCIE #4977 and
JNCIE #3 certified, and holds various other industry and teaching certifications. Harry
was a contributing author of Juniper Network Complete Reference (McGraw-Hill),
wrote the JNCIE and JNCIP Study Guides (for Sybex Books), and coauthored JUNOS
Enterprise Routing with Doug Marschke (O’Reilly). Prior to joining Juniper, Harry
served time in the U.S. Navy as an avionics technician, worked for equipment manu-
facturer Micom Systems, and spent much time developing and presenting hands-on
technical training curricula targeted to both enterprise and service provider needs.
Harry has presented classes for organizations such as American Institute, American
Research Group, Hill Associates, and Data Training Resources. Harry is currently em-
ployed by Juniper Networks as a senior test engineer in the JUNOS software Core
Protocols group. Harry has also functioned at Juniper as a consulting engineer on an
aerospace routing contract, and as a senior education services engineer working on
courseware and certification offerings.

Doug Marschke is an engineering graduate from the University of Michigan and is
currently the chief technology officer at Proteus Networks. He is JNCIE-ER #3, JNCIE-
M #41, and JNCIS-FW certified. He has been heavily involved in the Juniper certifi-
cation exams from the start, contributing to the test writing, and is the coauthor of the
current JNCIE Enterprise Exam. Doug also coauthored JUNOS Enterprise Routing with
Harry Reynolds. Doug currently spends his time working with governments, service
providers, and enterprises to optimize their IP networks for better performance, cost,
and reliability. He also flies around the world and back, sharing his knowledge in a
variety of training classes and seminars with topics ranging from troubleshooting to
design to certification preparation. If Doug is not on the road, you can find him at his
bar in San Francisco, the Taco Shop at Underdogs, ready to serve you a drink.

Colophon
The animal on the cover of JUNOS Enterprise Switching is a gorgeted bird of paradise
(Astrapia nigra), also known as an Arfak Astrapia. The male of this species is black with
iridescent purple, green, and gold plumage, whereas the female is predominantly
brown. One of the larger birds of paradise, it measures 30 inches with a long, broad
tail. It is native to Indonesia and resides in the Arfak Mountains in West Papua, where
it subsists on a diet of tropical fruits. Protected by many laws as well as by its geo-
graphical isolation, the Arfak Astrapia is not considered a threatened species.

All birds of paradise are members of the family Paradisaeidae, and are found only in
tropical forests in Indonesia, Papua New Guinea, and parts of Australia. They are
famous for their bright plumage and long, elaborate feathers. Perhaps the best-known
species is the greater bird of paradise, Paradisaea apoda. Native traders in the 18th
century sold these birds for decoration, usually removing their wings and feet, which

http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/
http://oreilly.com/catalog/9780596514426/

led to the mistaken belief in Europe that the birds were limbless and held permanently
aloft by their plumes. This is why Linnaeus named the species apoda, “without feet.”

The hunting of birds of paradise has occurred for thousands of years, and was heaviest
in the late 19th and early 20th centuries when the plumes were used in the millinery
trade. Although these birds are now protected, some hunting is still permitted to the
tribal societies of New Guinea, many of which use the plumes ceremonially.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Foreword
	Evolution of the Bridging World
	What Is the Big Deal About Switching Anyway?
	How This Book Will Help You (a.k.a. What’s in It for Me?)

	Preface
	What Is JUNOS Enterprise Switching?
	The Juniper Networks Technical Certification Program (JNTCP)
	How to Use This Book
	What’s in This Book?
	Topology of This Book

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	Comments and Questions
	About Scott Morris, Lead Tech Reviewer
	Acknowledgments
	From Doug Marschke
	From Harry Reynolds

	Chapter 1. LAN and Internetworking Overview
	What Is a Network?
	The OSI Model
	Layer functions

	Network Types and Communication Modes
	Communication modes

	So, Where Did We LANd?

	Ethernet Technologies
	A Brief Look Back
	Ethernet or 802.3, That Is the Question
	The MAC Layer
	CSMA/CD
	The shift away from shared media

	MAC addressing

	Ethernet Standards Wrap-Up
	A word on auto-negotiation

	Ethernet Technology Summary

	The TCP/IP Suite
	Enter OSI
	Exit OSI, Enter IP
	The IP Stack, in a Nutshell
	The network that lies beneath
	ARP me, Amadeus
	IP, freely
	IP addressing
	Hierarchical
	Classless is the norm (or, how we learned to subnet)

	ICMP, the bad news protocol
	UDP, multiplexing, and not much else
	TCP, a transport for all seasons
	What’s this Internet thing for again, eh, sonny?
	IP encapsulation example

	Internet Protocol Summary

	LAN Interconnection
	Repeaters
	Bridges
	Protocol-agnostic
	Loops are bad, really, really bad
	Bridge processing in detail

	Routers
	Multi-Protocol Routing

	LAN Interconnect Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 2. EX Platform Overview
	EX Hardware Overview
	The EX8200 Series
	Separate Control and Forwarding: It’s a Good Thing
	EX Hardware: The Numbers
	EX Feature Support
	Layer 2 features
	Layer 3 and general system features

	EX Hardware Summary

	EX Series Architecture
	The EX-PFE ASIC
	EX3200 Architecture
	EX4200 Architecture
	Front-panel LEDs

	A Day in the Life of a Packet
	Layer 2 switching
	Output processing: Layer 2 switching
	Layer 3 routing

	EX Series Architecture Summary

	JUNOS Software Overview
	JUNOS Software Summary

	CLI Overview
	J-Web and EZSetup
	EZSetup

	CLI Operational Modes and General Features
	Operational mode
	Command completion
	Emacs keys
	The pipe

	Configuration Mode
	Navigating the configuration hierarchy
	Active and candidate configurations, commits, and rollbacks
	Commit confirmed

	Loading and saving configurations

	The JUNOS CLI Summary

	Advanced CLI and Other Cool Stuff
	SOS
	Scheduled Commits and Wildcards
	Wildcards and regular expressions

	Copying, Renaming, and Inserting

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 3. Initial Configuration and Maintenance
	The Factory-Default Configuration and EZSetup
	Factory-Default Configuration
	EZSetup
	Factory-Default Configuration and EZSetup Summary

	Initial Configuration Using the CLI
	CLI Configuration Summary

	Secondary Configuration
	Customized User Accounts, Authentication, and Authorization
	User authentication case study

	Out of Band Network
	Remote Access
	Dynamic Host Configuration Protocol
	DHCP server configuration in JUNOS
	DHCP relay configuration in JUNOS

	Secondary Configuration Summary

	EX Interfaces
	Permanent Interfaces
	Network Interfaces
	Network interface naming
	Logical units

	Interface Configuration
	Physical properties
	Logical properties

	EX Interface Configuration Examples
	Layer 2 interface
	Layer 3 interface

	Interface Troubleshooting
	JUNOS troubleshooting tools
	Syslog
	Monitor interface
	Monitor traffic
	Operational mode show commands
	Ethernet OAM
	Diagnostic commands
	Loopbacks
	Hard loops

	EX Interface Summary

	Basic Switch Maintenance
	Chassis Health Check
	Syslog
	Syslog case study

	SNMP
	NTP
	Is NTP really working?

	Rescue Configuration
	Password Recovery
	Switch Maintenance Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 4. EX Virtual Chassis
	The EX Virtual Chassis
	Virtual Chassis Overview
	Virtual Chassis Control Protocol
	Member roles within a VC
	Member ID
	Mastership priority
	Default election algorithm
	Virtual Chassis Identifier

	Virtual Chassis Design and Deployment Options
	VCP topologies
	VCP single rack rings
	VCP multiple rack rings
	VCP serial chain
	VCE topologies
	Extending the VC

	Packet Flow in a Virtual Chassis
	Virtual chassis topology discovery
	The SPF calculation
	A bifurcated VC: It’s a bad thing
	Virtual chassis packet walk-through
	Intersystem packet flows

	Virtual Chassis Summary

	Configuration, Operation, and Maintenance
	Virtual Chassis Configuration Modes
	Hot or cold insertion: when does a VC addition become a VC merge?

	Virtual Chassis Configuration
	Virtual management address
	Virtual chassis member parameters
	VCEs
	Virtual chassis configuration summary

	Virtual Chassis Operation and Maintenance
	Operational mode commands with member context
	VC monitoring commands
	Monitor the VC control protocol
	VC tracing
	VC maintenance
	VC adds, moves, and changes
	Connecting to non-master members
	Using the no-management-vlan option

	Configuration, Operation, and Maintenance Summary

	Virtual Chassis Case Study
	Prepare for the Merge
	Configure VC Parameters
	Confirm initial VC operation

	Expand the VC with VCE Links
	Prepare the new switch
	Configure the VCE ports

	Case Study Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 5. Virtual LANs and Trunking
	Virtual LANs and Trunking
	Port Modes
	Tagging User Traffic
	QinQ, a.k.a. provider bridging

	The Native and Default VLANs
	The native VLAN
	The default VLAN
	Putting it all together

	Generic Attribute Registration Protocol
	Cisco and GVRP

	VLAN and Trunking Summary

	EX to Catalyst VLAN Integration
	Default VLAN/Trunking Behavior
	Define VLANs
	Configure and confirm IOS VLANs and trunking
	JUNOS VLAN and trunk configuration
	Troubleshoot a VLAN problem

	Add Native VLAN Support
	Getting Loopy with It
	VLAN Integration Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 6. Spanning Tree Protocol
	Feeling a Little Loopy
	Stupid Is As Stupid Does
	Loop Issue Summary

	Spanning Tree Protocol
	STP Basics
	Calculating and Maintaining the Spanning Tree
	Bridge Protocol Data Units
	BPDU Learning and Port States
	Protocol Timers
	Table age
	Hello time
	Message age
	Forwarding delay

	Putting the Theory Together
	STP Issues
	STP Summary

	Rapid Spanning Tree Protocol
	New BPDU Definition and Function
	Interface Types and States
	RSTP Convergence
	Topology changes
	Link failures

	Link Cost in RSTP
	Compatibility with STP
	Interoperability Between Juniper and Cisco
	RSTP Summary

	Spanning Tree Configuration
	Failures with Default Parameters
	Configuring RSTP
	When RSTP isn’t going to be rapid
	RSTP design consideration

	Spanning Tree Configuration Summary

	Multiple Spanning Tree Protocol
	MSTP Configuration
	MSTP Summary

	Redundant Trunk Groups
	RTG Configuration
	RTG Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 7. Routing on the EX
	EX Routing Overview
	What Is Routing?
	Interior Gateway Protocol overview

	EX Routing Capabilities
	What’s missing?
	Layer 3 scaling limits

	JUNOS Routing Concepts
	Global route preference
	Routing tables and RIB groups
	The inet.0 table
	Routing policy
	Router ID and Autonomous System Number

	Summary of EX Routing Capabilities

	Inter-VLAN Routing
	A Router on a Stick
	Enter the Routed VLAN Interface
	Full Layer 3 functionality

	Deploy an RVI
	Configure and test an RVI

	Use VRRP with an RVI
	Restricting RVI Communications
	RVI and Layer 3 filters

	RVI Summary

	Static Routing
	Next Hop Types
	Forwarding next hop qualifiers

	Route Attributes and Flags
	Floating Static Routes
	EX Static Routing Scenario
	Static routing in the Internet router
	EX static routing

	Static Routing Summary

	RIP Routing
	RIP Overview
	RIP stability and performance tweaks
	RIP and RIPv2

	RIP Deployment Scenario
	Configure RIP
	Vodkila’s RIP configuration

	Verify RIP
	RIP Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 8. Routing Policy and Firewall Filters
	Routing Policy
	What Is Routing Policy, and When Do I Need One?
	Where and How Is Policy Applied?
	Applying policy to link state routing protocols
	Applying policy to RIP

	Policy Components
	Logical OR and AND functions within terms

	Policy Match Criteria and Actions
	Policy match criteria
	Policy actions

	Route Filters
	Binary trees
	Route filters and match types
	Longest match wins, but may not…

	Default Policies
	OSPF default policy
	IS-IS default policy
	RIP default policy
	BGP default policy

	Testing and Monitoring Policy
	Testing policy results
	Policy tracing

	Policy Case Study
	Routing Policy Summary

	Firewall Filters
	Types of Filters
	Filter Term Processing
	Filter Match Conditions
	Filter Actions
	Applying a Filter
	Applying a filter at the port level
	Applying a filter at the VLAN level
	Applying a filter at the Layer 3 level

	Transit Filter Case Study
	Layer 3 filter
	VLAN filters

	Case Study: Loopback Filters
	Policers
	Burst-size-limit mystery
	Policer actions
	Configuring and applying policers
	Policer example

	Storm Control and Rate Limiting
	Filters and Policers Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 9. Port Security and Access Control
	Layer 2 Security Overview
	EX Layer 2 Security Support

	MAC Limiting, DHCP, and ARP
	MAC Limiting
	Limiting MAC moves
	MAC limit actions
	Deploy and verify MAC limiting

	DHCP Snooping and ARP Inspection
	Securing DHCP and ARP
	Deploy DHCP snooping and ARP inspection
	Confirm DHCP snooping and ARP inspection

	MAC Limiting, DHCP, and ARP Summary

	IEEE 802.1X Port-Based Authentication
	Terminology and Basic Operation
	Extensible Authentication Protocol

	JUNOS 802.1X Feature Support
	Administrative modes
	Supplicant modes
	Additional capabilities

	Deploy and Verify 802.1X
	RADIUS server configuration
	EAP-MD5 supplicant configuration
	Configure RADIUS parameters
	Configure 802.1X authenticator properties
	Verify 802.1X authentication
	Configure MAC-based RADIUS authentication

	802.1X Port-Based Authentication Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 10. IP Telephony
	Deployment Scenarios
	QoS or CoS?
	Deployment Scenarios Summary

	Power over Ethernet
	JUNOS Support for PoE
	PoE Summary

	Link Layer Discovery Protocol
	JUNOS LLDP
	LLDP Summary

	LLDP with Media Endpoint Discovery
	LLDP-MED and JUNOS
	LLDP-MED Summary

	Voice VLAN
	Case Studies
	Without LLDP-MED Support
	Plug-and-play solution without LLDP-MED
	Voice VLAN and IP phone configuration

	With LLDP-MED Support
	Case Study Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Chapter 11. High Availability
	Hardware Redundancy
	Routing Engine Failover
	Default Failover Layer 2
	Default Failover Layer 3
	Graceful Routing Engine Switchover
	GRES with Layer 2
	GRES with Layer 3

	Graceful Restart
	Non-Stop Routing
	GRES, GR, NSR, Oh My!

	VRRP
	In-Service Software Upgrades
	Aggregated Ethernet
	LACP in Action
	JUNOS Configuration
	Additional configuration options
	Load balancing over AE

	Bidirectional Forwarding Detection (BFD)
	High Availability Summary

	Conclusion
	Chapter Review Questions
	Chapter Review Answers

	Glossary
	Index

